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Consequences of actuator bandwidth limitations while controlling unstable systems

Hello, in the previous clip, we started our discussion on control of unstable systems. And

in this clip we shall continue this discussion. So, we saw that unstable systems could

possess Bode plots whose phase characteristics make it difficult for us to decide, what

the correct conditions are for the closed loop system to be stable. So, subsequently we

found that Nyquist plot is the one plot which helps us determine whether the closed loop

system is stable or not. So, we have to revise first here rules for determining whether a

closed loop system is stable or unstable in the Nyquist plot. And then we examine the

Nyquist plot for the kind of open loop gain that we considered unstable loop gain.

And then found out for what case the closed loop system is stable. And subsequently we

also discovered that they were fundamental limits to the gain crossover frequency of an

unstable system. So, just as in the case of a non-minimum phase system, there was an

upper limit to the achievable gain crossover frequency. In the case of an unstable system

there is a lower limit to the gain crossover frequency. In other words, the gain crossover

frequency has to at least be a certain value in the interest of stability in order to achieve a

certain phase margin specification.

If you want a certain gain margin also in addition to the specified phase margin, then the

minimum gain crossover frequency necessary will be even larger. So, as a rule of thumb

we noticed that the minimum gain crossover frequency necessary for the closed loop

system to be stable is generally several multiples of the location or the numerical value

of the unstable pole of the open loop system. So, the fact that there has to be a minimum

bandwidth necessary for an unstable system has some unfortunate consequences.

The first is the additional sensitivity of such systems to measurement noise. So, as we

have discussed in the past, we want to minimise the bandwidth of the closed loop system,

so that it is able to achieve the performance specifications. But beyond that frequency

range within which we were expecting performance for the closed loop system, we want

the loop gain of the closed loop system to be reduced as fast as possible, but without of



course, a jeopardizing on the stability of the closed loop system. But what we discover in

case of unstable open loop systems is that the closed loop system has to have a certain

minimum bandwidth, no matter what the frequency range of this disturbance or reference

we want to track or reject.

So, for instance, if even if we are interested in rejection of disturbances or tracking of

references a frequencies very close to DC or at very low frequencies, we still need to

maintain the closed loop bandwidth to be more than omega g c min, so which was given

by a time p m by 2 or in other words if you multiples of the location of the unstable pole,

so that is one unfortunate consequence.

The second even more tricky situation arises. When we are stuck with a plant which has

both  unstable  dynamics  or  in  other  words  a  right  half  plane  pole  as  well  as  a  non-

minimum phase term such as a time delay or a right half plane zero. So, in this case the

right half plane zero imposes an upper limit on the achievable gain crossover frequency,

while  the  unstable  pole  imposes  a  lower  limit  on  the  achievable  gain  crossover

frequency.
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For instance, if we consider a plant of the form P of s is equal to a minus s by s minus b

times P 1 of s, where the terms a and b are both greater than 0. In other words, this is a

plant which has a right half plane 0 as well as a right half plane pole unstable dynamics

as well as non-minimum phase behaviour. And it is assume that the transfer function P 1



of s is a minimum phase transfer function all of its poles and 0s on the left half of the

complex plane. Then this can be written as P of s is equal to a minus s by a plus s times s

plus b by s minus b times P 1 of s times a plus s divided by s plus b.

So, all I have done in this case is to multiply and divide the right hand side by the same

expressions namely a plus s and s plus b and this is the expression that we get. So, we

note that the first two terms correspond to the familiar Blaschke products. And then we

have the other term namely P 1 of s times a plus s by s plus b. So, now, we can call this

part of the transfer function namely P 1 of s times a plus s by s plus b as P minimum

phase P and P of s. So, we would therefore, have that the plant P of s would be given by a

minus s by a plus s times s plus b by s minus b times P minimum phase of s.

Now, the Blaschke product a minus s by a plus s as we discussed imposes an upper limit

on the achievable gain crossover frequency. In other words if this is the frequency axis,

let me call as omega, we would have omega g c max to be equal to a cot PM by 2. So,

this is the maximum achievable gain crossover frequency for a specified phase margin

PM. If we want a certain gain margin, is going to be even smaller than this particular

value. Now, since the system has unstable dynamics, the unstable dynamics demands a

certain minimum gain crossover frequency and that is given by omega g c min equal to b

time P M by 2.

Hence,  the  non-minimum  phase  0  imposes  an  upper  limit  on  the  gain  crossover

frequency. The unstable poled imposes a lower limit on the gain crossover frequency.

And it may or may not always be possible for us to satisfy both the specifications. For

instance, if omega g c max, is less than omega g c min or in other words a cot PM by 2 is

less than b time PM by 2. What that means essentially on the frequency axis is that there

is  a certain frequency, which we can call  as omega g c max which is the maximum

allowed frequency for us to have a certain phase margin, and with a only achieve gain

crossover  frequencies  of  magnitude  less  than  that  now, because  you  have  unstable

dynamics thus a minimum gain crossover frequency necessary and that we call omega g

c min.

And we have we can only achieve can crossover frequencies a value greater than or

equal to omega g c means in order for our closed loop system to be stable. Now, if these

two permissible regions of our the gain crossover frequency do not intersect. What it



means is that, it is not possible for us to have a control system. No matter what kind of

controller we design that will give us a specified phase margin PM. So, in other words if

a by b is less than tan square PM by 2, then we are in big trouble. It is not possible for us

to design a closed loop system with the specified phase margin PM.

So, in other words even if we have unstable dynamics and non-minimum phase 0, the

location of the non-minimum phase 0 a should be much greater than the location of the

unstable dynamics b in order as to be able to design closed loop systems with respectable

amounts  of  responsible  extends  of  stability.  Now,  you  might  wonder  under  what

circumstances would we have plants which exhibit both unstable dynamics as well as

posses non-minimum phase behaviour. It turns out that such plants are more common

than we imagine.

In  fact,  the  humble  bicycle  is  one  which  is  both  unstable  as  well  as  exhibits  non-

minimum  phase  dynamics.  In  fact,  the  steering  dynamics  of  a  bicycle  shows  non-

minimum phase behaviour, and all of us have are aware that a bicycle is an unstable

system. And we have learnt  it  the hard way, when we were trying to  learn riding a

bicycle. So, a bicycle is of course an unstable system, and it also exhibits non-minimum

phase behaviour as far as its steering is concerned.

Now, one can design bicycles in such a manner that the location of the unstable pole, and

the non-minimum phase 0 are such that it is not possible for us to have adequately high

phase margins for the closed loop system that we might want to come up with to control

the bicycle. In such a case the bicycle would become an un rideable bicycle one example

of an un rideable bicycle is a bicycle which is rear steered.
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So, I have shown here the photograph of a rear steer bicycle. So, what you see is that is

bicycle for all intention purposes looks like a regular bicycle with the exception that the

steering handle bar, which is shown here is connected to the rear wheel through this

chain and sprocket arrangement here. Now, you can show that if you have a rear steer

bicycle, then the location of the pole and 0 of this bicycle are such that are so close to

one another that we cannot get appreciable phase margins for the closed loop system.

And hence our closed loop system can never be in practice, can never be stabilized.

So, as a general rule of thumb if the ratio between a and b in other words if the ratio of

the location of the non-minimum phase 0, and the unstable pole is less than 5, then such

systems are  so difficult  to  stabilize  that  it  is  not  worth  investing  effort  in  designing

controllers to stabilize such systems. Even if one what to try and attempt to stabilize

systems, it is very likely that we would have very small phase margins. And therefore

there is a very real threat of instability of such systems. So, as a rule of thumb, therefore

if we have an a system that has both unstable dynamics as well as shows non-minimum

phase behaviour, then the ratio of the non-minimum phase 0 a to the unstable pole b

should be significantly greater than 5.

Now, when we talked of the stability of this bicycle, we notice that it was difficult to

stabilize it,  because of the particular  locations of the non-minimum phase 0,  and the

unstable dynamics of the bicycle. This can be remedied by reducing the location of the



unstable poles. So, if unstable pole is brought closer to the origin or in other words the

unstable pole b is made smaller in magnitude, that it is possible to achieve this ratio of a

by b to be large enough for us to stabilize the bicycle.

(Refer Slide Time: 12:41)

And are precisely what has been done in this new bicycle design which once again is a

rear steel bicycle as you can see here. The handlebars are connected to the rear wheels of

the bicycle, but this time the centre of gravity of the bicycle has been raised to such an

extent that the location of the unstable pole is closer to the origin than for the bicycle that

I showed in the previous slide. And hence for this bicycle a ratio of the non-minimum

phase 0 to the unstable pole can be made large enough that we can stabilize it.

And therefore we can ride this bicycle this is also why it is possible for clowns in circus

for instance to ride unicycles. If you have noticed the kind of unicycles that clowns in

circuses right they are usually cycles with very tall handles, and the person who is riding

it is sitting at the very top of this unicycle, why is that so that is so, because if this person

is seated that far up on the unicycle, then the location of the unstable pole is going to be

closer to the origin or in other words unstable dynamics is going to be quite slow, it is

going to be quite take quite some time for the bicycle to flip over. And, this allows the

person enough time to quickly correct for any tendency on part of the unicycle to flip

over.



So, when you are therefore trying to control unstable systems the bandwidth or the speed

of  response  of  the  actuator,  when  you  are  trying  to  control  the  system  has  to  be

adequately large, and if that is not so, then it may not even be possible to control the

unstable system. So, as another example similar to the one that I just gave where, you

had a unicycle with a very tall seat which helps the rider to balance the unicycle better.

One  can  also  think  of  balancing  a  stick  on  ones  hand  as  part  of  your  childhood

experience you might be aware that it is easy to balance a tall stick on your hand, but

significantly more difficult and sometimes even impossible to balance shorter sticks.

So, if I have a stick that is as short as this pen or even shorter, for example a match stick,

it  is  practically  impossible  for us to stabilize  this  stabilize the stick.  Why is  that  so,

fundamentally  it  is  so because larger sticks or longer sticks have very slow unstable

dynamics, and that allows us we are the actuators in this case our hand is actuator our

hands motion can be fast enough to compensate for any tendency on part of a long stick

to get destabilized from its nominal position. Whereas, if you have very short stick its

dynamics is very fast, it can flip over very quickly, and our hands are not fast enough to

prevent any tendency on part of a short stick from flipping over insufficiently first time

in order for it to state put at its nominal position.

So, this discussion brings us to the centrality of the bandwidth of actuators in the control

of unstable systems. And sometimes if the bandwidth of the actuators is not chosen to be

adequately large, it can have disastrous consequences. And on a few occasions in the

recent past the importance of the bandwidth of actuation, when one is tend to control an

unstable system has been often looked has been over looked of an even by professional

controls designers. So, it is well worth visiting this topic, and understanding the limits of

achievable performance in terms of stability and understanding the limits of achievable

stability metrics such as the phase margin and the gain margin.

If you are given the location of the unstable pole, and if you are specify the bandwidth of

the actuator, that you have to control this open loop unstable system. So, this analysis

relies heavily on Bode sensitivity integrals. And Bode sensitivity integrals allow us to

derive  very  simple  relationships  that  can  be  used  to  predict  the  best  possible  phase

margin and a best possible gain margin, if you know if you are given the bandwidth of

your actuator and if you are told the location of your unstable pole for the plant. So, let

us now discuss the limits on stability imposed by unstable dynamics in the presence of



actuator bandwidth limitations. And we shall do this as I said by using Bode sensitivity

integrals.

(Refer Slide Time: 17:29)

So, if we revisit the control one degree of freedom control system that we have been

looking that so far, we have a controller and in all cases we assume that is controller was

an electronic system that realised or implemented the control laws that we might choose

to design, but in practice the controller can itself we look that as a cascade of 2 systems.

One is the electronic subsystem of the controller which I shall call as C e, C subscript e

which might result in a computer or which might be an electronic circuit that implements

the control law that me chose to achieve.

And  the  output  of  this  is  fit  to  an  electromechanical  element  which  converts  some

voltage input, so I have a displacement or a velocity change for some such or it affects

the  physical  variables  that  we  are  trying  to  control.  And  this  element  this

electromechanical element is of course called as the actuator. So, we can call this as a C

a. So, our controller, therefore is a cascade of the electronic subsystem, and the actuators

of system. And the output of the actuator of course is fit to a plant.

The plant is moved by the actuator, and the output of the plant is measured by the sensor

and  is  fed  back  in  the  interest  of  feedback  control  of  the  plant.  So,  the  references

provided here so that two blocks C e and C a put together actually form our controller.

Now, in most cases the electronic subsystem of the controller is very fast is fast enough,



that it is not going to limit the closed loop band width of our feedback control systems.

This  is  especially  true  when  we  are  controlling  fairly  big  mechanical  systems  or

processes industries,  whose rate of change whose dynamics is  very slow compare to

dynamics of electronic elements.

The actuator however has limited bandwidth, because it is an electromechanical device,

it could be a motor, it could be a valve, it could be an element of the kind. And the band

width limit on the actuator intern imposes limits on the performance of the closed loop

system.  And  this  is  particularly  of  concern  for  unstable  systems,  because  there  is

possibility of a real accident to happen.

So, to understand this, let us now use Bode sensitivity integrals. We had visited Bode

sensitivity integrals, if you clips back, in connection with the fundamental properties of

the loop gain. And we had derived it in the case of minimum phase loop gains. And there

we saw that the sensitivity function s satisfies this particular equation ln of mod of s b

omega from integrated from 0 to infinity is going to be equal to 0. So, this was the

expression that we had for Bode sensitivity integrals in the case of minimum phase loop

gains or in other words, where sensitivity function S is equal to 1 by 1 plus L. And we

assume that the poles and 0s of a l are all on the left half of the complex plane.

Now, we  also  talked  of  this  integral  being  equal  to  0  as  quote  unquote  the  law of

conservation of sensitivity dirt. We called this ln of magnitude of s as sensitivity dirt,

because generally as feedback control engineers we want sensitivity to be as small as

possible, because if sensitivity is very small, if capital s is very small, it means that the

loop gain is very large.  And if loop gain is very large, then we are happy as control

engineers, because that will allow us to reject disturbances, achieve robustness to plant

parameter variations, achieve good small errors to tracking references and so on and so

forth.

So, we want sensitivity to be very small, and hence we called it sensitivity dirt, because

we would like dirt around us to also be small, but then what is equation told us, is that

you cannot make the sensitivity dirt go away everywhere along the frequency axis. So,

for instance, if the x axis is omega, and the y axis is ln of magnitude of S, we note that in

the  interest  of  performance  you  might  choose  to  reduce  the  sensitivity  over  some

frequency range, let me call that frequency as omega naught. So, below omega naught



we might want to have a low sensitivity now what that means, is that if you have reduce

sensitivity in this particular frequency range, then the exact area that we have reduced

here has to be added on to the rest of the frequency range, so that we would have higher

sensitivity in the frequency range between omega naught and infinity.

So, we cannot make the sensitivity dirt go away everywhere along the frequency axis. If

we dig a trench in a certain frequency range in the interest of improving our control

performance there,  then we have to pile up the sensitivity dirt at a different location

along the frequency axis, so that the net area of under the curve or the net quantity of

sensitivity dirt that we have dug within one frequency range is going to be equal to the

net quantity of sensitivity dirt that we have added on in some other frequency range.

So, these two areas if I were to call this area as A 1, if I want and this area as A 2 we have

A 1 should be equal to A 2 in magnitude. Now, it so happens that if we have A open loop

system which exhibits  unstable dynamics. So, in other words if the loop gain of our

system has poles on the right half  of the complex plane,  then the expression for the

sensitivity integral gets modified somewhat. So, if you have an open loop system that is

unstable, then the sensitivity integral namely ln of magnitude of S d omega will not be 0,

but instead would be equal to pi times the sum of the real parts of all the poles that are on

the right of the complex plane.

So, if you have k poles on the right half of the complex plane, then the Bode sensitivity

integral would be equal to pi times summation from I equal to 1 to k the real parts of the

poles pi of the open loop system which are on the right of the complex plane. So, this is

how the Bode sensitivity integral equation would look, if you have unstable dynamics as

part of your open loop system. Now, in the particular case that we have been discussing

so far; we have assumed that there is an unstable pole at s is equal to a. So, for our

particular case you would have the Bode sensitivity integral or in the case when you have

one unstable pole a one pole on the right half of the complex plane, you would have the

Bode sensitivity integral to be given by integral ln of magnitude of S d omega is equal to

pi times a.

Now, what is means is that if we dig a trench, up to some frequency omega naught or in

other words is a reduce sensitivity dirt ln of magnitude of S over some frequency range

up to some frequency omega naught, then the pile of dirt that we have to add on in the



rest of the frequency range which is a between frequencies omega naught and infinity is

larger in height or is larger in magnitude than the case for the for the minimum phase

system. So, the dirt pile is taller in case of the unstable system and a total dirt that we

have to have in frequency range between omega naught and infinity is larger than the dirt

that we would have in case of the minimum phase system by the amount pi times a.

So, in this case for instance in the case of a unstable open loop system. We would have

that A2 this new area will be equal to A 2 dash equal to A 1 plus pi times A that is the

total amount of dirt that we would have in the frequency range beyond omega naught.

Now, the question we want  to answer is  the following.  So,  we unavoidably  have to

increase  the  sensitivity  over  some frequency range,  when we reduce sensitivity  over

another frequency range.

And a extent of increase in case of the unstable system is higher by the amount pi times

a. The question is how do we distribute sensitivity dirt in the frequency range between

omega naught and infinity. So, there are two possibilities. So, if I were to draw once

again the ln of magnitude of S capital S as function of frequency, up to omega naught we

are expecting feedback performance, and therefore we have reduced the we have dug up

a pit there, and reduce the sensitivity dirt in this frequency range up to omega naught.

Now, beyond omega naught what do we do, now that we have this excess dirt namely the

dirt of quantity A 1 plus pi times a how do we distribute it over the rest of the frequency

range.  There are two possibilities one is we can make a tall  hip of this dirt  at some

particular  frequency. So, we can basically  get all  this  dirt  to be located within some

frequency range and make a tall hip of this dirt this is one possibility. The other is we can

distribute as a thin layer over the entire frequency range from omega naught to infinity.

So, this is a thin layer this is a tall hip. Now, which of these two should be chose as

control engineers, should be chose to distribute this sensitivity dirt in the form of a tall

hip we have some frequency what should be distributed uniformly as a thin layer over

the entire frequency range.

Now, to answer this question of whether to distribute it in the form of a tall hip or a thin

layer let us, look at the consequences of in the first case distributing it in the form of a

tall hip. So, if you have a tall hip there, it means there is some frequency omega one at

which ln of magnitude of S is a very large number or equivalently the magnitude of s



itself is a very large number. So, let me call that number as k which is much greater than

one. So, we would have that magnitude of S at j omega 1 is going to be equal to k which

is much greater than 1.

Now, what is the consequence of having a very large sensitivity in the neighbourhood of

some frequency omega 1. So, we note that that by definition sensitivity is given by 1 1

by 1 plus L hence we would have the magnitude of 1 by 1 plus L of j omega 1 to be equal

to k which is much greater than 1 or equivalently we would have that the magnitude of 1

plus L of j omega 1 is going to be equal to 1 by k, and since k is much greater than 1 we

would have that 1 by k is going to be much less than L.

Now, what does it mean if you have a loop gain of such a manner of such a kind, that 1

plus l is very small is a very small number. So, to see the implication of this let us go

back to our Nyquist plot. So, in the Nyquist plot we are plotting, of course the real part of

L versus the imaginary part of L. And we have the critical point minus 1 at this location

here. So, some point here in the complex plane represents the complex number L. And

hence 1 plus L is represented by the complex number starting at the point minus 1 and

ending at the point ending at this particular location namely that of L of j omega. So, this

complex number is going to be equal to 1 plus L of j omega.

Now, the magnitude of 1 plus L is equal to 1 by k specifies that at the frequency omega

1. The distance of L of j omega 1 from the point minus 1 is going to be equal to 1 by k or

in other words the loop gain of L of j omega 1 lies on a circle of radius 1 by k centre at

the point minus 1. And if k is a very large number, then this radius, so this magnitude of

1 plus L by j omega is 1 plus L L of j omega is going to be equal to 1 by k. So, if k is a

very large number the radius of this circle is going to be a extremely small, and what that

in turn means is that the loop gain L of j omega 1 will be extremely close to the critical

point 

And if the loop gain is extremely close to the critical point, then we know that our closed

loop system is on the verge of instability or in another words power stability margins are

going to be extremely small. Now, we can show that if we have the distance of our loop

gain L of j omega 1 to be equal to 1 by k from the critical point, then the best achievable

phase margin which I shall call as P M max can be given by 2 times sin inverse of 1 by 2



k, so this is the best achievable phase margin. And the best achievable gain margin G M

max is given by 20 log of k by k minus 1.

So, if k is a very large number, we note that our phase margin is going to be a very small

number, because 2 times sin inverse of 1 by 2 k will be approximately equal to simply 1

by k. When k is a very large number, and therefore phase margin will be a very small

number. And likewise the gain margin also will be a very small number, because when k

is very large k and k minus 1 will be very nearly equal in magnitude.

And hence you would have 20 log of k by k minus 1 to be very close to 0 dB. So, a very

large value k is therefore synonymous with very very small phase margin, and very small

gain margin,  and the fact  that  our  closed loop system would be on the threshold of

instability. Hence, if you come back to this decision that we have to take namely whether

to distribute the sensitivity dirt in the form of a tall heap or as a thin layer, the answer

from this  analysis  is  quite  clear.  We do  not  want  tall  heaps,  because  tall  heaps  are

synonymous with low stability margins.

So, we want to distribute this sensitivity dirt in as thin a layer as it is practically possible.

Now, what is the frequency range that we have available for us to distribute a sensitivity

dirt is infinity, because we have the entire frequency range from omega naught to infinity

in which to distribute is dirt  of amount A 1 plus pi times a. And since we have this

infinite stretch of frequency in which to disturb this dirt you might argue that we have no

issues associated with its distribution, because we can distribute it as an infinite assembly

thin  layer  over  the  entire  frequency range.  But,  this  makes  an important  assumption

which is not valid.

If you wanted distribute a sensitivity dirt as a uniform layer of infinite assembly small

thickness over the entire frequency range, it  means implicitly that we can control the

thickness of the sensitivity dirt over the entire frequency range from omega naught to

infinity, but in practice that is not the case. There will be a frequency which we shall call

as capital omega a which is decided by the bandwidth of the actuator beyond which we

cannot control the loop shape or in other words we cannot control the way in which the

sensitivity function would vary as function of frequency. So, let us now rewrite the Bode

sensitivity integrals taking into account this particular constraint.



(Refer Slide Time: 34:38)

So, we have the Bode sensitivity integral to be that integral 0 to infinity ln of magnitude

of S d omega is equal to pi times a. And we can split this integral as integral 0 to omega

naught  ln  of  magnitude  of  S d omega plus  integral  omega naught  to  infinity  l  n  of

magnitude of S d omega. And we noted that integral 0 to omega naught ln of magnitude

of S d omega we called it as A 1, and there is a negative sign, because we have reduced

the sensitivity to less than 0 dB in this frequency range. And the rest of it together should

add up to pi times a.

Now, the second integral can further be split up in to two integrals, one is the integral

from omega naught to capital omega a which is the bandwidth of the actuator and that.

So, we would have integral from omega naught to capital omega a ln S d omega plus

integral capital omega a to infinity ln of magnitude of s d omega to together comprise the

integral ln of omega integral omega naught to infinity ln of magnitude of S d omega. So,

this minus A 1 should be equal to pi times a.

Now, as we discussed it is not possible for us to control the thickness of the sensitivity

that namely ln of magnitude of S for frequencies beyond omega a, because of actuator

bandwidth limitations. So, if the actuator bandwidth is only omega a, there is nothing we

can do to control the shape of the loop L of j omega for frequencies beyond omega a.

And hence this integral namely omega a to infinity ln of magnitude of S d omega is

something whose value we cannot control by using whatever controller we might choose.



Hence,  I  shall  call  this  particular  term as  some constant  delta  which  is  going to  be

determined by the particular controller or the actuator that we choose for controlling our

unstable system.

So, what we would have, therefore is the integral omega naught to capital omega a ln of

magnitude of S d omega is equal to pi a plus A 1 minus delta. So, we have this quantity

of sensitivity dirt namely pi a plus A 1 minus delta which has to be distributed between

the  frequencies  omega  naught  and  capital  omega  a.  So,  let  us  mark  that  out  here

graphically. So, the y axis is l n of magnitude of s the x axis is linear omega. So, there is

a frequency omega naught below that we have dug it trench and reduce sensitivity dirt,

and the total quantity that we have reduced is as we discussed A 1.

Now,  and  beyond  the  frequency  omega  a  we  cannot  control  the  thickness  of  the

sensitivity dirt, and that the integral of sensitivity dirt our total quantity of dirt beyond a

frequency  omega  a  we called  as  delta.  So,  what  we have  to  distribute  between  the

frequency is omega naught, and capital omega a is this particular quantity pi a plus A 1

minus delta.

Now, the  question  is  how  do  we  distribute  it  in  this  frequency  range?  We should

distribute it in such a manner that the maximum height of the pile of dirt is minimised,

because  if  we have  you know dirt  getting  piled  up  any particular  frequency  in  this

frequency range, it means that we will have a larger sensitivity at that frequency, and

larger  sensitivity  as  we  discussed  is  synonymous  with  poor  gain  margin,  and  phase

margin of stability specifications.

So, we want to distribute the dirt between these two frequencies in such a manner that

the maximum height of the dirt pile is minimized. Now, a moment thought would reveal

that the only way to do it  is to make sure that the height of the dirt over this entire

frequency range is the same which is equal to some ln S minimum ln of magnitude of S

minimum.  So,  this  is  going  to  be  the  minimum height  of  the  dirt  pile  between  the

frequencies omega naught and omega a. And what is its value, its value, it is easy to

obtain  assuming  that  we  have  distributed  the  dirt  such  that  it  is  of  constant  height

between omega naught and omega a.

So, this term inside the integral is going to be constant. So, we can remove it from the

integral,  and write it as ln of S minimum times integral omega naught to omega a d



omega is equal to pi times a plus A 1 minus delta or in other words ln of magnitude of S

minimum is going to be equal to pi times a plus A 1 minus delta divided by capital

omega a minus omega naught.

(Refer Slide Time: 39:56)

And this in turn can be further simplified to give us a expression that the magnitude of S

minimum is going to be equal to e to the power pi times a plus A 1 minus delta divided

by capital omega a minus omega naught. Now, this is an important expression, because

this  expression will  allow us to  compute  the best  achievable  gain margin and phase

margin specifications.

If you are given the bandwidth of the actuator omega a, and the location of the unstable

pole namely small a, the extent of benefit in terms of feedback performance we want to

achieve in terms of capital A 1, and the frequency range up to which you want to achieve

this performance namely the frequency omega naught. And we also have this extra term

delta  which  represents  the  integral  of  the  sensitivity  function  or  sensitivity  dirt  for

frequencies beyond capital omega or beyond the bandwidth of the actuator. 

Now, to see how we can put this to use we first need to note that we would like this

magnitude of S minimum to be as small as possible. The smaller it is then the better or is

a  phase  margin  and  gain  margin  specification.  So,  for  instance  the  phase  margin

maximum as we discussed is equal to 2 times sin inverse of 1 by 2 k or in another words

2  times  sin  inverse  of  1  by  2  times  magnitude  of  S  minimum.  Likewise,  the  best



achievable gain margin was given by 20 times log of magnitude of S minimum divided

by magnitude of S minimum minus 1.

So, we would like to have a high gain margin and a high phase margin which implies that

our magnitude of S minimum has to be as small  as possible.  And this equation here

which we have obtained by using Bode sensitivity integrals reveals the dependence of

magnitude of minimum on the different parameters of our control system. To see how we

can minimise it, we note that if we stop expecting any performance what so ever from

our control system, in another words we are not really interested in performance at all, let

us focus simply on stability.

And let us see what needs to be done to improve the stability margins of our closed loop

system, if that is all that our goal is going to be. We note that we can make the frequency

omega naught up to which we are expecting performance. And the quantity A 1 which is

what we would have in order to get the particular control performance we want, we can

set them both to 0, if you are not expecting any control performance at all.

If you do that immediately, we see that the term on the right hand side will reduce. So,

we would have therefore, that if our A1 and omega naught are set equal to 0, so in other

words no performance expectation, we would have that the magnitude of S minimum is

going to be equal to e to the power pi a minus delta by capital omega a.

Now, for the sake of simplicity I shall assume that the term delta is much less than pi a.

And for this case we would have that the magnitude of S minimum is going to be this

very simple expression given by e to the power pi a divided by capital omega a. So, this

expression will tell us what is the smallest possible value for a magnitude of S that we

can achieve for a specified actuator bandwidth omega a, and the specified location of the

unstable port.

And if we have this information, we can plug it into the two equations that I have written

here  on  the  left,  and  compute  the  best  possible  phase  margin  and  gain  margin

specifications. So, let us compute the best possible phase margin and the gain margin for

some typical cases. For instance, if we choose an actuator which is just as fast as that of

the unstable dynamics or in other words, if we choose an actuator whose band width

omega a is exactly equal to a, then we would have that the magnitude of S minimum

would be equal to e to the power pi times a by a or in other words e to the power pi.



And we can show that e to the power pi is equal to 23.14. So, if the magnitude of S

minimum is  equal  to  23.14,  we can  use the  two equations  on the left  top  corner  to

calculate the best possible phase margin and the best possible gain margin. So, let me

write that down here. So, P M max and G M max and when we have that omega a is

equal to a. So, for this particular case the best possible phase margin can be computed to

be equal to 2.5 degrees. And a best possible gain margin is going to be equal to 0.86 dB.

So, you notice the startlingly low values of the best possible phase margin and a best

possible  gain  margin.  When  we  choose  an  actuator,  there  is  exactly  as  fast  as  our

unstable dynamics.

Suppose, however we made the mistake and chose an actuator whose bandwidth omega a

was actually half of the location of the unstable pole or in another words omega a was

equal to a by 2 small  a by 2, in which case we would have that the magnitude of s

minimum would be equal to e to the power pi times a divided by a by 2 or in other words

e to the power 2 pi. If you compute the numerical value of e to the power 2 pi, you get it

to be approximately equal to 534.

And if you substitute this value of 534 in the equations on the top left corner to compute

the best possible phase margin and a gain margin, we find that that omega a is equal to a

by 2.  Or in  another  words  our  actuator  bandwidth  is  half  the  value  of  our  unstable

dynamics, then we would have that the best possible phase margin is going to be merely

0.1 degrees, and the best possible gain margin is going to be equal to 0.4 dB.

So,  what  this  therefore,  reveals  is  that  if  we  choose  actuators  whose  bandwidth  is

comparable to the location of the unstable pole, then for all practical purposes we would

have  closed  loop  systems  are  going  to  be  unstable.  It  is  there  is  no  way  we  can

practically achieve a feedback control system whose phase margins are going to be this

small  namely  2.5  degrees  or  0.1 degrees  or  gain  margins  being  that  small,  and still

manage to get stable closed loop operation.

If you recollect in the past when we performed control design, we chose to have phase

margins of at least 40 degrees in the interest of stability, on the other hand with actuators

that are of this particular bandwidth namely of bandwidth comparable to the unstable

poles value. We would have phase margin and gain margin are exceedingly smaller than



the typical and a minimum values that we assumed earlier in the interest of safety of

operation.

So, what I also want to point out is the elegance, and a power of the technique of Bode

sensitivity integrals in deriving is best achievable stability specifications. If you notice

this  equation  that  has  been  enclosed  in  the  black  bracket,  there  are  only  2  bits  of

information that we are using as far as the open loop system is concern. We are just

depending on our knowledge of the actuator bandwidth and the location of the unstable

pole  to  quickly  determine,  what  the  best  achievable  phase  margin  and  gain  margin

specifications are. It does not matter what controller we use, it does not matter where the

other plants poles and 0s are.

The  best  achieved  performance  specifications  almost  entirely  get  determined  by  the

location of the unstable pole and the bandwidth of the actuator. And if you use simple

controllers, then our best achievable phase margin and gain margin will be even worse

than  this.  Because,  the  kind  of  sensitivity  as  function  of  frequency  that  gives  this

particular equation here as the magnitude of S minimum is shown here in this graph on

the bottom left corner.

And we note  that  the  dependence  of  sensitivity  on  frequency  is  some fairly  strange

dependence which cannot be realised using simple controllers. Hence, if one way to use

simple controllers, then the best possible phase margin and the gain margin are going to

be even worse than what we have accomplished through this analysis. Unfortunately,

though the importance of Bode sensitivity integrals has reduced with type to the point

where professional control engineers are often not even exposed to the motion of Bode

sensitivity integrals. Even though these integrals are extremely powerful, and help us to

compute very quickly, and with very with bare minimum information about the plant the

best possible stability specifications. And this has had some disastrous consequences.



(Refer Slide Time: 49:58)

For instaces, what you see in this photograph is the event of an accident that happened to

this particular fighter jet Gripen JAS39. So, fighter jets are designed to be open loop and

stable,  because it helps them with manoeuvrability. However, the design was done in

such a manner that it was not possible for the actuators that were chosen to stabilize this

open loop unstable aircraft to actually stabilize them with adequate phase margin and

gain margin.

Since, the actuators are chosen to be rather slow and the fighter jet was design to be open

loop unstable  in  the interest  of improved manoeuvrability, we had a problem on our

hands. The phase margin and a gain margin were too low, and as a result even before this

aircraft took off the aircraft crashed, and it caught fire. Fortunately, though the pilot of

this aircraft escaped unhurt. So, I want to remind you again that the control system for is

aircraft was designed by professional control engineers, but unfortunately though these

control  engineers  were presumably not  exposed to  Bode sensitivity  integrals,  and its

importance, when it comes to computing the best possible performance. Since people

have  tended  to  forget  the  significance  of  this  result,  since  the  time  that  Bode  first

proposed this.
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The second example is far more tragic, and this has to do with the Chernobyl nuclear

power plant meltdown. So, nuclear power plants are also unstable systems. And nuclear

power  plants  have  a  water  jacket  that  takes  away the  heat  generator  by the  nuclear

reaction. However, if we are not able to take away the heat fast enough, then the entire

nuclear reactor can over heat and meltdown. Now, this can happen, if you have bubbles

in the water that is used to take away the heat. If you have air bubbles or air pockets

forming in the water, then the thermal conductivity of the overall liquid will get reduced,

because air is a bad conductor of heat.

And hence, our heat cannot be taken away as fast enough as one would like it to be. So,

if  you have a pump that cannot take away heat as fast enough or in other words an

actuator that cannot remove heat away as quickly as is necessary from a nuclear reactor,

then once again we will have an unstable closed loop system on our hands. And the in

this case has resulted in nuclear meltdown with disasters consequences to the people and

animals living near it.

So,  people have called  the Chernobyl  nuclear  disaster  as  one of the worst  industrial

disasters in the history of humanity. And it is a sobering thought that the blame for this

disaster  can be  laid almost  entirely  at  a  feet  of  feedback control  engineers.  And the

ignorance of the limitations of feedback control systems, especially when such control

systems have to control unstable plants such as the nuclear power plant.



So, it is well worth our effort to remember, therefore the fundamental limitations that

exist  when we are trying to  control  certain  types of plants.  And the possible  danger

associated with controlling especially unstable plants such as a nuclear power plant or an

unstable aircraft or some other such unstable system. And be aware of the tools that can

be employed in order to compute the best possible performance that one can achieve, if

one chooses a particular actuator to control the systems.

Thank you.


