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In order to analyze the best achievable gain crossover frequency when we have a certain

gain margin specification; let us first assume that the magnitude characteristic of the loop

gain continues with approximately the same slope namely minus 40 alpha decibels per

decade  between  the  gain  crossover  frequency  omega  gc  and  the  phase  crossover

frequency omega pc. 

So, therefore, by definition the gain of the open loop system at the frequency omega pc

as the gain characteristic reduces at the specified rate of minus 40 alpha dB per decade

will allow us to calculate the gain margin of our open loop system.  Now in order to

determine  the maximum permissible  value  of omega gc in  the presence of  a  certain

specified amount of gain margin; let us first determine what omega pc what the phase

cross over frequency would be for a specified value of alpha and subsequently determine

the gain of the open loop system at that particular frequency. 

So, we shall first return to the relationship between the angle of the non minimum phase

loop gain and the angle of the minimum phase loop gain and that is given by angle of L



NMP is equal to minus of 2 times tan inverse of omega by a which is the phase lag of the

Blaschke product plus the angle of the minimum phase part  of the loop gain namely

angle of L MP and if we assume that the slope of the magnitude characteristic near the

phase cross over frequency is again equal to minus 40 alpha decibels per decade. 

 Then Bode’s gain phase relationship tells us that angle of MP is approximately going to

be equal to minus alpha pi exactly for the reasons that we discussed in the previous slide.

Now at the phase cross over frequency by definition we would have angle of L NMP to

be equal to minus pi radians; this is by definition. 

So, we would have therefore,  that minus pi is equal to minus 2 times tan inverse of

omega pc by a minus alpha pi and this expression will help us to determine the phase

cross over frequency in terms of a and alpha and that is given by omega pc is equal to a

cot of alpha pi by 2. So, this is the value of the phase cross over frequency.  Now we

know  that  between  omega  gc  and  omega  pc  you  have  assumed  that  a  magnitude

characteristic has a slope of minus 40 alpha decibels per decade. 

And at the gain cross over frequency we also know that the gain of the open loop system

is going to be equal to 0 dB; hence we would have that 20 log of magnitude of l at omega

gc minus 20 log of magnitude of l at omega pc divided by log of omega gc minus log of

omega pc this is going to give us a slope of this curve and that is going to be equal to

minus 40 alpha decibels per decade.  Now we know that 20 log of magnitude of l at

omega gc is equals to 0.

So, this term is here going to be is equals to 0 so, we would have that minus 20 log of

magnitude of L NMP at omega pc divided by log of omega gc by omega pc is going to

be equal to minus 40 alpha and by definition we have that minus 20 log of the magnitude

of  L NMP at omega pc by definition this term here is going to be equal to the gain

margin. So, we would have therefore, that the gain margin GM is divided by 40 alpha is

going to be equal to minus of log of omega gc by omega pc or in other words is going to

be equal to log of omega pc by omega gc.  Now we know the expression for omega pc

and omega gc in terms of alpha and the phase margin and the term a. 

So, we would have therefore, that GM by 40 alpha is going to be equal to log of a times

cot  of  alpha  pi  by  2  divided  by  a  times  cot  of  alpha  pi  plus  PM  by  2  this  whole

expression gets divided by 2. So, I shall rewrite the entire expression here we would have



GM by 40 alpha to be equal to log of we would have the term a in the numerator cancel

the term a in the denominator and 1 by cot theta is essentially tan theta by definition

hence you would have this to be equal to tan of alpha pi plus PM by 2 divided by tan of

alpha pi by 2. 

 So, this is the equation that the variable alpha has to satisfy in order for us to get a

specified phase margin PM and specified gain margin GM for our open loop system. If

you notice this equation to discover that it is what is known as a transcendental equation

and hence it is not possible in general for us to solve this equation by hand. However, we

can  solve  this  equation  numerically  and obtain  the  value  of  alpha  that  satisfies  this

equation for a specified value of the phase margin PM and gain margin GM. Now once

we know that term alpha we can plug that back into the expression for the gain crossover

frequency which is given by omega gc is equal to a times cot of alpha pi plus PM by 2. 

So, we can plug that alpha which satisfies this particular equation back into this equation

and determine  the  best  possible  gain  crossover  frequency that  we can  achieve  for  a

specified gain margin and specified phase margin.
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 Now this solution has been numerically computed and the graph here shows the best

possible gain crossover frequency this essentially is equal to omega gc by a 



So, the gain crossover frequency has been normalised with respect to the location of the

right half plane 0 a. So, it has been represented omega gc therefore, has been represented

as a fraction of a and on the x axis we have our gain margin specification. So, what this

reveals is that if we want a phase margin of 30 degrees and a gain margin of 5 dB then

from the curve that has been shown here we can work out what is the best possible gain

crossover frequency is. So, for a gain margin of 5 dB and a phase margin of 30 degrees,

which corresponds to the lower most curve here in the set of curves we know that the

best possible gain crossover frequency is somewhere between 0.6 and 0.4 times a. 

So, omega gc max is going to be equal to 0.5 plus times a. So, I write the term 0.5 plus to

indicate that the exact value is a little bit more than 0.5. So, our best possible gain of

frequency is atmost 50 percent of a if we expect a gain margin of 5 dB. Of course, if we

have a phase margin of 30 degrees and no gain margin expectation we know that omega

gc max is going to be given by a cot  PM by 2  According to the expression that we

derived. 

But if you have a gain margin specification of 5 dB this numerical analysis reveals that

our maximum gain cross over frequency is utmost going to be about half of a. Now let us

say our gain margin requirement  is  even higher  let  us say we execrated 10 dB gain

margin then for such a gain margin requirement we note that omega gc by a is actually

just a little bit above 0.2 for a phase margin of 30 degrees.

So, what this reveals therefore, is that our gain crossover frequency maximum for the

case when we have a gain margin expectation of 10 dB is going to be just a little bit

above 0.2 so, it is going to be 0.2 plus times a. So, in general what is reveals is that our

gain  crossover  frequency  is  going  to  be  always  a  small  fraction  of  a  if  you  have

specifications  of  a  certain  phase  margin  and  gain  margin  that  are  close  to  what  is

generally assumed for minimum phase transfer functions.

 Hence although the maximum possible gain crossover frequency is a cot PM by 2 if you

have a certain gain margin specification this maximum actually reduces further and it is

generally going to be a small fraction of a; where a is the location of our non minimum

phase 0 and this happens despite the fact that we might have a plant all of (Refer Time:

10:56) poles and 0s are very fast.



So, even if our plant has poles that are on the left half of the complex plane that are 10

times of 100 times greater than a and therefore, the minimum phase part of the plant or

loop gain can respond very quickly to whatever command might be provided to it; the

closed loop system gets slope down dramatically because of the presence of the small

minimum phase 0. 

And the  close  loop bandwidth  is  going to  be  determined  predominantly  by  the  non

minimum phase characteristics  of the overall  system and not by the minimum phase

transfer function of our open loop system. So, the analysis of the kind that we undertook

in case of the non minimum phase 0 can also be extended to determine the best possible

gain crossover frequency and phase crossover frequency in case of a time delay.

So, let us first do that and subsequently look at the kind of limitations on loop gain the

magnitude of the loop gain that these particular theoretical limits on the gain crossover

frequency would impose. 

(Refer Slide Time: 12:10)

Now, just as we derived the fundamental limits on the gain crossover frequency when we

have  a  non  minimum  phase  0  we  can  also  derive  the  fundamental  limits  on  gain

crossover frequency when we have a time delay by using the exact same steps as he

undertook for the previous case. So, once again let us assume that our loop gain the non

minimum phase loop gain L NMP has a certain magnitude characteristic and it crosses

over at some frequency omega gc and at the gain crossover frequency let us assume that



the slope of the magnitude characteristic in the bode a plot is minus 40 alpha decibels per

decade. 

And suppose we want to certain phase margin for our overall open loop system of PM

then we assume that the phase characteristics of our open loop system does something in

the low frequency range as determined by the other poles and 0s of our plant and the

controller and finally, achieves a value of PM at omega gc.  Now we can write that the

angle of  L NMP at omega gc is going to be given by the angle of time delay e power

minus ST at omega gc plus the angle of the minimum phase part of the loop gain. 

And once again from bodes gain phase relationship we note that when the minimum

phase loop gain  L MP which has to remind you once again the exact same magnitude

characteristics as L NMP even for the case when we have a time delay cascaded with our

system, this we discussed in our previous clip because a magnitude of e power minus j

omega t is going to be equal to 1 at all frequencies. 

Hence we would have that the magnitude of L non minimum phase is going to be equal

to the magnitude of L minimum phase and that is because magnitude of e power minus j

omega t is going to be equal to 1 for all omega. 

So, given that we would have that the magnitude characteristics of L MP will be identical

to the magnitude characteristics of L NMP. So if the magnitude characteristics of L NMP

roles down at slop with minus 40 alpha decibels  per decade near the gain crossover

frequency and so, does the magnitude characteristics of  L MP; however, Bode’s gain

phase relationship tells us that, if you have a minimum phase loop gain which is rolling

of at minus 40 alpha decibels per decade or which is reducing at the slope of minus 40

alpha decibels per decade then the approximate phase lag associate with it is going to be

equal to minus alpha pi.

And we know that if you have a time delay then the phase lag associated with the time

delay  is  going  to  be  equal  to  minus  omega  t  and  if  we  are  talking  about  the  gain

crossover frequency then we are talking about the phase lag at the frequency omega gc

and that by definition by net phase lag by definition is going to be the phase lag of  L

NMP which is going to be equal to minus pi plus PM. 



So, what this tells us therefore is that omega gc times  T is given by pi times 1 minus

alpha minus PM or in other words omega gc is going to be given by pi times 1 minus

alpha minus PM divided by capital T. Now to determine the maximum possible value for

the  gain  crossover  frequency  we once  again  note  that,  it  would  happen  when alpha

assumes its smallest value and the smallest value that alpha can assume in order for the

gain to crossover is some value that is slightly greater than 0.

So, alpha has to be always greater than 0 for the magnitude characteristic to cross over.

So, alpha minimum can be equal to 0 plus where the term 0 plus represents a small value

above 0. So, if that is the value that our alpha assumes then we would for that case we

would get the maximum possible gain crossover frequency and that is given by omega gc

max equal to pi minus PM by capital T. 

So, exactly as in the case of the non minimum phase 0 our time delay also imposes a

fundamental upper limit on the achievable gain crossover frequency. Now we can show

with  very  similar  arguments  as  what  we  have  done  here  that  the  phase  crossover

frequency for a non minimum phase system with time delay can be obtained by setting

the angle of L non minimum phase to be equal to minus pi. 

So, this going to be the angle of L non minimum phase that is going to be equal to minus

omega pc times capital T plus the angle of L minimum phase if we assume that our loop

gain continues  down with the same rate namely minus 40 alpha decibels  per decade

between the frequencies omega gc and omega pc then you know the phase lag associated

with  L MP at omega pc is also going to be equal to minus alpha pi.  Hence we would

have that our omega pc would be given by pi times 1 minus alpha by capital T. 

So, this is going to be the phase crossover frequency and this expression here is going to

be the gain crossover frequency for a specified phase margin and if you have specified a

certain gain margin. Then we know that gain margin  GM by 40 alpha is going to be

equal to log of omega pc by omega gc or in other words it is going to be equal to log of

pi times 1 minus alpha by T divided by pi times 1 minus alpha minus PM divided by T.

So, if you rewrite this equation we would have that GM by 40 alpha is going to be equal

to log of pi times 1 minus alpha divided by pi times 1 minus alpha minus PM.

 So, for a specified phase margin and a specified gain margin this equation tells us the

kind of rate at which the loop gain has to reduce between the frequencies omega gc and



omega pc for the overall open loop system to have the specified values of GM and PM.

So,  this  equation  once  again  is  a  transcendental  equation  and  it  has  to  be  solved

numerically, but if you do solve it numerically you would get a set of curves very similar

to the one that I showed some time back in the context of non minimum phase 0s and

what that once again indicates is that the maximum possible gain crossover frequency is

generally going to be a small fraction of 1 by T where capital T represents the time delay

of our non minimum phase loop gain. 

So, just as in case of non minimum phase 0 the time delay also introduces fundamental

upper limit to the achievable gain crossover frequency and this in turn has implications

on  the  achievable  performance  at  frequencies  that  are  less  than  the  gain  crossover

frequency. So, let us know spend the last part of the clip looking at the fundamental

upper limits to the achievable magnitude of the loop gain at frequencies below the gain

crossover frequency. 
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So, now let us return to the Bode plot of our non minimum phase loop gain and in this

Bode plot I have indicated the maximum possible gain crossover frequency along the x

axis  along  the  frequency  axis  and in  the  interest  of  stability  let  us  assume that  the

maximum permissible phase lag for the non minimum phase loop gain for frequencies

below omega gc max is given by minus pi plus  PM or in other words the phase lag

should be such that  the difference between the phase lag minus pi should always be



greater than or equal to a specified phase margin PM for all frequencies below omega gc

max.

Now the question that you are trying to answer is if you pick a particular  frequency

omega which is less than omega gc max what is the best possible magnitude for the loop

gain that we can achieve at this frequency. Now the reason this question is important is

because it is the magnitude of the loop gain that decides the performance of the close

loop system in terms of its ability to reject disturbances or track references or achieve

robustness to plant parameter variations. The higher is the possible gain that the loop

gain at a particular frequency the better is our control objective met at that particular

frequency. 

So, the question that we are trying answer in this case is what is the best possible loop

gain that we can achieve at some frequency omega, that is less than omega gc max. Now

in order to get the highest possible loop gain at this particular frequency we need to note

that our magnitude characteristic should have as large a slope as possible in magnitude

between the frequencies  of omega gc max and omega. So, every frequency between

omega gc max and omega if our magnitude characteristic has the largest permissible

slope in magnitude the slope is of course, negative in sign. But if the magnitude is as

large as it is permissible between these two frequencies then the gain at the frequency

omega will be the maximum that is possible. 

So, if we have a certain magnitude characteristic with a certain slope we know that from

Bode’s gain phase relationship there a certain phase lag associated with it. Now this gain

characteristic cannot be arbitrarily large in magnitude because if it is arbitrary large in

magnitude then the phase lag associated with such a large negative slope will be so large

that our phase margin specification will not be met at frequencies omega less than omega

gc max. 

So, if the slope at any particular frequency omega is given by minus 40 alpha decibels

per decade then we know that from bodes gain phase relationship the minimum phase

loop gain L MP will have a phase lag of minus alpha pi radians. And since we have a non

minimum phase term that is cascaded with the minimum phase transfer function, if at

this  point  in  time assume that  we have a  non minimum phase 0 then  the  phase lag

associated with that is going to be given by minus 2 tan inverse of omega by a. And the 2



together  is  going  to  be  equal  to  minus  pi  plus  PM  because  this  is  the  maximum

permissible phase lag at any particular frequency omega. 

So, this tells us what the maximum possible value of alpha is at any particular frequency

omega and that is given by alpha max is equal to pi minus  PM minus 2 tan inverse

omega by a divided by pi. So, this is the maximum possible value of alpha and that

therefore,  determines  the  maximum  magnitude  of  the  slope  of  the  magnitude

characteristic  at  in  the  neighbourhood of  a  frequency omega and we note  from this

equation that alpha is in general a function of omega.

Therefore,  the  maximum  possible  loop  gain  at  some  particular  frequency  omega  is

obtained by integrating the maximum permissible slope between the frequencies omega

gc max and omega and hence is given by 20 log magnitude of L NMP at some frequency

omega is this the maximum possible value is given by integral from log omega gc to log

omega of minus 40 alpha max of omega. Since we are talking of the Bode plot we will

convert  omega  to  log  of  omega  so,  alpha  max  of  e  to  the  power  u  du  where  u  is

essentially  equal  to  log  of  omega.  So,  this  integral  can  be  simplified  a  little  bit  by

exchanging the limits of integration.

And written as is equal to log integral log omega to log omega gc of 40 alpha max of e to

the power u du and this is going to be equal to 20 log of magnitude of L NMP at some

frequency omega. Now if one word to graph this magnitude characteristic for the case of

a non minimum phase 0 then the x axis would of course, p log omega the y axis will be

20 log magnitude of l. We note that at a frequency omega gc max we would have alpha

to be equal to 0 because by definition at that frequency the gain will crossover with a

slope that is very close to 0 decibels per decade.

So, the magnitude characteristic would start with a slope that is close to 0 and finally,

increase and when omega is very small we note that alpha max is going to be given by pi

minus PM by pi from this particular expression here. 

And therefore, there will be a constant negative slope of minus 40 alpha max decibels

per decade for frequencies omega there is much less than the corner frequency a of the

non minimum phase 0. So, this is going to be the magnitude characteristic that we would

obtain by solving this particular integral for different values of frequency omega. 



Now what is indicates to us is that this is the best achievable loop gain at any particular

frequency in order for the non minimum phase system to have a net phase lag of atmost

minus pi plus PM radians over the entire frequency range from 0 to omega gc max and

what is also implies therefore, is that if we have a disturbance at a frequency greater than

omega gc max our non minimum phase system cannot reject this disturbance. 

So, this is an important fact no matter how much money we are willing to spend on a

fancy controller it is not possible to reject disturbances the a correct frequencies greater

than omega gc max, likewise if we consider a frequency that is less than omega gc max

where we have a certain loop gain that is greater than 0 dp, we note that the loop gain

can only be at most this particular value if  our loop gain has to be greater  than this

particular value then the phase lag of our loop gain in the frequency range between this

particular frequency omega gc max has to be greater than minus pi plus  PM and our

stability specification will be compromised.

So, this is the best achievable magnitude for the loop gain at this particular frequency

omega.  So,  suppose  we  have  a  disturbance  in  the  neighbourhood  of  this  particular

frequency omega that needs to be rejected, what we notice that this is the magnitude of

the loop gain L at this particular frequency decides the maximum extent by which this

disturbance  can  be  rejected.  If  as  control  engineers;  we  desire  that  the  disturbance

rejection needs to be even better than whatever is possible for this particular magnitude

of the loop gain then what we have to settle for is that it is impossible to achieve the

desired extents of disturbance rejection. 

So, there are upper limits to what can be accomplished as control engineers in terms of

disturbance  rejection,  robustness  to  plant  parameter  variation  and  to  tracking  of

references and that upper limit is what is indicated by the curve that we obtain here and

by solving this particular  integral.  So, our loop gain are limited to values below this

curve and corresponding to this limit in the magnitude of the achievable loop gain at

every frequency omega less than omega gc max our abilities as control engineers to

reject  disturbances,  to  track  references  and to  achieve  robustness  to  plant  parameter

variation we also be correspondingly limited. 

So, once again I want underscore the fact that this problem is not something we have

come across so, far in this course. This problem does not exist for the case of minimum



phase plants  because  there  does  not  exist  such a  thing as  a  maximum possible  gain

crossover frequency in the case of a minimum phase plant. 

It is only when you have non minimum phase plants that we discover that they are upper

limits  to what we can have as the gain cross over frequency and associated with the

upper limit if you want a certain stability specification in terms of the phase margin then

this is the upper limit  to the magnitude characteristic at each frequency less than the

maximum permissible gain crossover frequency. 

Thank you.


