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Hello, in the previous clip we initiated discussion on nonminimum phase systems and

tried  to  look  at  how  nonminimum  phase  systems  could  potentially  provide  post

challenges to us as control engineers and we took some case studies, we took some from

specific numerical examples through which we showed that in the presence of a time

delay for instance or abilities as control engineers gets, drastically diminished and we

often have to settle for closed loop systems with extremely low closed loop bandwidth,

in  order  to  make  sure  that  the  closed  loop  system  is  stable  in  the  presence  of  the

nonminimum phase term such as, a time delay. 

Now, we shall in this clip we shall continue with this discussion. We shall first briefly

look at,  nonminimum phase system which have right half plane 0’s and subsequently

look  at  the  Fundamental  limitations  on  the  gain  crossover  frequency  and  the  phase

crossover frequency that are imposed by the nonminimum phase terms. Again you will

first do this for the case of the right of planes zeroes and repeat the same exercise for the

case of time delay. 

Subsequently,  we  will  look  at  the  Fundamental  limitations  that  are  imposed  on  the

achievable loop gain at frequencies below the gain crossover frequency as a result of the

fact that there exists such a thing as the maximum achievable gain crossover frequency.

So,  let  us  first  get  started  with  Non-minimum Phase Systems which  have  right  half

planes 0’s. As we discussed in the previous clip, the general transfer function for a plant

P of s which has a single right half plane 0 at s is equal a is given by P of s is equal to a

minus s times, P 1 of s, where P 1 of s is assumed to be a transfer function all of whose

poles and 0’s are on the left half of the complex plane.



(Refer Slide Time: 02:02)

So,  this  term  is  a  Non-minimum  Phase  term  and  for  the  sake  of  greater  clarity  in

understanding the effect of this term we shall rewrite this expression by multiplying the

right hand side and dividing it by a term a plus s. So, that on the right hand side we

would have a minus s by a plus s times P 1, times s P 1 of s times a plus s. So, I have

done nothing but multiply and divide the right hand side by the same term namely a plus

s and I shall call the all the product of P 1 and a plus s as the minimum phase part of the

transfer function. So, I shall give it a special name as P MP of s. 

So, P 1 times a plus s shall be called P minimum phase of s and that gets multiplied with

a minus s by a plus s; to give me the actual transfer function of the plant P of s which

once again I shall re-label as P NMP of s to highlight the fact that we are not talking of a

nonminimum phase plant.

So, the the nonminimum phase plant can be written as a product of a term of this kind

namely a minus s by a plus s times a minimum phase transfer function P MP of s. Now,

this  particular  term has  a  special  name it  is  called  as  a  Blaschke Product,  Blaschke

Product. So, to understand the effect of this Blaschke Product on the overall magnitude

and phase characteristics of the nonminimum phase plant. Let us first draw the bode plot

of the Blaschke Product alone. So, to draw the bode plot of the Blaschke Product we said

s is equal to j omega in which case the Blaschke Product is going to be given by a minus

j omega by a plus, j omega. So, the magnitude of the Blaschke Product is going to be



equal to square root of a square plus omega square divided by square root of a square,

plus omega square once again and it is going to be equal to 1.

So, you note in this case a similarity in the magnitude of the Blaschke Product with that

of the time delay. So, once again this particular term does not modify the magnitude

characteristics of the minimum phase plant in any particular way it is gain is going to be

one at all frequencies; however, if we compute the phase of the Blaschke Product we

note that in the numerator we have a minus j omega. 

So, the phase associated with that would be minus of tan inverse of omega by a and then

we have a denominator of the kind a plus j omega and a phase of a plus j omega is going

to be equal to tan inverse of omega by a and since it appears in the denominator it is

going to be minus of this particular  value or in other words of minus of tan inverse

omega by a and hence the net phase of b a function of frequency is given by minus 2

times, tan inverse, omega by a.

So,  let  us  now  having  derived  the  magnitude  and  the  phase  characteristics  of  the

Blaschke Product; let us now, graph it is bode plot. So, the magnitude plot where the x

axis is log omega and the y axis is 20, log, of magnitude of b, will be essentially  a

horizontal straight line that is coincident with the x axis of the plot because the gain of

the Blaschke Product at all frequencies is going to be equal to 0 db or in linear terms it is

going to be equal to 1. 

Now, as far as the phase is concerned once again, the x axis will be log omega and a y

axis will be the angle of the Blaschke Product. We note that, when omega is much less

than a then the angle of the Blaschke Product is going to be approximately equal to 0 and

when omega is exactly equal to a, we would have tan inverse of omega by a to be equal

to tan inverse of 1, which is equal to pi by 4 and hence the angle of b is going to be equal

to minus 2 times pi by 4 which is minus pi by 2.

So, angle of b is going to be equal to, minus pi by 2 at omega equal to a. Now, in the

limit that omega tends to infinity or when omega is much greater than a we note that the

term tan inverse of omega by a will tend to 10 tan inverse of infinity which is pi by 2 and

hence the angle of b will tend to minus 2 times pi by 2 or in other words minus pi. So, by

making note of the angle of b at these 3 particular limits of omega; we can now draw a

rough phase characteristic for the Blaschke Product



So, if I were to mark out the point a, on the bode plot. We note that at the location omega

equal to a the phase lag is going to b minus pi by 2 and for frequencies much less than a

the phase lag is going to close to 0; the phase is going to decrease in this particular

manner, is going to reach minus pi by 2 at omega equal to a and then, it is going to

continue  decreasing  as  omega  tends  to  infinity  and  it  is  going  to  assume  tactically

approach the angle minus pi.

So, as omega tends to infinity the phase lag, will attend to minus pi, but it will never

cross the line minus pi. So, this is the phase characteristic of the Blaschke Product and

you can immediately see that is phase characteristic once again adds an extra phase lag to

the overall, phase characteristics of the minimum phase part of the plant namely P MP of

s without affecting it is magnitude characteristics. 

So, in that respect therefore, it does something similar to what a time delay does to the

overall system. Even in case of the time delay we have no modification of the magnitude

characteristics of the minimum phase part of the plant it is just that the phase lag gets

increased by an amount omega times capital T where, capital T is the time delay and in

this case where we have a nonminimum phase 0; we note that once again the magnitude

characteristic remains, unaffected.

So,  the  magnitude  characteristics  of  P minimum  phase  is  going  to  be  equal  to  the

magnitude characteristics of P nonminimum phase; however, the phase characteristics of

P Nonminimum phase is going to have an extra phase lag compared to that of the phase

characteristics of P minimum phase by the amount given by minus 2 tan inverse omega

by a; and once again we see that since the phase lag goes from 0 to minus pi. This term

the Blaschke Product forces a plant to undergo phase crossover. 

So, if we have a first order plant for instance if, P minimum phase is a first order system,

then ordinarily this system would not have a phase crossover frequency at all because,

the phase goes from 0 to minus pi by 2; however, if we were to cascade such a first order,

minimum phase plant with the Blaschke Product there will be a particular frequency at

which the phase will cross over. And hence we will have to start to worry about the

stability of the closed loop system even, when we are using fairly simple controllers such

as a proportional controller.



So, the problems that a, a nonminimum phase term a nonminimum phase 0 causes for

stability has very close parallels with the kind of problems that we encountered in the

case of the time delay. So, I shall not take extra numerical examples to underscore the

problems that this particular term would cause because, the magnitude and the phase

characteristics  of  this  term  have  certain  parallels  with  the  magnitude  and  phase

characteristics of the time delay and once and hence one can easily predict and anticipate

the kind of problems that this particular kind of phase characteristic; where the phase lag

goes from 0 to pi will cause to a closed loop system it the problems temps essentially

from the fact that this kind of a phase lag forces the open loop system to have a phase

crossover frequency that is much less than the natural phase crossover frequency of the

minimum phase part of the plant it itself. 

Now, both the nonminimum phase 0 as well  as time delay as we discussed imposed

certain fundamental limitations on our abilities as control engineers. So, let us now see

how one can derive these fundamental limits that are imposed by these terms. And I want

to underscore at the outset that the gain phase relationship that was discovered by hw

bode  plays  a  central  role  in  coming  up  with  the  approximate  expression  for  the

Fundamental  limitations  that  we  would  be  talking  about  in  connection  with  these

nonminimum phase terms.
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So, what I shall do next is to draw the bode plot of a general open loop system which has

a nonminimum phase 0 unit. So, the magnitude plot will have 20 log, magnitude of L

plotted versus log of omega; and let me assume, that the magnitude plot does something

at low frequencies. So, depending on the poles and zeros of the open loop system the

magnitude might reduce or increase and so on and so forth. So, I shall not draw it is

exact characteristics; the exact characteristics are of course, dependent on the structure of

the plant as well as the control of that we are using, but no matter what it does there

needs to be a particular frequency at which the gain will cross over because of plants

gain will reduced and the controllers gain will also reduced beyond a certain frequency. 

There will be a certain frequency omega gc; the gain cross over frequency at which point

the, the magnitude crosses over from some value above 0 db to some value less than 0

db. Now, I shall also draw the phase characteristics associated with the corresponding

magnitude  characteristics.  So,,  I  have  drawn the  line  theta  equal  to  minus  pi  as  the

dashed line here.

So,, at very low frequencies the phase does something and then, I shall once again not

drawn the  exact  phase  characteristics  at  very  low frequencies  because  it  once  again

depends on the exact structure of the plant and the controller. Now, near the frequency

omega gc let us say, there is a certain phase margin. So, at the frequency omega gc the

phase lag is such that it gives us a certain phase margin PM; and then the phase continues

to decrease and finally, crosses over at some frequency omega pc. So, let us say, this is

the phase characteristic  and this  is  the general  magnitude  characteristic.  Now, in  the

vicinity  of  the  frequency  omega  gc,  let  us  assume  that  the  slope  of  the  magnitude

characteristic is minus forty alpha decibels, per decade. So, let us say that the poles and

zeros of the plant and the controller are such that, we get a slope of minus 40 alpha

decibels per decade near the gain cross over frequency. 

Now, the first point I wish to make in connection with the bode plot the general bode plot

of a nonminimum phase loop gain that I have drawn here is that if, we were to define L

NMP, as the nonminimum phase loop gain which is going to be equal to the controller,

times the plant, P NMP. Then we can write L NMP has, being equal to C times a minus s

by  a  plus  s,  times  P  minimum  phase;  now, assuming  that  our  controller  is  also  a

minimum phase controller, then, we can lump the terms C and P minimum phase and

write that as a minus s, by a plus s, times L minimum phase.



So, in other words L nonminimum phase can be related to L minimum phase which is

defined as C times P minimum phase by the expression that has been shown here; it is

equal to the Blaschke Product times the transfer function L minimum phase. Now, I want

to first point out that the magnitude characteristics of L nonminimum phase; which is

what has been plotted at  the top there is go to be exactly  identical  to the magnitude

characteristics of L minimum phase that is because the Blaschke Product has a gain of

one at all frequencies. 

owever, the phase lag of nonminimum L nonminimum phase that is the angle of L NMP

is going to be equal to the angle of the Blaschke Product which is a minus, j omega angle

of a minus j omega by a plus j omega, plus the angle of L minimum phase. Hence, the

angle of L nonminimum phase is going to be equal to minus 2 times, tan inverse of

omega by a as we discovered in our previous slide plus the angle of L minimum phase.

Now, let us apply this particular equation at the gain crossover frequency. Now, at the

gain crossover frequency we note that our phase of the nonminimum phase loop gain is

going to be given by minus pi, plus the phase margin. So, suppose I have specified a

certain phase margin, then the angle of L, L nonminimum phase at the gain crossover

frequency by definition is going to be equal to minus pi plus PM; and that is going to be

equal to minus 2 times, tan inverse of omega gc by a, plus the angle of L minimum

phase.

Now, we can make another important simplification to the equation that I have returned

here;  we  note  that  if,  our  magnitude  characteristic  is  rolling  off  at  minus  40  alpha

decibels per decade. So, the magnitude characteristic I want to remind you corresponds

to both that of the nonminimum phase loop gain as well as the minimum phase loop gain

they both have the same magnitude characteristic. So, this minus 40 alpha decibels per

decade also happens to be the magnitude characteristic of the minimum phase loop gain

L MP. Know if,  you  have  a  minimum  phase  loop  gain  L MP whose  magnitude  is

reducing  at  the  rate  of  minus  40  alpha  decibels  per  decade  then  bodes  gain  phase

relationship which is applicable to minimum phase loop gains tells us, that the angle

associated with this roll off which is the angle of L MP is going to be approximately

equal to minus alpha pi.



So,  this  we  get  from  bodes  gain  phase  relationship  which  tells  us,  that  the  phase

characteristics at any particular frequency is determined approximately almost entirely

by a slope of the magnitude characteristic in the vicinity of that particular frequency. So,

since the slope in the vicinity of omega gc is minus 40 alpha decibels per decade the

angle of L minimum phase is approximately going to be equal to minus alpha pi. Now, if

we substitute this into this equation we would have that the phase of my, nonminimum

phase loop gain which is minus pi plus PM, is going to be equal to minus 2, tan, inverse,

omega gc by a minus alpha pi. 

Now, if we rearrange this equation we would have that pi, times 1 minus alpha minus

PM is going to be equal to 2 times tan inverse, omega gc by a, or in other words, omega

gc, by a, is going to be equal to tan of pi, times 1 minus alpha minus, PM, whole divided

by 2. Now, by simplifying this further we would note that, the expression on the right

hand side is going to be equal to cot of alpha pi, plus PM, divided by 2.

So, our gain crossover frequency is related to the location of our nonminimum phase 0 a

and the specified phase margin PM and the role of near the gain crossover frequency

alpha,  according to  the equation  that  we have given here.  Now, this  is  an important

equation,  because  it  allows  us  to  work out  workout  the best  possible  or  the highest

possible gain crossover frequency. Why is that so? That is so, because we note that, for

any variable theta, the function cot theta, is a decreasing function of theta. So, cot theta

assumes it is maximum value or theta equal to 0, at which point it is equal to infinity and

as  theta  tends  to pi  by 2 cot  theta  will  tend to  0 monotonically. Hence for  the gain

crossover  frequency  to  be  a  maximum,  we should  have  that  term within  the  square

brackets namely alpha pi plus PM by 2 to be as small as possible. So, the smaller the

term alpha pi plus PM by 2 is the larger will be the term on the left hand side namely,

omega gc by a. Since a is a constant that will automatically mean that omega gc will get

maximized. Now, if you focus on the term within the square bracket namely alpha pi plus

pm by 2; we note that the phase margin is something that you might have specified we

want in the interest of stability our open loop system to have a certain phase margin.

So, we cannot play around with the term PM, all that is left with for us to play around

with is the term alpha. So, the smaller the value of alpha the higher will be the gain

crossover frequency and we desire a fairly high gain crossover frequency. So,, so, that

our  closed  loop  bandwidth  can  be  adequately  high  and  with  that  high  closed  loop



bandwidth you will be able to reject a large range of disturbances or track a large range

of references that is the purpose behind our objective to maximize omega gc. 

So, the smaller the value of alpha the larger will be the value of omega gc. And the

question now is, what is the smallest permissible value of alpha? To answer this question

we need to  focus  on the  magnitude  characteristic  near  the gain crossover  frequency.

Since, by definition we note that we have the magnitude characteristic crossing over at

omega gc our alpha here has to necessarily be some positive value if, alpha is a negative

value then it means that the slope near the gain crossover frequency is positive which

means that the gain will not reduced as function of frequency and hence will not even

cross over. Therefore, we need alpha to be greater than 0; and the smallest value that

alpha  can  assume  is  some  number  which  is  approximately  equal  to  0,  but  actually

slightly greater than zero.

So, this  is  the minimum value that  we can permit  alpha to assume because if,  alpha

assumes values less than 0 then we are in real trouble; because our gain characteristics

will not even reduce from sum value above 0 db to sum value below 0 db. In order for

gain  crossover  to  happen we need to  slope  near  the  gain  crossover  frequency to  be

negative which implies therefore, that our alpha has to be necessarily greater than 0 and

the smallest value that alpha can assume therefore, is a value that is slightly larger than 0.

So, if, that is the case if alpha is allowed to assume a value added slightly larger than 0

that gives us an estimate of the maximum possible gain crossover frequency and that is

given by omega gc max and that is from this equation from the equation within the red

box if you go to set alpha to be approximately equal to 0. So, that we can ignore the term

alpha pi in relation to the term pm we would get omega gc max to be equal to a times

cotangent of PM by 2. So, what is analysis reveals therefore, is that there is a maximum

gain crossover frequency possible for a control system, which has a nonminimum phase

0 unit and that is given by this particular expression a cotangent hyperbolic of PM by 2.

And I want to underscore that, this is the first time, in this set of lectures that you are

come across  this  possibility  that  there  is  such a  thing  as  an  upper  limit  to  the  gain

crossover frequency. In all the design that we have undertaken so far both in the case of 2

degree of freedom control design as well as in 1 degree of freedom control design we

have assume, minimum phase plants and for all such plants there was no such thing as an

upper limit to the theoretical upper limit to the achievable gain crossover frequency. 



It could be as large as 1 would wish to be and you can still  achieve whatever phase

margin we wanted to have for the closed loop system it is just that we had to invest in a

more expensive controller that had a much wider bandwidth. But here, what this analysis

reveals is that no matter how much money you are willing to pour? In designing of the

controller  there  is  nothing you can do to  improve the bandwidth of  the  closed  loop

system. It is theoretically limited to the amount given by a cot PM by 2.

Now, in this analysis we assumed that our alpha was approximately equal to 0 and that

essentially implies that the gain margin for the open loop system in this particular limit

which gives us the maximum permissible, gain crossover frequency is actually equal to 0

db. So, we can extend this analysis in order to estimate the best possible gain crossover

frequency when we also have specified a certain, gain margin. So, let us undertake this

analysis next.


