
Control System Design
Prof. G.R. Jayanth

Department of Instrumentation and Applied Physics
Indian Institute of Science, Bangalore

Lecture - 44
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Hello, in this clip we will talk about a particular class of physical systems which impose

special constraints on our ability to design controllers for them. So, these systems come under

the umbrella of what are known as nonminimum phase system and the reason that a, are

called nonminimum phase systems is something that we shall get to in a few minutes time.

So, if you look back at a all the control techniques that we have discussed. We have noticed

you might have noticed that the plant generally takes a backseat. So, we assume a generic

plant and, we do not assume that the plant imposes any special restriction on our abilities has

control engineers. 

That is no so, in the case of nonminimum phase system. It turns out that nonminimum phase

plants are particularly difficult  to control and they impose fundamental limitations on our

abilities as control engineers. So, for instance, it is sometimes possible that if you have a

nonminimum  phase  plant  it  may  not  be  possible  to  achieve  a  desired  level  of,  error  in

rejection of disturbances or a desired level of accuracy in tracking references or a desired

level of robustness, when it comes to plant parameter variations.

So, in contrast if, you take a minimum phase plant you can accomplish all of these things, but

often  if,  the  requirements  for  disturbance  rejection  and,  robustness  and  so  on  are  very

stringent. We would I have to invest in fairly high bandwidth and expensive controllers, but

theoretically for a minimum phase plant which are the kinds of plants that we have been

looking at so, far there are no fundamental limits as to what we can accomplish has control

engineers. In contrast for as I said in nonminimum phase plants there are fundamental limits

and there are cases when it is actually impossible for us to reject disturbances or achieve

robustness to plant parameter variations or track certain references. 

So, there are 2, kinds of plants which come under the umbrella of nonminimum phase plants

one are plants with time delay and second are plants with right half plane zeros or in other

words if, I have a plant P that is given by P 1 of s times e to the power minus sT then, such a

plant is afflicted by time delay. So, this term e power minus sT represents, Laplace transform



of  the  delay  operator  and hence  the  input  output  relationship  for  this  plant  has  a  delay

incorporated into it.
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So, this is one class of plants that come under the umbrella of nonminimum phase plants; the

second are plants with, right half plane zeros. So, for a plan to the right of plane zeros the

transfer function would look like P is equal to P 1 of s times a minus s, where, the 0 namely s

is equal to a is greater than 0. So, if P 1 in both cases is a transfer function all of these polls

and 0’s are on the left half of the complex plane. Then a plant with of the kind P is equal to P

1 e power minus sT is a plant with a time delay and a plant of the time P is equal to P 1 times

a minus s is a plant with one, right half plane 0. So, such plants are called nonminimum phase

plants.

We shall first take a look at plants with time delay and then subsequently, take a look at,

plants with nonminimum phase zeros and see what special problems both of these cause for

us control engineers. Before we start discussing plants with time delay let us first see, how we

can tell whether term of this kind either time delay or, right half plane zeros exist in our plant

or not from our identification exercises, from our model identification exercises.

So, for instance if a plant has a time delay and if I provide a step input to the plant. So, as

function of time I have the input u of t which is a step it was 0 from for t less than 0 and

became 1 for t greater than or equal to 0 if I have a time delay capital T as indicated here the

plants response will start t units after application of the input. So, there is a duration of t units



during which time the plant would not respond and it responds only after 2 units and the

response is going to be characterized by the step response of the plant P 1 of s. So, the plant P

1 of s let us say, has a step response that look something like this then the plant with time

delay would respond in a manner that is shown in this graph here it responds T seconds after

the application of the input. Similarly, if a plant were to have a right half plane 0 then, one

can show that if one to apply a, step input.

So, let us say we apply the same step input u going from 0 to 1 at time T is equal to 0. A plant

with a right half plane 0 of the kind that we have shown here we will respond by first moving

in the opposite direction in this particular manner and then coming back up and then finally,

moving in the right direction and reaching it is steady state value this phenomenon is called

undershoot. So, a plant with a right half plain 0 can be easily dissent can be easily identified

by looking at it is step response, for such a plant when you apply in a step input the plants

response first changes in the opposite direction as the sign of the input that has been provided

and subsequently reverses it is direction and moves in the same direction as that of the, as that

of the apply input.

Likewise if, you have a plant with the time delay the plant does not respond at all for some

duration of time and subsequently you see it is response. Thus, this time domain responses, of

plants  can be use to tell  if  these plants  have been afflicted  by these particular  melodies;

namely time delay and right half plane 0. I call them melodies because these particular terms

right half  planes 0 and the time delay impose fundamental restrictions on our abilities as

control engineers to control plants, but include them. So, with this preamble let us first look

at how, time delay can affect the performance of a plant.
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So, let us return to the transfer function of the plant with a time delay which is going to be

equal to P 1 e power minus sT and this is going to be the plant transfer function P of s. Now,

let us focus on the term e power minus sT and sketch the Bode plot of just this term alone

because, the Bode plot of the plant P is going to be equal to the Bode plot of the plant P 1

plus the Bode plot of the term e power minus sT. And if, P 1 is a transfer function all of

whose poles and zeros are on the left of the complex plane the Bode plot of P 1 is something

that we must be very familiar and comfortable with having discussed such plants over the

entire of this course. So, let us focus on what is new as for as we are concerned, namely the

term e power minus sT.

So, in order to draw it is Bode plot up course we have to first set s is equal to j omega, in

which case we would have e power minus sT to be equal to e power minus j omega T. Now,

we know that e power minus j omega T is essentially given by cos of minus omega T, plus j

times sign of minus omega T, or in other words it is given by cost of omega T minus j sign

omega T.

So, what is the magnitude of the term e power minus j omega T? The magnitude of that is the

square root of the squares of real part plus the imaginary part namely cos of omega T, the

whole square plus sign of omega T the whole square that equal to 1. Therefore, this term e

power minus j omega T does not modify the magnitude characteristics of the plant P 1 at any

frequency, but all frequency is the gain of this term e power j minus omega T is going to be



equal to 1. What about the phase of the, term e power minus j omega T. So, to determine the

angle of the term e power minus j omega T we should take the tan inverse of, the imaginary

part by the real part that is given by tan inverse of sin of minus, omega T divided by cos of

minus omega T or in other words is going to, be equal to tan inverse of, tan of minus omega

T, and this is going to be equal to minus omega T.

Hence, this term contributes a phase lag that is proportional to the frequency omega. So, if we

want to draw the magnitude plot of the term e power minus sT. So, the x axis is log omega,

the y axis is 20, log magnitude of e power minus j omega T. We get a flat curve that is

coincident with the x axis of the plot because it is going to be 0 dB the gain is going to be

equal to 0 dB or equivalently again it going to be equal to 1 at all frequencies omega. As for

as the phase plot is concerned, x axis again log omega and the y axis will be the angle of e 2

the power minus j omega T.

We note that the angle of e power minus j omega T is minus omega T and this can be written

as minus of e to the power log omega times, T. I have done this manipulation because the x

axis of our Bode plot is log of omega what this means therefore, is that the Bode plot of the

phase plot of time delay is going to be an exponentially increasing function multiplied with

minus T, and if we look something like this. So, this is going to be the phase plot of e to the

power minus sT and the magnitude plot is going to be equal to 0 db. So, therefore, if we have

the plant P of s which has a time delay, in the magnitude of t of j omega is always going to be

equal to the magnitude of the minimum phase transfer function P 1. However, the angle of P

of j omega, is going to be equal to the angle of P 1 of j omega, the minimum phase part of

the, expression for P of s minus the angle of e power minus sT or minus e power j omega T

and which we discover is equal to minus omega times T.

So, this term adds only phase lag and does nothing to the magnitude characteristics. And this

is precisely why this term is called a nonminimum phase term; it is because if you look at the

plant  P  the  magnitude  characteristics  of  the  plant  P  has  a  certain  phase  characteristics

associated with it in the absence of the time delay and that is given by the angle of P 1 of j

omega. Now, if t were a minimum phase transfer function then we can use Bode’s gain phase

relationship to extract the phase namely angle of P 1 of j omega given the magnitude namely

magnitude of P 1 and j omega at all frequency omega; however, because we have a time

delay as part of the terms of function for P of j omega. 



We note that the phase lag associated with the magnitude characteristics of P 1 is larger than

the phase lag of a minimum phase a transfer function P 1 of j omega and that phase log that

excess phase lag is given by omega T. So, that extra phase lag that is associated with the

magnitude characteristics of a transfer function of has that a time delay unit is what earns it

the name of a non minimum phase system. So, let us now, see what, this kind of a Bode plot

this kind of a magnitude and phase characteristics combination can do to the stability of our

closed loop system.
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So, what I have taken here is a first order plant P of s is equal to 100 by s plus 10 and it is

evident from inspection that the dc gain of this plant is 10 units and it is corner frequency is

at 10 radians per second. So, the Bode plot of, this such a first order plan, is as shown on the

left hand side it has a dc gain of 20 decibels and at the corner frequency of 10 radiant per

second there is a role of and the magnitude role of is at a rate of minus 20 decibels per

decade. 

And as far as phase is concerned it is obvious from inspection that the phase of P is going to

be given by minus of tan inverse omega by 10, and if this were to be ported as function of

frequency you note that at very low frequencies of phase is 0 and as omega tends to infinity

the, phase tends to minus 90 degrees. I have pointed out in past that a plant of this kind a first

order plant is a dream come true for us control engineers simply because such a plant does

not have any phase crossover at all.



Since it does not have any phase cross over there is no issue of instability induced by simple

controllers such as a proportional controller. So, it is very easy to work with a plant that has a

first order dynamics governing it is input output relationship and is therefore, a blessing and a

boon for us as control engineer. If, we are having to, if we have to control first order plants.

Now, suppose the same first order plant were cascaded with a small time delay. So, this time

to a could arise as result of, the process which has first order dynamics, but there is some

delay in making measurements after the actuation has been done.

So, to give an example of how such a time delay could arise one can think of the example of

a factory, where steel sheets are being fabricated. So, you can control the thickness of a steel

sheet only when the sheet is red hot, but you can measure the thickness of the, steel sheet

only after it has cool down; because, such hot sheets are likely to damage your thickness

sensor therefore, they has to be some distance that the steel sheet has to travel, during which

time it can cool and subsequently you can measure it is thickness. So, there is extra time

delay, that is involved between the action of controlling the thickness of the steel sheet and

making it is measurement, and that time delay is what could contribute to a term of the kind e

power minus sT that is cascaded with the dynamics of the plant itself.

So, in this  particular  example I have assumed that there is a very small  delay of just 10

milliseconds. So, that our time delay term e power minus sT is of the form e power minus

0.01 s. Now, if you were to draw the Bode plot of this new plant which is now afflicted by

this time delay. We first note that there will be no difference between the magnitude plot of

this plant and the magnitude plot of a plant which has only the first order dynamics namely

100  by  s  plus  10  because  the  time  delay  term  does  not  contribute  to  the  magnitude

characteristics; it has a gain of 0 dB at all frequencies.

So, when we add that to the magnitude characteristics of the plant we just get the magnitude

characteristics  of a  plant  itself.  So,  the dc gain will  be 20 decibels  and at  the corner  of

frequency of 10 gradients per second we will start a role of minus 20 decimals per decade for

all future frequencies. What about the phase characteristics? The phase characteristics of the

plant with the delay will be equal to the phase characteristics of the plant itself minus omega

times  capital  T;  where,  capital  T is  a  time  delay  in  this  particular  example  that  I  have

considered I have chosen capital T to be 0.01 seconds or in other words 10 milliseconds and

as a consequence of having chosen a plant with time delay what you notice is that the phase

characteristics is gradually decreasing as function of frequency and there is one particular



frequency at which the phase crosses over or in other words the phase lag becomes greater

than 180 degrees.

So, what you see therefore, as the effect of time delay is that initially you had a plant which

did  not  have  any  phase  crossover  and  therefore,  stability  of  a  plant  in  cascade  with  a

proportional  controller  was  not  even  a  concern  for  us  as  control  engineers.  But,  as  a

consequence of introducing a small amount of time delay of just 10 milliseconds we have got

a plant which had no phase crossover to now poses a phase crossover and because you know

have a phase crossover we need to worry about the gain margin and whether the gain margin

is adequate or not in the interest of stability of the close loop system. So, what was earlier a

problem that did not have stability as a concern at all  has now become a problem where

stability has to be worried about as a result of the phase lag contributed by the term e power

minus sT.

Now, you might wonder whether it is possible to make this phase lag go away for instance

can we multiply e power minus sT with a term of the kind e power plus sT is this possible a

moments thought will revile that this is not, practically possible because the term e power

plus sT is a non causal transfer function; if, you are saying that you are able to multiply the

existing plant with the term e power plus sT. So, essentially, you are essentially stating that

you are able to read into the future you are able to predict the response of a system even

before an input has been apply which is not a practical proposition.

So, e power plus st is a non causal transfer function and hence we cannot implement it and

hence we have to live with the phase lag characteristics at a introduced by the term e power

minus  sT.  Now,  in  order  to  see  why  it  is  difficult  to  deal  with  a  plant  with  a  phase

characteristic and magnitude characteristics such as the one that is shown here what, I have

done is try to implement a controller for a plant of this type. Now, suppose at, gain crossover

frequency you have a certain phase margin, but you want a improve the phase margin then, in

the  previous  lectures,  we have  noticed  that  adding a  0  slightly  to  the  right  off  the  gain

crossover frequency almost as to add a phase lead of plus 45 degrees near the gain crossover

frequency and hence improve the phase margin. 

Now, when we did this in the case of a minimum phase plant we already had a certain role of

for the minimum phase plant beyond the gain crossover frequency and that role of tended to

become lesser as a result of having added a 0, slightly to the right off the gain crossover



frequency. Now, in this particular case we already have just a first order plant. Now, if I want

to add a 0 to a first order plant I will have a 20 dB per decade raise for frequency is greater

than the frequency at which 0 has been added. So, that for frequency is beyond the 0 the 20

dB per decade raise will cancel the minus 23 dB per decade role of and the gain will flatten

out  and  what  is  means  it  that,  I  cannot  add  any  further  0’s  to  improve  the  phase

characteristics. Because, any further 0 will cause the gain characteristics once again increase

and not role of as we intended it to do and that is precisely what has happened when I try to

multiply this particular transfer function namely the transfer function of the plant with a lead

compensator I noted the gain crossover frequency to be somewhere close to 100 radians per

second.

So, I added a 0 at 100 radians per second and in the interest of causality I added a pole very

far away at around 1000 radians per second and what we notice is that unlike in the minimum

phase case where the magnitude characteristics resulted in a certain phase characteristic in a

nonminimum phase case for the same magnitude characteristic we have a much larger phase

lag  characteristic.  So,  when  we  add  this,  lead  compensator  we  note  that  the  magnitude

character slope is tending to 0 and it is preventing us for adding any further 0’s in order to

improve the phase characteristic beyond what has been accomplished here. So, we note that

even the tricks that your able to employees so powerfully in the case of control of minimum

phase plants find difficulty, when we try to apply them in the case of nonminimum phase

plants.

So, all of these examples have been taken to underscore the fact that nonminimum phase

terms such as a time delay, cause curious problems to us as control engineers because the

modify  only  the  phase  characteristics  and  not  the  magnitude  characteristic  and  the

modification is also not in favor of improving control performance; the add excess phase lag.

And therefore,  they  cause  the  phase  to  either  cross  over,  crossover  earlier  if,  there  was

already a phase crossover frequency for the plant and therefore, reducibility margins of the

overall system.

Now, suppose one wants to analyze how the, term e power minus sT affect stability of our

close loop system using tools such as the root locus where, needs to be able to locate the open

loop poles and zeros of this term; however, since we cannot represent the term e power minus

sT as the ratio of two polynomials. We can only come up with approximate rational transfer

functions or ratios of two polynomial which will result in a magnitude and phase response



that is close to what is produced by the term e power minus sT. So, let us now look at, how

we can come up with transfer functions which are the ratios of two polynomials or which

have poles and zeros in them the approximate the magnitude and phase characteristics of the

term e power minus sT.

(Refer Slide Time: 25:50)

So, if one wants to approximate the term e power minus sT or in particular if one is interested

in coming up in, approximation in the interest of drawing a Bode plot or the root locus what

might  be tempted to simply obtain a Taylor series  expansion for e power minus sT as a

polynomial in s and write it out as 1 minus sT plus s square P square by 2 factorial, minus s

cube t cube by 3 factorial, and so on and so forth. So, one might wish to do this and then in

order to approximate e power minus sT one might choose to ignore all the higher order terms

and simply approximate it as 1 minus sT.

Now, is this a correct approximation; you will notice that is not a very good approximation

because the magnitude of e power minus sT when s is equal to j omega, which is given by,

magnitude e power minus 0 omega 2 is going to be equal to 1 for all frequencies omega. So,

on the other hand if,  you look at  what we have on the right hand side 1 minus sT. The

magnitude of 1 minus sT for s is equal to j omega is given magnitude 1 minus j omega T, and

that is going to be equal to square root of 1 plus omega square T square.

So,  unlike  the  magnitude  characteristics  of  the  function  that  we  are  supposed  to  be

approximating namely, e power minus j omega T which has a constant value of one at all



frequencies; the approximation that we have attempted to make namely 1 minus sT has a

magnitude  characteristics  that  increases  with  frequency  and  hence  this  is  not  a  good

approximation for the term e power minus sT.

So,  a  good approximation  is  one which whose magnitude  characteristics  are  going to  be

identical to the magnitude characteristics of the time delay, but, of the time delay transfer

function; but, the phase characteristics approximate the phase characteristics of the time delay

only up to a certain frequency. Such approximations were provided by Pade, and they go by a

name of Pade Approximates. So, I shall first right out the general, transfer function that, Pade

came up with in order to approximate the time delay transfer function e power minus sT.

So, e power minus sT is approximately equal to 1 minus sT by 2 plus sT by whole square by

2 factorial times n times n minus 1, divided by 2 n times 2 n minus 1, minus sT the whole

cube divided by 3 factorial, times n times n minus 1 times n minus 2, divided by 2 n times 2 n

minus 1 times 2 n minus 2, and so on and so forth, divided by, 1 plus sT by 2, plus sT by 2,

sT the whole square by 2 factorial times n times n minus 1 by 2 n times 2 n minus 1 plus sT

the whole cube by 3 factorial.

So,  whatever  had  a  negative  sign  in  the  numerator  will  have  a  positive  sign  in  the

denominator and whatever had a positive sign in the, numerator we will continue to process a

positive sign in the denominator as well.  So, you would have the third term to be sT the

whole cube 3 factorial times n times n minus 1, times n minus 2 by 2 n times 2 n minus 1,

times 2 n minus 2, and so on and so forth. So, this is the general n th order approximation, for

the time delay.

So, for obtaining the 1 st order approximation we set n is equal to 1. So, this is the 1 st order,

approximation; and if, you do that we notice that the terms that contain sT the whole square

by 2 sT the whole cube by 3 factorial so on will get we will vanish because n minus 1 will

become equal to 0 in all those terms and we would be left with the first order approximation

of e power minus sT, to be equal to 1 minus sT by 2, divided by 1 plus, sT by 2. And in this

case if  you were to evaluate  the magnitude of the approximation namely magnitude of 1

minus j omega, T by 2 divided by magnitude of 1 plus j omega, T by 2 we will notice, is

equal to square root of 1 plus omega T by 2 the whole square, divided by square root of 1

plus omega T, by 2 the whole square that is going to be equal to 1.



So, unlike our first, amateurish attempt at approximating e power minus sT the more accurate

approximation  namely 1 minus sT by 2 by 1 plus sT by 2,  gives  the correct  magnitude

characteristic for the transfer function for all frequencies; because the term one minus sT by 2

by 1 plus sT by 2 as a magnitude equal to 1 at all frequencies, just like the term e power

minus j omega T. Now, the 2 nd degree approximation is obtained by settling n is equal to 2

and that is given by e power minus sT, is approximately equal to 1 minus sT by 2, plus sT by

sT the whole square by, 12 whole divided by 1 plus, sT by 2 plus sT by 2 the whole, sT by

whole square divided by 12.

So, this is a 2 nd degree approximation, we can have higher degree approximation higher

order approximations as well; and these each of these approximations are valid over different

frequency ranges. So, the 1 st order of approximation is valid over a certain frequency range

it is determine by a corner frequency of the pole and 0 that for using for approximating the,

ah, transfer function e power minus sT. And the 2 nd order approximation is valid over a

wider frequency range the 3 rd order approximation is valid over an even wider frequency

range. 

So, the larger is the value of n that we picked the larger will be the frequency range over

which the approximation would be valid. So, all of this work very well provided the time

delay  is  rather  small  in  which  case  we  will  have  some  small  problem  associated  with

instability, but it will  not be fatal.  It  will  not prevent us from stabilizing the closed loop

system and achieving to a reasonable extent our performance specifications; however, when

the time delay is very large it can literally cripple the performance of a closed loop control

system. So, let us illustrate this by means of a numerical example.
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In this numerical example, I have consider the same plant namely, P of s is equal to 100 by s

plus 10, the minimum phase plant is exactly same as what we discussed, a few minutes back.

But, this time instead of assuming that it is the time delay of just 10 milliseconds; I have

assume that it is a time delay of about 2 seconds. So, that the term associated with the time

delay transfer function would be given by e to the power minus 2 s.

Now, if we have this as our actual plant, we note that the magnitude characteristics of this

plant will be identical to the magnitude characteristics of the minimum phase component of

the plant transfer function namely 100 by s plus 10 that is not going to change. The phase

characteristics of the minimum phase part is shown here it changes only from 0 to minus 90

degrees exactly as we discussed before. But, the phase characteristics of the overall plant

which  includes  that  of  the  time  delay  is  going to  result  in  much larger  phase lag  when

compared to the phase characteristics of just the minimum phase part alone. In fact, because

the time delay is rather large namely 2 seconds the phase lag is exceedingly large and very

quickly it reduces to fairly large negative values and it crosses over at a frequency that is

much less than the gain crossover frequency.

So, the gain crossover frequency here is somewhere near 100 radians per second whereas, the

phase  crossover  frequency  occurs  much  before  100  radians  per  second  somewhere  near

somewhere between 1 and 2 radians per second. And the phase lag continues to increase as

we increase frequency and it becomes very large unmanageably large at higher frequencies.



So, what is the way forward? We discuss that we cannot really deal with extremely large

phase lags by using the tricks that we have adopted when we were dealing with, minimum

phase transfer functions; especially, in a case like this where the phase lag near 100 radians

per second may be so large that adding 0 for a controller is not even a practical proposition;

we have to all together give up hopes of being able to improve the phase characteristics of the

overall system. So, the only way forward for us is to reduce the gain characteristics to such a

value that the gain crossover frequency omega gc which is now much greater than the phase

crossover frequency omega pc; now, becomes less than the phase crossover frequency unless

the gain crossover frequency is less than the phase crossover frequency we do not have a

stable closed loop system on our hands.

So, our first  and foremost goal as control  engineers now has to  be to attenuate  the gain

characteristic to such a point that the phase crossover frequency becomes greater than the

gain crossover frequency. Now, we choose a simple proportional controller to attenuate the

gain then we end of attenuate in the gain over the entire frequency range, including at very

low frequencies where there is a possibility for us to get some respectable performance in

terms  of  tracking  of  references  or  rejection  of  disturbances.  So,  instead  of  using  a

proportional controller I have chosen to go with an integral controller and chosen the gain of

the integral  controller  to be an extremely small  value.  So, in this case I have chosen the

transfer  function  of  the  controller  to  be  0.041 divided  by s  and the  gain  of  the  integral

controllers  0.041  and  that  small  gain  has  been  intentionally  chosen.  So,  that  the  phase

crossover  frequency of  the  overall  system,  is  going to  be larger  than  the  gain  crossover

frequency.

So, the phase crossover frequency happens somewhere around, 1 radian per second and as a

consequence  of  choosing  the  controller  to  have  a  gain  of  0.041,  the  gain  crossover  is

happening at a frequency that is a little bit less than 1 radian per second. So, our omega gc is

now going to be less than omega pc and we will end up having a stable control system on our

hands. But what is the price that we have paid in order to stabilize our closed loop system, it

is evident from the bandwidth that we have accomplished. The bandwidth of a plant itself the

gain crossover frequency of the plant itself  was around 100 radians per second, but as a

consequence of having a time delay cascaded with it namely e power minus 2 s. We had to

attenuate the gain of the overall open loop system to by such a large magnitude that we now

have a gain crossover frequency that is more than 2 orders of magnitude smaller than the gain



crossover frequency of the plant itself. So, were closed loop bandwidth therefore, is going to

be over 100 times less than the bandwidth a plant itself.

So, if we have this as our open loop system then, if we plot the step response of the closed

loop system with C of s times P of s being the loop gain namely, L of s of our open loop

system. Then pc the step response to look something like this, of course, it is stable and of

course, it is dc gain is also unity as a consequence of having chosen, an integrator as our

controller. But look at the times gain in which the, closed loop system settles down to it is

final value. If you look at the x axis which is the time plotted in seconds you note that the

time it takes to settle down to it final value is a little bit more than 20 seconds.

Now, to decide whether this number is large or small we need to only pay attention to the

pole of the plant which is the one that normally determines the time scale of response of the

plant itself. If you look at the pole of a plant you notice that the plant has a pole at, s is equal

to minus 10 which implies that the settling time of the plant itself is simply one-tenth of a

second or in other words 100 milliseconds. So, the plant is so fast that it can settle down to it

is final value in 100 milliseconds. 

But, because we have a time delay associated with the plant because as a 2 second time delay,

when we tries to obtain when we try to close the loop and obtain a feedback control system

we notice that the settling time of the feedback control system becomes exceedingly large, it

becomes something close to 25 seconds. And this implies therefore, that such a feedback

control system cannot be employed to track references of frequencies that are greater than the

gain crossover frequency which is namely around 1 radian per second also. And, hence and

also reject disturbances, whose frequency content is greater than the gain crossover frequency

of our closed loop system.

So, we see that a charge time delay, you can have a fatal effect on our closed loop system and

what  we shall  see  a  little  while  later  is  also  that  these,  numerical  examples  which  have

revealed to us certain problems associated with plants control of plants that have time delays.

Actually, result in fundamental limitations on our abilities to control engineers; although, the

fundamental limitations are not evident in the examples we have taken. The examples reveal

that there are problems associated with their control. We shall see a little while later that there

are fundamental limitations on the achievable gain crossover frequency, the achievable phase

margin and so on and so forth if, you are given a nonminimum phase plant.



Thank you.


