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Ideal Bode Characteristic (Part 2/2)

Hello.  In this clip,  we will continue our discussion on the Ideal Bode Characteristic,

which attempts to estimate the minimum price that we need to pay as control engineers

for the benefits that we would want to reap by employing feedback control. So, if we

have been specified that a certain performance requirement, again of M units is required

up to a certain frequency omega 1. In the previous clip, we saw what the minimum gain

crossover frequency that we can achieve given these specifications is. If we know what

kind of phase margin expectations, we have for our closed loop control system.

(Refer Slide Time: 00:55)

So, I have shown in this slide, the magnitude of L and the phase of L as function of

frequency. So, as we see up to omega 1, our specification was that the magnitude of the

loop gain had to be M units. And beyond the frequency omega 1, the phase had to be

equal to minus alpha pi, where alpha was a number that was less than 1 and this ensured

our loop gain has a adequate phase margin. So, we wanted to decrease the magnitude



characteristic as quickly as possible, while ensuring at the same time that our phase lag

requirement of minus alpha pi is met in the frequency range greater than omega 1.

And we discovered that the magnitude characteristic looks something like this as shown

in  the schematic  here.  And for  frequencies  that  are  much greater  than  omega 1,  the

magnitude characteristic rolls off at minus 40 alpha dB per decade, where minus alpha pi

represents the maximum permissible phase lag for our loop gain. So, the minimum gain

crossover frequency is the one at which this particular magnitude characteristic crosses

the 0 dB line and we derived that to be given by this particular expression at the right

bottom corner here.

But, if you look at this expression, we note that this term alpha is in general, not really an

integer value. So, if you want a phase margin of 30 degrees, we saw in our example in

the previous clip that alpha would be 5 by 6. So, the role off would be minus 40 times 5

by 6 decibels per decade, which is a very strange number. And how does one practically

accomplish this kind of an unnatural roll off, it is by choosing strategically located poles

and zeros for the controller that injure that the final characteristic would roll off at this

unnatural slope of minus 40 times 5 by 6 decibels per decade.

Likewise, when the phase margin requirement was 45 degrees, we saw that we got alpha

to be 3 by 4. In other words, we would have the roll off to be minus 40 alpha or in other

words minus 40 times 3 by 4, which is essentially minus 30 dB per decade. Now, once

again  a  roll  off  of  minus  30  dB  per  decade  cannot  be  realized  by  using  a  simple

distribution  of  poles  and  zeros  for  the  controller.  One  needs  a  fairly  complicated

distribution and strategically located positions for the poles and zeros of the controller, in

order to get the roll off to be this unnatural value of minus 30 decibels per decade.

So, therefore, the question that we need to answer is fine, we need this unnatural roll off

in order to get our gain crossover to happen as early as possible.  We wanted a gain

crossover to happen as early as possible, because we wanted to minimize the closed loop

bandwidth and thereby minimize the effect of measurement noise and also reduce the

cost of the control system.

But, the next question that we need to answer is how long do we continue to have this

kind of an unnatural  roll  off of minus 30 dB per  decade  or  minus 40 times  5 by 6

whatever the number might be. So, these kinds of roll offs require as to strategically



locate poles and zeroes and choose many poles and zeros for our controller in order to

realize such roll offs.

So, the natural question is up to what frequency do we need to continue to have this

particular  kind  of  roll  off.  And  beyond  what  frequency,  can  we  allow  the  final

characteristics of the open loop system to set in. So, by final characteristics, I mean the

characteristics of the loop gain at frequencies omega that is much greater than all the

corner  frequencies  of the different  poles and zeros  of the loop gain.  So,  what  is  the

smallest frequency omega 2 at which the final characteristics of the loop gain can be

allowed to set in. This is the question that we will try to answer in this clip.

(Refer Slide Time: 05:08)

So, I have shown the same problem here. We have our magnitude to be a constant equal

to 20 log M decibels up to frequency omega 1. And in the interest of reducing the gain

characteristics as quickly as possible, we discover that the characteristics should look as

shown in the schematic here. So, this characteristic will continue down at minus 40 alpha

decibels  per decade.  But,  as we discussed minus 40 alpha decibels  per  decade is  an

unnatural roll off, because they does not correspond to the final roll off of any particular

transfer  function,  may it  be an integrator  or a first  order filter  or any such terms of

function.

Hence, one needs to have several poles and 0's to realize a slope of approximately minus

40 alpha decibels per decade. So, there needs to be a certain frequency omega 2 at which



we stop continuing to have this kind of a roll off and allow for the final roll off of the

loop gain to set in. So, as I said the final role of refers to the roll off of the loop gain at

frequencies that are much greater than the corner frequencies of the loop gains poles and

0’s.

And the question is what is that frequency omega 2 at which the final roll off can be

allowed to set in. So, in order to understand, what is the frequency at which we can allow

for  the  final  role  of  (Refer  Time:  06:33)  set  in,  we  need  to  first  understand  the

consequences of allowing the final roll off to set in. So, since the final roll up has a slope

of let us say minus 40 n decibels per decade, where 2 n represents the relative degree of

the loop gain in the limit that omega tends to infinity.

Then we note that this particular roll off of minus 40 n decibels per decade will introduce

a certain phase lag. And this phase lag will affect the phase characteristics over the entire

frequency range. And in particular in the frequency range between omega 1 and omega

gc, where stability of the closed loop system is a major concern. Hence, the consequence

of introducing the final roll off, no matter at what frequency omega 2 we introduced it. Is

that it might potentially affect the phase characteristics the phase lag of the loop gain at

lesser  frequencies  in  particular  frequencies  between  omega  1  and  omega  gc,  where

stability is a real concern for us.

So, what we shall do first is therefore, take a look at this term separately. So, we shall

assume that there is a magnitude characteristic, whose slope is equal to 0 dB per decade

up to frequency omega 2. And beyond frequency omega 2, it  rolls off at minus 40 n

decibels per decade. And we shall ask ourselves what exactly is it  that this kind of a

characteristic would do to the phase characteristics of our open loop system at less of

frequencies,  namely  in  the  frequency  range between omega 1  and omega  gc,  where

stability is a concern for us.

To answer this question, we need to go back to the relationship between the magnitude

and the phase. So, we need to derive the relationship between the magnitude and the

phase for this particular magnitude characteristic here and in particular in the frequency

range around omega 1. What we need to note is that when we are doing the derivation,

we note that omega 1 is much less than omega 2. And hence, that will permit us to make

a few approximations, when we are doing the derivation.



So, the starting point as I said is the famous Bode’s gain phase relationship, which we

have alluded to in the past. So, the phase of L at any frequency in particular frequency

omega 1 is given by 1 by pi times integral minus infinity to infinity d by du of lawn of

magnitude of L times lawn of cotangent type of (Refer Time: 09:12) magnitude of u by 2

d u, where the variable u is given by lawn of omega minus lawn of omega 1. So, this is

the  starting  point.  We  have  to  use  this  expression  to  determine  what  this  final

characteristic of the loop gain would do to the phase characteristics of the open loop

system in the vicinity of the gain crossover frequency and the frequency omega 1.

Now, in order to simplify this integral, we need to note a couple of things. First we note

that cotangent hyperbolic u by 2 is actually given by this particular expression here that

is  because u is  given by lawn of omega minus lawn of omega 1. And based on the

definition of the function cotangent hyperbolic of x, we can write out this function in

terms of the variable  u by 2 and simplify it.  And show that  cotangent hyperbolic  of

magnitude of u by 2 is simply equal to magnitude of 1 plus omega 1 by omega by 1

minus omega 1 by omega, where omega is the variable of integration in this integral on

the right hand side. So, this is the first realization.

Next, we note that although the limits of this integral are minus infinity to infinity, we

note  that  up to  frequencies  omega less  than  or  equal  to  omega 2.  The slope  of  the

magnitude characteristic for this particular characteristic here is 0 dB. So, in other words,

dA by du is going to be equal to 0. For frequencies omega less than or equal to omega 2

or in other words for u less than or equal to lawn of omega 2 minus lawn of omega 1. So,

for frequencies for u up to this particular value, we would have dA by du to be equal to 0.

The second simplification arises from the specific form of the magnitude characteristics.

We note that the magnitude characteristic has a slope of 0 decibels per decade for up to

frequency omega 2 and the slope of minus 40 and decibels per decade beyond frequency

omega 2. So, in other words, d of lawn of magnitude of L by du will be equal to 0 for u

less than or equal to lawn of omega 2 minus lawn of omega 1. So, this is one simplifying

step  that  we can  undertake  given the special  magnitude  characteristics,  whose phase

characteristics we are trying to derive.

Furthermore for frequencies omega greater than omega 2, we have a constant slope in the

bode plot of minus 40 n decibels per decade. Now, when we are talking of the slope as



being minus 40 in decibels per decade, we know that the x axis is log to the base 10, log

of frequency to the base 10 and the y axis is 20 times log of magnitude of L to the base

10.

However, if you were to represent the same slope of minus 40 in decibels per decade on

another logarithmic scale, well x axis is log to the base e of frequency and not log to the

base 10 of frequency. And the y axis is simply log to the base e of magnitude of L and

not 20 times log to the base 10 of magnitude of L. We can show that a slope of minus 40

n dB per decade in the new graph will essentially amount to a slope of minus 2 n units.

So, what that means is that d of lawn of magnitude of l by du is going to be equal to

minus 2 n for u greater than lawn of omega 2 minus lawn of omega 1.

So, we have the first fact that cotangent hyperbolic of magnitude of u by 2 is given by

magnitude of 1 plus omega 1 by omega by 1 minus omega 1 by omega. And second we

have that given the special magnitude characteristics; we have the slope of the magnitude

characteristic  to  be  0  up  to  frequency  omega  2  and  to  be  equal  to  minus  2  n  for

frequencies beyond omega 2. So, the same integral that we have at the top, essentially

gets simplified a little bit, because the lower limit no will no longer be minus infinity.

Because, from minus infinity to lawn of omega 2 by omega 1, we have the slope of the

magnitude characteristic being equal to 0, so that integral vanishes.

So,  what  we  would  be  left  with  is  that  the  angle  of  L s,  where  L s  represents  the

magnitude characteristics that I have shown here. So, the phase of L s at the frequency

omega 1 is going to be equal to minus 2 n by pi integral lawn of omega 2 by omega 1 up

to infinity of essentially lawn of cotangent hyperbolic magnitude of u by 2, which is

given once again by simply lawn of magnitude of 1 plus omega 1 by omega by 1 minus

omega 1 by omega du.

Now, we note that the frequencies omega in this integral will always be greater than or

equal to omega 2, because the lower limit for the integration is the frequency omega 2 or

the variable u would be lawn of omega 2 minus lawn of omega 1 or equivalently lawn of

omega 2 by omega 1. So, since the frequency omega is much greater than omega 2, we

note that the frequency omega 1 is also going to be much less than the frequency omega

that is because omega 2 is to the right of the frequency omega 1. And the variable of

integration here omega is always greater than or equal to omega. And hence, omega is



always  significantly  larger  than  omega  1  and  that  will  allow  us  to  make  a  further

simplification via in approximation.

Now, we note that lawn of magnitude of 1 plus omega 1 by omega by 1 minus omega 1

by omega is approximately equal to lawn of 1 plus 2 times omega 1 by omega. In the

limit that omega 1 by omega is much less than 1 that is because 1 by 1 minus omega 1 by

omega will approximately be equal to 1 plus omega 1 by omega, when omega 1 by

omega is much less than 1. This you get from Taylor series expansion.

And hence, we would have this to be lawn of 1 plus omega 1 by omega the square. So,

this term will approximately be equal to lawn of magnitude of 1 plus omega 1 by omega

the square and which in turn will  be approximately equal to lawn of 1 plus 2 times

omega 1 by omega, once again from Taylor series expansion. In the limit that omega 1

by omega is much less than 1 and that is precisely what has been written here.

And we note that once again lawn of 1 plus x is going to be approximately equal to x,

where x is less than less than 1. And by exploiting this fact, we can conclude that lawn of

1 plus 2 times omega 1 by omega is going to be approximately equal to simply 2 times

omega 1 by omega. And noting that u is equal to lawn of omega minus lawn of omega 1,

we would conclude that 2 times omega 1 by omega is essentially equal to 2 times e to the

power  minus  u.  So,  this  is  how we  are  able  to  reduce  the  expression  that  is  being

integrated to the term 2 times e to the power minus u.

(Refer Slide Time: 17:10)



So, having performed the simplification, we can proceed with the integration. We would

have the angle of L of s at omega 1 to be equal to minus 4 n by pi times e to the power

minus u du with the limits of u being lawn of omega 2 by omega 1 to infinity. And if one

computes its integral, then one can show that the angle at the frequency omega 1 is given

by minus 4 n by pi times omega 1 by omega 2.

So, now this has one particular important message for us as control engineers. What it

tells us is that the phase contribution at all frequencies because of this final characteristic

like we have chosen to introduce at the frequency omega 2 is always negative, we always

have this particular negative sign. And what is multiplying, the negative sign is always a

positive number. So, this final characteristic will always therefore add a phase lag at all

frequencies.  And in particular  at  frequencies between omega 1 and omega gc, where

stability is a concern for us.

So,  this  final  characteristic  is  therefore  guaranteed  to  spoil  our  phase  margin

specification that we had set for ourselves in the previous derivation. So, how do we

address this issue. To address this issue what we need to notice that no matter at what

particular  value  of  omega  2  we  introduce  this  characteristic,  our  phase  margin

requirement is going to be affected.

(Refer Slide Time: 18:53)

And hence, to compensate for it, we need to add another positive characteristic of the

kind that  is  shown in this  schematic  here,  which  contributes  a  positive  phase at  the



frequencies between omega 1 and omega gc, I shall mark out omega gc also on the same

graph. So, we should add a positive characteristic to cancel out the negative phase that is

added by the final characteristic at the frequency omega 2.

Now, let us say the corner frequency of positive characteristic is omega beta. Then we

can from the by using the same derivation that we undertook in the previous slide, we

can show that in the limit omega beta is much greater than omega 1. The phase lead

provided by the characteristic of the kind that has been shown in this slide on the left is

going to be given by 4 beta by pi times omega 1 by omega beta.

So, because the final  characteristics  resulted in  a phase lag at  all  frequencies  and in

particular at frequencies between omega 1 and omega gc. We had to choose to add a

positive  characteristic  or  choose  a  controller  that  provides  this  kind  of  a  positive

characteristic, such that the phase lead provided by this characteristic cancels the phase

lag provided by the final characteristics of our loop gain. And together, they will ensure

that the phase margin specification remains unaffected between the frequencies omega 1

and omega gc, so that is why we have introduced this positive characteristic.

And as a result  of this introduction,  this positive characteristic will  add a phase lead

given by 4 beta by pi times omega 1 by omega beta, which we obtained with in a very

similar manner as what when we obtain the phase characteristics, for the example that we

just considered some time back. And the phase characteristics that we considered some

time back, we saw which is the final characteristics of the loop gain results in a phase lag

and that is given by 4 n by pi times omega 1 by omega 2.

And the positive characteristic here has been to cancel the negative phase added by the

final characteristic. So, we would have minus 4 n by pi times omega 1 by omega 2 plus 4

beta  by  pi  times  omega  1  by  omega  beta,  the  2  should  add up to  0,  so that  at  the

frequency omega 1, the net phase lag is simply going to be given by minus alpha pi and

not  by  a  larger  value.  So,  if  you  simplify  this  expression,  you  would  get  that  the

frequency omega 2 at which we can introduce the final characteristic is dependent on the

frequency  omega  beta  at  which  we  introduce  this  positive  trend  to  the  controllers

characteristic. So, omega 2 is therefore, going to be given by n by beta times omega beta.

And hence, omega 2 minimum is going to be given by n by beta maximum times omega

beta minimum. So, since we want the final characteristics to set in as early as possible, so



that we can stop controlling this unnatural roll off of the loop gain beyond the frequency

omega gc. We want to have beta to be as large as possible and we want omega beta to be

as small as possible.

Now, the  question  is  what  is  the  maximum possible  value  for  beta  and what  is  the

minimum possible value for this frequency omega beta at which we can introduce this

positive slope? Now, to answer this question, we need to understand what this kind of

positive characteristic  does to the already existing characteristic  of our loop gain.  To

refresh your memory, the already existing characteristic has a constant gain of 20 log M

decibels up to a frequency omega 1. And below this frequency omega 1, it rolls off and

crosses over at the frequency omega gc and continues rolling off. And this rolling off is

going to happen at minus 40 alpha decibels per decade.

Now, if you notice here, when we add this particular positive characteristic to the already

existing characteristic that gives us the smallest  possible value for the gain crossover

frequency. The effective characteristic  would look something like this.  So, we would

have the magnitude characteristic being a constant up to frequency omega 1 and then

after that we would have this roll off up to frequency omega gc.

And at frequency omega beta the roll off will be lesser, because we would have minus 40

alpha dB per decade roll off and that gets added on to plus 40 beta decibels per decade

rise in the magnitude characteristic. So, the roll off will beyond this frequency omega

beta, it will be minus 40 times alpha minus beta decibels per decade. Now, this particular

bode plot on the right tells us everything that we need to know to determine what beta

max can be and what omega beta minimum can.

We not hear that for the characteristic after omega beta to continue to roll off, we need to

have beta to always be less than alpha. And hence, the maximum permissible value of

beta is going to be equal to alpha, it cannot strictly speaking be exactly equal to alpha,

but it can be made arbitrarily close to alpha. So, beta max is going to be alpha. If beta

assumes  values  greater  than  alpha,  you  will  not  have  a  role  off  at  all  beyond  the

frequency omega beta, but instead the magnitude characteristic will start to rise and will

crossover again at a new frequency omega gc prime and which is not acceptable to us.

Hence, in order for the magnitude characteristic to continue to roll off, we need to have

alpha to be always greater than beta and at most beta can be equal to alpha.  So, the



maximum permissible value for beta max is going to be equal to alpha. Likewise, when

we have to determine what the minimum possible value for omega beta is. We note that

if  omega beta is less than omega gc, then we would have the part  of the magnitude

characteristic  between omega beta  and omega gc  rolling  off  at  a  much lesser  slope,

namely at minus 40 times alpha minus beta decibels per decade and that would cause the

gain crossover to happen at a much higher frequent now, then what is happening now.

So, therefore, in order to make sure that the gain crosses over at the smallest frequency

possible, we need to make sure also that omega beta is always greater than or equal to

omega gc. And hence, the minimum value for omega beta, which I shall call as omega

beta minimum is equal to omega gc. So, the smallest frequency omega 2 at which we can

introduce the final characteristics is dependent on the smallest possible value for omega

beta and the largest possible value for beta. And our argument here shows that the largest

allowable value for beta is equal to alpha and the smallest allowable value for omega

beta is equal to omega g.

(Refer Slide Time: 26:40)

So,  from using  these  two  facts,  we  can  come  to  the  conclusion  that  the  minimum

frequency omega 2 at which we can allow the final characteristics to set in is given by n

by alpha times omega gc. So, it is up to this frequency that we have to control the loop

shape.  Although  the  gain  has  crossed  over  at  the  frequency  omega  gc,  we  have  to

continue to maintain the loop shape and get it to roll off at minus 40 alpha decibels per



decade up to a frequency omega 2 in the interest of stability. In an interest of making that

our  open  loop  system  has  a  specified  amount  of  phase  margin.  And  the  minimum

frequency omega to up to which we have to maintain the loop shape is given by this

particular expression.

So, the final bode a plot, which includes the final characteristics as well as the increasing

characteristic that we have introduced here to cancel the effect of the final characteristics

on the face in the frequency range between omega 1 and omega gc is shown here. So, up

to omega gc, it rolls off at minus 40 alpha decibels per decade. And this is the minimum

gain crossover frequency possible for a specified performance and for a specified phase

margin.

Now, between omega gc and omega, we would have the positive slope of plus 40 beta

decibels per decade getting added on to the magnitude characteristic, which is rolling off

at minus 40 alpha decibels per decade. And in the limited beta is approximately equal to

alpha, the net slope will be 0. And hence, we would have this to be a flat curve between

the frequencies omega gc and omega 2. And at omega 2, the final characteristics would

set in. And the minimum frequency that means the final characteristics can set in is given

to be n by alpha times omega gc. The associated phase characteristics are shown in the

second plot at the bottom.

Now, this particular magnitude and phase characteristic together is called the ideal bode

characteristic  that  is  because  it  is  specifies  the  minimum  possible  gain  crossover

frequency or in other words the minimum possible closed loop bandwidth for a specified

performance,  namely  M  units.  And  for  a  specified  phase  margin,  which  has  been

indirectly specified here by indicating the phase lag to be minus alpha pi beyond the

frequency omega 1. So, we determine the minimum possible gain crossover frequency

and also the minimum frequency omega 2 up to which we have to maintain the loop

shape in order to make sure that our system is stable by the specified amount.

So, the stability once again is specified by the maximum permissible phase lag, which is

minus  alpha  (Refer  Time:  29:38).  And to  maintain  this  phase  lag  at  minus  alpha  pi

between  the  frequencies  omega  1  and  omega  gc,  we  need  to  include  this  positive

characteristic as well. And the two together result in this flat response between omega gc

and omega 2. And omega 2 which is given by this particular expression here specifies the



minimum frequency up to which we have to maintain the loop shape in the interest of

stability.

Now, there is one last consideration that we have not taken into account yet and that is

the gain margin of this open loop system. If you notice the magnitude characteristics that

I have drawn here y7ou will be very quick to realize that the gain margin associated with

this characteristic is 0 0 dB that is because any small increase in gain of the overall

system will quickly change the gain crossover frequency from this particular location,

namely omega gc to somewhere near omega 2. Because, between omega gc and omega

2, we have a flat magnitude characteristic. And at the frequency omega 2, you can see

that the phase lag is rather large, which means that if the gain were to increase just a little

bit,  our  closed  loop  system  would  become  unstable.  So,  we  have  no  gain  margin

whatsoever for the ideal bode characteristic as it has been drawn here.

(Refer Slide Time: 31:22)

So, to remedy this small problem with the ideal body characteristic as it has been drawn

here. What we would do is to continue the magnitude characteristic at minus 40 alpha dB

per decade up to a frequency omega prime gc. And this omega prime gc is a frequency at

which the loop gain falls to minus GM decibels, where GM stands for the Gain Margin.

Hence, even if there is uncertainty in the gain of our open loop system and the gain were

to increase, we would still have the new plant with a different and a higher crossover at

the minimum frequency possible for that particular gain. So, we continue the magnitude



characteristic up to a frequency omega prime gc and the frequency omega prime gc is

related to omega gc by the equation that  is given here.  Omega prime gc is equal to

omega gc times 10 to the power GM by 40 alpha and that simply obtained by noting that

the slope of this curve between the frequencies omega gc and omega prime gc is given

by minus 40 alpha decibels per decade. And here we note that GM has been represented

in decibels.

So, we have to continue this magnitude characteristic up to the frequency omega prime

gc, in order to make sure that our open loop system has a specified gain margin GM. The

positive characteristic which we earlier  introduced at  a frequency omega can now be

introduced only at frequencies that are greater than or equal to omega prime gc. So,

earlier when we had no gain margin specification, the minimum possible value of omega

beta was equal to omega gc. But now, when we have this gain margin specification, the

minimum possible value for omega beta will be omega prime gc.

Hence, omega beta is going to be given by omega prime gc, which is equal to omega gc

times 10 to the power GM by 40 alpha. Noting that omega gc can be expressed in terms

of omega 1 and the performance M that has been expected of us along with a stability

specification  alpha.  We note  that  omega  beta  is  related  to  omega  1,  M  and  alpha

according to the expression on the.

Now, since we allow the positive  characteristic  to  set  in  at  this  particular  frequency

omega beta minimum, we would have that the minimum frequency at which the final

characteristic can be introduced, which has a slope of minus 40 n decibels per decade is

going to be given by omega 2 equal to n by alpha times omega beta, exactly as we had it

in the previous slides. But, this time omega beta is no longer going to be equal to omega

gc but since it  is  going to  be equal  to  omega gc prime,  which is  given by the first

expression here.

So, if you plug in that expression in the equation that relates omega 2 to omega beta, we

would get the final expression on the right hand side, it  is equal to n by alpha times

omega 1 times 10 to the power 20 log M minus 12 alpha plus GM by 40 alpha. So, this is

the  smallest  frequency  at  which  we  can  follow the  final  characteristics  to  set  in  or

equivalently this is the frequency up to which we as control engineers have to maintain



the shape of the loop for the loop gain L. In order to understand the implications of these

particular equations, let us take a numerical example.

(Refer Slide Time: 35:01)

So, in the next slide here, we have considered the case one, we expect a magnitude M of

100 up to some frequency omega 1. So, in other words, 40 decibels up to some frequency

omega 1 and we expect a gain margin of 10 decibels and a phase margin of 30 degrees.

So,  let  us  say  these  are  our  expectations.  And  the  complexity  of  the  loop  gain  as

characterise the relative its relative degree 2 n, let us say is equal to 4.

Then we find that the minimum frequency at which the gain can crossover or in other

words the minimum possible bandwidth for the close loop system is going to be given by

omega gc is equal to 8 times omega 1. And the minimum frequency at which we can

allow the final characteristics to set in or in other words the minimum frequency up to

which we as control engineers have to maintain the loop shape in the interest of stability

is given by omega 2 is equal to 16 times omega 1.

Now, these numbers only become larger, if our phase margin specification is higher. So,

if our phase margin is 45 degrees instead of 30 degrees, then we note that our alpha will

be a smaller number. Alpha will be equal to 3 by 4 as we discussed in our previous clip.

And  with  that  smaller  alpha,  we  would  have  a  larger  value  for  omega  gc.  So,  the

minimum  bandwidth  of  our  closed  loop  system  or  equivalently  the  minimum  gain

crossover frequency of the open loop system is going to be given by omega gc is equal to



11 times omega 1. And omega 2, which is the frequency up to which we have to maintain

the loop shape is going to be given by 38 times omega 1.

So, from this numerical example what is revealed is that even in the ideal case, if we are

expecting a certain performance such as a gain of 100 up to a frequency omega 1, what it

implies is that our minimum gain crossover frequency is at least 10 times larger than the

frequency omega 1 up to which we are expecting this performance. And the frequency up

to which we have to maintain the loop shape is even larger, it is 16 times omega 1 in the

first case and 38 times omega 1 in the second case, so nearly 100 times more than the

frequency omega 1.

And  this  frequency  range  is  entirely  the  range,  where  we  are  paying  the  price  for

expecting the benefits of feedback up to a frequency omega 1. So, if you are expecting

performance up to a frequency omega 1, be prepared to pay the price for it, in other

words be prepared to have a closed loop system, whose bandwidth has to be at least 10

times larger than the frequency omega 1 and whose and an open loop system, whose loop

shape has to be maintained up to a frequency, which is anywhere between 20 to 40 times

larger than the frequency omega 1.

And all of this is revealed from our analysis of the ideal bode characteristic. And as the

name itself reveals, the ideal bode characteristic is an ideal characteristic, so it is not

something that is easily realized in practice. If one more to go with simple controllers

such as proportional controllers  or PID controllers or lead like compensators or such

other simple controllers, then these numbers will be far worse. The minimum frequency

up to which we need to maintain the loop shape and the minimum bandwidth that we can

achieve for our closed loop system will be much bigger than the numbers that have been

indicated here.

So, the ideal body characteristic allows us to quickly calculate the minimum bandwidth

that we need to alert for our closed loop system. And the minimum frequency at we will

have to maintain the loop shape for the open loop system, in order to reap the benefits of

feedback between 0 and omega 1.

Thank you.


