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Ideal Bode Characteristic (Part 1/2)

Hello, the topic of today’s clip is the Ideal Bode Characteristic and in this clip we shall

ask ourselves an important problem that is of concern to all of us control engineers and

that is what is the minimum price that we need to pay to reach the benefits of feedback.

Now,  what  do  you  mean  by  benefits  of  feedback  volume  of  certain  amount  of

disturbance rejection  you want you might  want  to a certain amount  of robustness to

variation in plant parameters you might want to track certain reference to desire level of

accuracy.

So,  these  are  all  the  benefit  that  we  seek  from  our  feedback  control  system  and

associated with this benefits we need to maintain the loop gain of our system high in the

frequency ranges where this benefits are sought and what is the price that one that one

needs to pay in order to realize this benefits. One has to invest in a controller which has a

sufficiently  high bandwidth and one has to make sure that the close to bandwidth is

sufficiently  high  in  order  for  us  to  track  the  references,  reject  disturbances,  achieve

robustness and so on and so forth.

So, the frequencies up to which we have to either control the shape of the loop or in other

words maintain the structure of the feedback controller and the close loop bandwidth of

our close loop system could count as the price of we might the paying in the for reaping

the benefits that I just talked about. So, in this lecture we would try to addresses the

important question as to what the minimum price we need to pay is in order to reap the

benefits of feedback. So, let us try to peck this problems little bit more concrete.
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So, what I shall draw here is a Bode plot where the x axis is also omega in y axis is log

of, magnitude of L 20 log magnitude of L. Now, in the interest of the performance I

might require 20 log magnitude of L to be above I certain magnitude in one particular

frequency range above a different magnitude in a different frequency range and may

have  to  have  a  certain  functional  dependence,  the  magnitude  need  to  have  certain

functional dependence of frequency in a third frequency range and so on and so forth.

So, this may all be part of our specification in order to either track references or reject

disturbances or you know achieve robustness to plant parameter variation. Now, there

will  be  one  frequency  which  I  shall  call  omega  1  at  which  we  stop  expecting  any

performance  from our  close  loop system.  The question  is  how should  the  loop gain

appear after the frequency omega 1 so that it is most economical in terms of the price

that one needs to pay to reap the benefits in the frequencies below omega 1 where we are

expecting the performance specification I just talked about.

So, how should the loop shape look that is the question we are trying to answer. Now,

stated  as  such this  problem is  mathematically  intractable.  So,  you may have  certain

functional  dependence  of  magnitude  of  loop  gain  as  function  of  frequency  in  some

frequency  range,  in  another  frequency  range  you  might  have  a  constant  magnitude

function  of  frequency,  in  a  third  frequency  they  you  might  have  again  constant

magnitude, but of a different value.



So, to solve this problem of determining the shape of loop gain beyond frequency of

omega 1 when you have all such complicated and competing specification of frequencies

below omega 1 makes this problem difficult to tackle. So, before we solve this problem

of obtaining the most economical loop gain let us first simplify the specification have

been given to us and solve it for a very simple kind of specification and that itself is

going to give us some important insights into the price that one needs to pay need to pay

to rip the benefits of feedback.

So, rather than specify that our gain requirements or frequency dependent and they may

be different and different frequencies let us assume that our gain requirement is some

constant value M up to the frequency omega 1. So, if I were to plot the Bode plot of my

system then  I  want  the  gain  of  the  open loop system to  be  equal  to  20  log  M for

frequencies below omega 1, I want it to be a constant.

So,  unlike the kind of dependence  that  the loop gain  would have frequencies  in the

conventional case when we actually have to tackle a real life problem in order to make

the analysis of the optimal loop gain mathematically tractable we shall take a step back

and simplify the problem of how the loop gain is supposed to appear for frequency is

below omega 1. We shall assume it is supposed to have a magnitude again of value M in

order to satisfy the various performance specifications made be disturbance rejection or

reference tracking or robustness to plant parameters. Whatever it may be we shall assume

that having a loop gain M will allow us to meet those specifications either exactly meet

them or do better than what was expected of us.

So,  we have  a  constant  magnitude  characteristic  for  our  loop gain  below frequency

omega 1 and the magnitude  is  M and the  question  now that  we are asking is  what

happened to the loop gain for frequencies beyond omega 1, how should it look like?

Well, if you think a little bit there are a few possibilities which we can easily exhaust one

possibility is of course, that we allow it to increase for frequency is beyond omega 1 and

clearly does naught make any sense because we are stating explicitly that there is no

performance  requirement  beyond  frequency  omega  1,  so  why  would  one  want  to

needlessly increase the loop gain of frequency is below beyond omega 1. There is also

the price associated with controllers gain and bandwidth that needs to be paid in order to

keep this loop gain is high and increased it for frequency is beyond omega 1.



So,  clearly  increasing  the  loop  gain  at  for  frequency  is  beyond  omega  1  makes  no

practical sense hence this option is altogether ruled out from our consideration. So, we

have to therefore, either keep it constant which once again does not make sense because

we are not expecting performance beyond frequency omega 1 and therefore,  we can

allow it to drop. Now, there are two ways in which loop gain can drop one is you can

drop gradually and finally, crossover at some fairly high frequency and this may the gain

cross over the frequency and continue to the drop over continue to decay beyond the

frequency. This is one manner in which loop gain can reduce with frequency.

Now, there is one more way in which it can reduce and that is a very drastic and dramatic

reduction with frequency. So, it can we can try to reduce the loop gain as quickly as

possible to 0 for frequencies beyond omega 1. Now, which of these to do we pick or

should be go for some intermediate rate of decreases of loop gain with frequency. To

answer this question we first shall take the case when we were allowing for fairly slow

decrease in loop gain. If the rate of decreases is very low and then what happens is that

our gain cross over frequencies will be quite large. 

So, it will be significantly to the right in this particular graph here and what that essential

means is that all the time from frequency omega 1 2 frequency omega gc over this entire

frequency rage we have to keep the loop gain high for no particular reason; we are not

expected to reject any disturbances or attract any reference for frequency omega 1.

So, needlessly we had to expand in a controller that gives this fairly large closed to band

width. You need to remember the close to band width is closely related to gain cross over

frequency of  open loop system hence,  having large gain cross  over  the frequency is

anonymous having a large close loop bandwidth. A close loop width much larger than the

frequency omega 1 up to which we are expecting performances and that does naught

make any sense. There is one more reason why you do not want the gain cross over the

frequency to be very large, if the gain cross over frequency is large as we just discussed

the close loop band width of our system will also be exceeding the large. If our close

loop band width is large then our close loop system will end up letting him lot more

measurement noise than what is unavoidable.

So, in order to achieve the benefits of feedback up to frequency omega 1, we will have to

settle for feedback control and we will therefore, have to let in some measurement noise



know if we needlessly reduce the loop gain at a very slow rate then we are having a large

closed loop bandwidth and over this entire closed loop bandwidth up to frequency omega

gc we will be letting in measurement noise. And this is want to be disastrous especially if

the measurements noise has some high frequency component which will in which case I

will they will be letting in significantly larger amplitudes than the case when we have a

low gain crossover frequency and low closed loop bandwidth.

So, clearly this alternative of reducing the loop gain at every low rate is not a desirable

one for two reasons; one is it will result in the controller having to have a fairly large

bandwidth so that the closed loop system will also have a fairly large bandwidth and

secondly, the fairly large bandwidth the closed loop system will make the closed loop

system  more  sensitive  to  measurement  noise.  The  output  will  be  affected  by

measurement  noise  especially  when  the  noise  is  either  white  noise  or  it  has  high

frequency content. So, therefore, this alternative is ruled out.

How about the lost alternative that we discussed, namely where we reduced the loop gain

very rapidly? In some sense this is what we desire because we are not anyway expecting

performance beyond frequency omega 1. So, the sooner we reduce the loop gain and get

it to cross over the better it is. The lesser will be our close to bandwidth and therefore,

the  lesser  will  be the  effect  of  noise on our  close loop system,  but  can  this  rate  of

reduction of loop gain as function of frequency the arbitrarily steep, can we make this

exceedingly steep? 

If you think a little bit about this and go back to the previous clip where we discussed the

relationship between the magnitude characteristic and a phase characteristic of a Bode

plot, you might recall, but the phase characteristic of the Bode plot is related to the rate

of decrease of magnitude characteristic in the Bode plot or another words the slope of the

magnitude characteristic approximately gives the phase characteristics.

Now, this can tell us what is the likely price that we might pay, if we reduce the loop gain

too quickly beyond the frequency omega 1. Now, if the loop gain reduction is very fast

or another word is a very steep curve then it is slop will be a very large negative number

and associated with this very large reduction in slope as function of frequency you will

have a very large phase lag and the phase lag by potentially big greater than minus pi

radiant in which case would have phase crossing over at frequency that is less than the



frequency at which gain cross over or in other words it would result in the close loop

system by being unstable.

So, if the reduction is very steep we have this problem of excessive phase lag associated

with steep reduction and that could make the system unstable if the reduction is very

shallow then we end of the large closed loop system with very large bandwidth and that

results  in  more  expensive  controller  and  more  sensitivity  to  measurement  noise.

Therefore, the ideal case is to reduce it as fast as possible so, as quickly as possible, but

without jeopardizing the stability of the close loop system. In other words if we assume

that our phase namely angle of L should not drop below a certain value, I shall call that

value as minus alpha pi where of course, alpha is lee than 1, if our phase is always

greater than minus alpha pi where alpha is less than 1 then we are making sure that our

magnitude characteristic will at more points result in instability of the close loop system.

So, therefore, we should reduce the magnitude characteristic at the highest rate that is

possible to ensure that the phase lag does not become smaller than minus alpha pi, where

alpha is a number that is less than one that prevents the close loop system from becoming

unstable. So, the first question that we will be looking at is to determine that minimum

gain crossover frequency omega gc minimum that we can have for a specified value of

the frequency omega 1 and for a specified value of the magnitude M and for a specified

amount of stability that we might want to have. Remember, that if minus alpha pi is the

designated phase lag then the phase margin is going to be given by 1 minus alpha times

pi.

So, if I have been specified a certain phase margin or equality specified a certain alpha

what is the smallest frequency at which I can get the loop gain into crossover given the

frequency omega 1 up to which I am expecting performance and the magnitude M of the

performance that  I am expecting up to frequency omega 1. This is  the mathematical

problem that we shall first end over to solve and this will gives us crucial insides on the

minimum price that one needs to pay in order to maintain the loop gain at M units up to

frequency omega 1. The price in a sense is the frequency range between omega 1 and

omega gc up to which we have to keep the loop gain high, despite the fact that there is no

performance expected in this frequency range.



(Refer Slide Time: 16:27)

So, the mathematical problem that we are trying to solve has been shown graphically on

the right, we expect that the magnitude characteristic could have a constant value of 20

log M up to some frequency omega 1 and this is the frequency up to which performances

is expected and beyond frequency omega 1 in the interest of stability we want the phase

log one to be either greater than or equal to minus alpha pi. Now, the larger is phase log

the larger is the rate of reduction of magnitude characteristic.

So, in order to get the gain cross over as early as possible beyond the frequency omega 1,

we insist that the loop gain should have a phase log of exactly what is permitted, exactly

the largest negative value permitted which is essentially equal to minus alpha pi. So, the

question is how does the magnitude characteristic look in the frequency is beyond omega

1 that ensure that the phase log is going to be equal to minus alpha pi at frequency is

beyond  omega  1  and how will  the  phase  characteristics  look  at  frequency  is  below

omega 1. Given that the magnitude characteristic is a constant equal to 20 log M for

frequencies below omega 1 this the question that we are to trying to answer.

Once again you will be depending on some of the mathematical equipment that we have

developed and used over the last couple of clips in order to determine the answer to this

question of what the minimum gain crossover frequency achievable is for a specified

performance and stability requirement. To answer this question as I said we shall go back

to the relationship between the real and imaginary parts of a complex function F of s



which  has  certain  special  characteristics  that  we employed  in  our  derivations  in  the

previous clips.

So, for such functions we noted that the real part of the function which is A of omega

naught  is  related  to  the  imaginary  part  of  it  by  the  expression  given  here  and  the

imaginary part which is given by B of omega naught gets determined completely if we

specify A of omega over the entire frequency range. And that relationship is given by this

particular equation and I want to remind you that A and B are essentially the real and

imaginary parts of a complex function F for which we carried out the derivation and

obtained this result.

Now, I can rewrite the two equations here in terms of real part of F and imaginary part of

F for reasons of clarity that we will get to in a minute. So, instead of writing it in terms

of A of omega and A of omega naught, B of omega and B of omega naught I shall write it

in terms of directly the real part of F and the imaginary part of F and that rewritten

equation looks this  way. Real part  of F of j omega naught is equal to 2 by pi times

integral of omega times imaginary part F of j omega naught by omega naught square

minus omega square. Imaginary part of F of j omega naught is equal to minus to omega

naught by pi times real part of F of j omega d omega by omega naught square minus

omega square.

So, I shall write it in this manner and subsequently we shall define F the function F to be

of the form F is equal to C plus j times D divided by omega 1 square minus omega

square under root or divided by square root of omega 1 square minus omega square.

Now, I want to remind you before I get into further algebra and simplifications for the

whole purpose of undertaking all of this algebra and integration and so on is to answer

the question of how the magnitude characteristic of the loop gain. In other words how

will magnitude of L of j omega look like for frequencies omega that are greater than

omega 1 and how will the angle of L of j omega look like for frequencies omega less

than the frequency omega 1.

Having been specified that the magnitude characteristic for frequency is below omega 1

is  a  flat  line  of  magnitude  20 log  M and the  phase  characteristic  for  frequencies  is

beyond omega 1 is again a flat line and to the phase lag of minus F of pi. Given these

magnitude  and phase  specifications  in  those particular  frequency ranges  how do the



magnitude  and  phase  characteristics  in  a  complementary  ranges  appear.  That  is  the

problem we are trying to solve and the mathematical equipment we were employing now

is all geared to solve in this particular problem.

So, let us say we choose to apply the results of these two equations to a function F that

looks something like this. F of j omega is equal to C plus jD by square root of omega 1

square minus omega square. Now, what are these functions C of j omega and D of j

omega you we will get to that in a few minutes time, for the moment though let us just

assume that there are two complex functions for which these results are valid and we are

now trying to apply these results for this particular function.

Now, this function is quite peculiar because the real part of F of j omega naught is from

inspection given by C by minus omega naught square plus omega square under root for

frequencies omega naught less than or equal to omega 1. Likewise the imaginary part of

F of j omega naught is given by D by omega 1 square minus omega naught square under

root for this in the same frequency range.

However, what is interesting is if you look at frequencies omega naught that are greater

than omega 1 in which case we would have minus omega naught square plus omega 1

square to be less than 0, that happens when omega naught is grater then omega 1. Then

we would have that square root of minus omega naught square plus omega 1 square and

this can be written as square root of minus 1 times omega naught square minus omega 1

square which in essence is equal to j times square root of omega naught square minus

omega 1 square.

So, for frequencies omega naught that is greater than omega 1 we can right F as equal to

C plus jD divided by j times square root of omega naught square minus omega 1 square.

Now, if you simplify this we will note that. So, for frequencies omega naught greater

then omega 1, the real part of F of j omega interestingly is going to be equal to D by

omega naught square minus omega 1 square under root and imaginary part of F of j

omega omega naught is going to be equal to minus of C by omega naught square minus

omega 1 square under root. And, this  is  obtained directly  by looking at  the real and

imaginary parts of the expression that has been given here.

So, we have chosen such a function F that in the frequency range up to omega 1 we have

the real part of F to be given by C by omega 1 square minus omega naught square under



root while as the frequencies greater then omega 1 we have real part of F to be given by

D by omega naught square minus omega 1 square under root. And likewise also the

imaginary parts the terms C and D get flipped between frequencies omega naught less

then omega 1 and omega naught greater then omega 1.

The  reason  we are  choosing  this  special  kind  of  function  is  because  we have  been

specified the magnitude characteristic of frequencies omega naught less than omega 1

and  the  phase  characteristic  for  frequencies  omega  naught  greater  then  omega  1.

Suppose, we apply the second result here namely imaginary part of F of j omega naught

is equal to minus 2 omega naught by pi times integral 0 to infinity real part of F of j

omega D omega by omega naught square minus omega square. Suppose you apply this

part to the special function F of j that we have picked then the right hand side of the

expression within this integral would look something like this.
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Minus 2 omega naught by pi integral 0 to infinity real part of F of j omega D omega by

omega naught square minus omega square will look something like this because the real

part of F of j omega assumes a certain functional form between the frequency 0 and

omega 1 and a different functional form between the frequencies omega 1 and infinity as

we just discussed in the previous slide. Indeed for frequencies up to omega 1 it is given

by C by square root of omega 1 square minus omega square and for frequencies beyond

omega 1 it is given by D by square root of omega square minus omega 1 square.



So, we have there for written out the right hand side of that integral as given here at this

there for is going to be equal to the imaginary part of F of j omega naught and once again

depending on whether omega naught is less then omega 1 or greater then omega 1 the

imaginary part of F of j omega naught would be different. So, for omega naught less then

omega 1 we would have the integral to be equal to D by square root of omega 1 square

minus omega naught square and for omega naught greater then omega 1 we would have

the integral to be equal to minus of C by square root of omega naught square minus

omega 1 square.

Now, these are the mathematical preliminaries that we have to put in place in order to

determine the magnitude characteristics of the loop gain for frequencies beyond omega 1

and for and determine the phase characteristics of frequency below omega 1. Our goal

now as control engineer is to apply it to a carefully and cannily chosen functions C and

D, so that we can extract the magnitude characteristic for frequencies beyond omega 1

and phase characteristics of frequencies below omega 1 and we shall choose the function

F to be of the kind F is equal to of ln of L minus ln of M divided by square root of omega

1 square minus omega square.

Now, since we know that ln of L is going to be equal to ln of magnitude of L e power j

angle of l we would have ln of L to be equal to ln of magnitude of L plus j times angle of

L and precisely these two terms here and we also have additional term minus ln of M

why these have this  term will  become evident  in  a  few minutes  time.  So, from this

expression we can see that the functions C of j omega is given by ln of L minus ln of M

and interestingly we see that for frequencies omega naught less than or is equal to omega

1 this term we going to be equal to 0 because our problem specifies that the magnitude of

L is equal to M for frequencies omega less than or equal to omega 1. So, this is the part

of problem specification we would have C to be equal to 0 for frequencies omega naught

or less or equal to omega 1.

Likewise for frequencies omega naught greater than omega 1 we would have the term D

to be equal to minus alpha pi, where D is essentially equal to the angle of L that is going

to equal to minus alpha pi of frequencies omega naught greater than omega 1 or more

generally for frequencies omega greater than omega 1. So, we can employee these two

realizations in simplifying the appearance of this particular integral. We note that the first

integral  here goes from 0 to omega 1 and it  integrates the term C by square root of



omega 1 square minus omega square times omega naught square minus omega square

and denote that C is equal to 0 within the limits 0 to omega 1 and hence what we would

naught is that this integral essentially goes to 0.

As far as the second integral is concerned we would have that the term D would be a

constant for frequencies between omega 1 and infinity and this term D essentially would

be equal to minus alpha pi in this frequency range because that is the phase lag that we

have assumed for our loop gain between omega 1 and infinity in order to make sure that

in our attempt to reduce our loop gain as quickly as possible. We are not going to be

destabilizing the closed loop system.

So, if we substitute that, then the integral on the left hand side gets reduced to expression

that has been shown here and on the right side for frequencies omega naught less than

omega 1 we would have it to be equal to D by square root of omega 1 square minus

omega naught square. And noting that for the particular F of j omega that we have to

chosen the function D is essentially given by angle of L, it is going to be equal to angle

of L by square root of omega 1 square minus omega naught square for frequencies is

omega naught less than or equal to omega 1 and it is going to be equal to minus of ln of

magnitude of L minus ln of M divided by square root of omega naught square minus

omega 1 square for frequencies omega naught greater than omega 1. Because it is going

to be equal to essentially  minus of C by square root of omega naught square minus

omega 1 square according to this expression and see our particular problem is essentially

ln of magnitude of L minus ln of M and that is how you get this particular expression.

Now, we can solve this integral to directly obtained the angle of L for frequencies omega

naught less than or is equal to omega 1 and the magnitude of the L for frequencies omega

naught  greater  than  omega  1.  Now, the  procedure  to  solve  this  particular  integrally

relatively straight forward and it is given in the reference that I have indicated in the

notes and if one word compute this integral namely 2 omega naught alpha times omega 1

to infinity D omega by omega naught square minus omega square times square root of

omega square minus omega 1 square. We would note that the angle of L upon solving the

integral is going to be given by minus 2 alpha sin inverse to omega naught pi and omega

1, for frequencies omega naught less than or equal to omega 1 and ln of magnitude of L

is going to given by ln of M minus 2 alpha ln of omega naught by omega 1 plus square



root of omega naught square by omega 1 square minus 1 for frequencies omega naught

greater than omega 1.

So,  we  have  succeeding  obtaining  the  angle  of  L  as  function  of  frequency,  for

frequencies omega naught less than or is equal to omega 1 and the magnitude of L as

function of frequencies for frequencies beyond omega 1. So, if you going to graph the

angle  of  L  the  magnitude  of  L  in  these  respective  frequencies  ranges  it  will  look

something like this.
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In the frequencies range beyond omega 1 we would have magnitude characteristic rolling

of and the role of rate is going to given by minus 40 alpha D be per decade where alpha

pi  was  the  specified  phase  lag  of  our  open  loop  system  and  phase  response  for

frequencies  below omega 1 is  given by minus 2 alpha sin inverse omega naught  by

omega  1.  Now, to  check  whether  the  phase  response  is  right,  we  note  that  if  you

substitute  omega  naught  equal  to  omega  1  we get  that  the  phase  lag  at  exactly  the

frequency omega 1 is going to be equal to minus alpha pi. And, therefore, there is going

to be no discontinuity  in  our phase estimate for frequencies  is  beyond omega 1 and

exactly at omega 1.

So, if we return to the magnitude characteristic we note that this magnitude characteristic

causes over at a certain frequency and this frequency is a smallest frequency at which we

can allow the magnitude characteristic to crossover. That is because if the magnitude



characteristic  were  to  cross  over  any  frequency  less  than  this  frequency  then  the

associated the phase log could be so large that the requirement that the phase lag be at

most minus alpha pi would be violated.

So, how do we obtain the gain cross over the frequency omega gc? In order to obtain

omega  gc  let  us  first  make  an  approximation  to  the  magnitude  characteristic  of

frequencies beyond omega 1. If we written to the expression of ln L we have that ln of

magnitude of L is equal to ln of M minus 2 alpha times omega naught by omega 1 plus

square root of omega naught square by omega 1 square minus 1. Now, in the frequency

range  omega  naught  greater  than  greater  than  omega 1,  we would  have  that  omega

naught by omega 1 will be much better than 1 and hence the term within the bracket here

can be simplified us ln of magnitude of L is equal to ln of M minus 2 alpha times ln of 2

times omega naught by omega 1.

And, I have written the same approximate expression here. So, for frequencies omega

naught which is much better than omega 1 we would have ln of magnitude of L to be

approximately equal to ln of M minus 2 alpha ln of omega naught by omega 1 minus 2

alpha ln 2. And when we convert the x axis to the as log of frequency to the base 10 and

the y axis  as log of magnitude  of  L to  the base 10 times  20 the term 2 alpha  ln 2

essentially becomes equal to 12 alpha decibels.  And, the role of is given by minus 2

alpha if the x axis and y axis for simply ln of magnitude of ln and ln of frequency, but if

we were to inspect plot 20 log to the base 10 magnitude of L verses log to the 10 base of

frequency the slope which earlier minus to alpha essentially becomes minus 40 alpha dB

per decade.

So, the magnitude characteristic roles of approximately linearly for frequency is omega

naught that is much greater than omega 1 and if were to extend this linear characteristic

up to the frequency omega 1 we would notice that linear trend will intersect the vertical

line at omega 1 at a point that is 12 alpha dB lower than the 20 log M. Hence in order to

determine  the  gain  crossover  frequency  we  need  to  note  that  at  the  gain  crossover

frequency you would have 20 log of magnitude of L to be equal to be 0 or equivalently ln

of magnitude of L will also be equal to 0. So, we just have to set this entire expression to

be equal to 0 to obtain the frequency omega gc.



So, what omega naught equal to omega gc you would have this to be valid, namely this

entire ln of magnitude of L will be equal to 0. Now, if we want to solve this equation we

get the minimum gain crossover frequency that is given by this expression omega gc

minimum is equal to omega 1 10 to the power 20 log M minus 12 alpha divided by 40

alpha. So, if we specified a certain phase margin requirement then we fix the value for

alpha  and  if  we  specify  the  performance  requirements  in  terms  of  the  extant  of

disturbance  rejection  or  the  maximum  permissible  error  in  tracking  we  essentially

specify the term M. And with these two pieces of information along with the information

of the frequency omega 1 up to which the performance is expected we can compute the

minimum gain crossover frequency that is possible for our close loop system for it to

achieve the performance M up to frequency omega 1 and achieve a phase margin as

characterized by the constant alpha.
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So, to drive home the significance of this fact let us take a numerical example. So, let us

assume  that  as  control  engineers  we  are  expected  to  achieve  a  gain  of  100  which

corresponds to 40 dB and up to some frequency omega 1 and have a phase margin of at

least 30 degrees. Now, we note that if the phase margin is 30 degrees or in the other

words  5  by  6  radian,  then  we  would  have  that  the  maximum  phase  lag  which  is

characterized by the term minus alpha pi can be obtained by solving the equations pi 6 is

equal to 1 minus alpha times pi and if rearrange it we get that alpha is equal to 5 by 6 in



other words the maximum log permitted in order for us to achieve a phase margin of 30

degrees will be minus 5 pi by 6.

So, for this particular permitted phase lag and for this particular magnitude requirement

up  to  some  frequency  omega  1,  we  obtain  the  gain  cross  over  the  frequency  the

minimum gain cross over the frequency to be 8 times omega 1. So, almost nearly order

of magnitude greater than omega 1. Now, suppose we want a slightly more conservative

design and desire a phase margin of 45 degrees or in other words the phase margin is

going to equal to pi by 4, then we can show that alpha can be calculated as 1 minus alpha

times pi if t is equal to the phase margin or is equal to pi by 4 and that gives alpha to be

equal to 3 by 4.

Now, we substitute this particular value for alpha along with the particular required value

for the gain M in the equation that I showed in the previous slide you will obtain the gain

crossover frequency to be equal to 11 times omega 1. So, what this indicates to us in

general is that as a rule of thumb the price that we pay for achieving the benefits of

feedback up to a frequency omega 1 is that we have to keep the loop gain high, in other

words greater than 0 dB for a frequency range that is nearly 10 times larger than the

frequency omega 1 up to which we are expecting performance and this is the best that we

can do.

Any smaller value of gain cross over frequency and hence the closed loop bandwidth

would result in a phase lag that is going to be lesser than minus alpha pi in the phase

margin requirement is will be violated. So, as a rule of thumb therefore, the frequency

range over  which we pay price or  in  other  words  the closed loop bandwidth  of our

system of our control system is in general going to be about 10 times larger than the

frequency range up to which were expecting performance from our close loop system.

Thank you.


