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Fundamental properties of the loop gain phase (part2/2)

The next important constraint that we would talk about is the relationship between the

real and imaginary parts of the loop gain or equivalently the relationship between the

magnitude and the phase plots of the open loop gain l in a Bode a plot. Now, the question

that  we want  to  ask is  whether  it  is  possible  to  independently  design the magnitude

characteristic and a phase characteristic of the loop gain or equivalently is it possible to

independently design the imaginary part and the real part of the loop gain. Well,  this

question is of obvious attraction interest as a engineers because, in terms of performance

what we need to pay attention to is a magnitude characteristic.

We need to make sure the magnitude is high enough in the frequency ranges where we

want to achieve robustness or disturbance rejection or tracking of a certain reference or

something like that. So, if you could independently engineer the magnitude characteristic

and the phase characteristic,  then we can first  design the magnitude characteristic  to

satisfy whatever performance specification have been given to us.  And, subsequently

look at the phase characteristic, determine the phase margin and if the phase margin is

not adequate, then separately shape the phase characteristic in order to achieve whatever

phase margin we desire.

So,  therefore,  the  problem  of  stability  can  be  greatly  minimized  by  adopting  the

systematic procedure for control design, provided we can independently realize the real

and imaginary parts of the loop gain or equivalently the magnitude and phase of the loop

gain. But, what we will see in this discussion is that unfortunately this is not possible.

The  magnitude  and  phase  characteristics  are  intimately  link  and if  you  for  instance

specify the real part of the loop gain over the entire frequency range, the imaginary part

of the loop gain also gets fixed over the entire frequency range and vice versa. So, let us

see how that can be arrived at.
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To do that we would be applying Cauchy’s theorem to a function F of s that has been

given here, F of s is equal to L of s by s minus j omega naught, where L of s is our loop

gain and this is form A plus jB. In order to apply Cauchy’s theorem to this particular

function, we need to make sure that is function does not have singularities within the

region where we applying the theorem. Now, if you want to adopt the same D shaped

contour that we took in the previous clip, then we would have a problem. Because, the

point s is equal to j omega naught would be a point on the D shaped contour and hence it

would become difficult for us apply Cauchy’s theorem.

In order to avoid this uncomfortable situation, what is done is we shall distort the D

shaped contour that we saw in the that you have used in the past. In order to avoid the

point s is equals to j omega naught, which is the point at which the singularity of this

function F of s is located. So, to do that we chose a curve that is shown by this doted

contour here. 

So, most of it is essential the D shaped contour that we have always considered when we

talked about stability and when we derive the relationship for conservation of sensitivity

dirt and so on. But, there is a small kink that is introduced centered at the point j omega

naught and of radius small r.

So, this small semi circular arc just avoids the point s is equals to j omega naught and

hence excludes it from within the boundary of the contour C. So, the rest of the contour



C is a region where the function F of s does not have any singularities by assumption

because, the loop gain L is assumed to be a minimum phase loop gain and all it is poles

and 0 are assumed to be located on the left  half  of the complex plane.  So, to apply

Cauchy’s theorem we shall know divide up this contour into 4 segments. The first is the

segment C 1 which is essentially the imaginary axis, all the way from minus infinity to a

point that is very close to the point s is equals to j omega naught.

The second is the contour C 2 which is a tiny semicircular arc of the radius small r which

just avoids this point s is equals to j omega naught. The third is segments C 3 which

extends from s is equals to j omega naught, all the way to plus infinity. And, the fourth is

the familiar D shape contour C 4, whose radius capital R is tending to infinity and help

us to encompass the entire of the right half of the complex plane. So, if you were to

apply Cauchy’s theorem to this particular contour, we would have the contour integral

over C of F of s would be equal to 0, which would mean that the some of the count

integrals along C 1 C 2 C 3 and C 4 would be equal to 0.

Now,  we  shall  evaluate  each  of  these  integral  separately  and  finally,  simplify  the

resulting algebraic expression to ultimately arrive at a relationship between the real and

imaginary parts of the loop gain. Since, a lot of algebra is involved to here I am stating at

the very outset that the goal of all the algebra simplifications and solving of integrals that

we  would  do  in  subsequent  one  or  two  slides,  would  be  to  ultimately  obtain  the

relationship between the real and imaginary parts of the loop gain. So, having stated that,

let us now plunge into solving these integrals and undertaking necessary algebra for the

same.

Let us first call is integrals I 1 I 2 I 3 and I 4 with I 1 corresponding to the integral along

the curve C 1 I 2 along the curve C 2 and so on and so forth. And, let us first try to solve

the integral I 4. The integral I 4 is along the curve C 4 and along the curve C 4 we have

that our complex number s would be of the form s is equal to Re power j phi, where R

capital R is the radius of this big D shaped contour which is tending to infinity. And phi

is the angle that a complex number on this D shaped contour makes with a real axis and I

am indicating here the angle phi.

So, for all points on the contour C 4 we would have the complex number s to be of the

form Re power j phi and if we negotiate this contour in the clockwise sense, as we have



done in this schematic on the right. Then the complex number s starts on the positive

imaginary axis and traverses along this D shaped contour in semicircular arc and finally,

ends in the negative imaginary axis. Hence, we would have that angel phi going from

plus pi by 2 to minus pi by 2. Since, s is equals to Re power j phi we would have that ds

will be equal to j times Re power j phi d phi.

So, here we have the radius R to be a constant and hence you would get this as the

expression for ds. The second fact that we can exploit while solving the integral I 4 is to

note  that  since  the  loop  gain  is  the  product  of  the  controller  and  the  plant  transfer

functions. And each of the transfer function the controller and the plant are both physical

system, we need to have the relative degree of each of these transfer functions to be at

least equal to 1.

Hence,  in  the limit  that  s tends to infinity  or equivalently  as capital  R is  tending to

infinity, we can easily show that the loop gain L in the limit s tends to infinity would

assume the form K by s power n, where the index n is greater than or equal to 2. We

would have this index to be greater than or equal to 2 because, L is a product of the

controller and the plant. And, each of them has to tend to 0 as K by s or K by s power

alpha, where alpha is greater than 1. And, hence the product of the 2 tends to 0 as K by s

power n, where n is greater than or equal to 2.

So, if we exploit this fact along with the expression for ds along the contour C 4, we

would have the integral I 4 to be limit R tends to infinity integral pi by 2 to minus pi by 2

L of s ds. So, for ds I have substituted d of R e power j phi divided by s minus j omega

naught. In the s minus j omega naught represents R prime e power j theta prime, where R

prime is the phase R starting from s is equal to j omega naught at ending at the point s

and theta prime is the angle that is phase R makes with respect to the real axis. So, this

angle here is theta prime.

Now, once again since we have the loop gain L on this contour C 4 to be of the form K

by s power n or another words K by R e power j phi to the power n, where n is greater

than or equal to 2. Following the exact same argument that we had in the previous clip,

we can show easily that in the limit R tends to infinity we would have the integral I 4

going to 0. So, of the 4 integrals that we have to simplify, one of them has a fairly simple

expression namely that I 4 is equals to 0, for the particular function F of s that we have



chosen. Let  us now focus on the integral  I 2 and for the integral  I  2,  you would be

computing this integral along the curve C 2 and along the curve C 2, C 2 is essentially

this tiny semicircular arc centered at the point s is equals to j omega naught end of radius

small r, where the small r is vanishingly small it is tended to 0.

So, any complex number s along this contour C 2 would have the form s is equal to j

omega naught  plus r  e power j  alpha,  where alpha  is  the angle made by a  complex

number s on this contour C 2 with respect to the real axis. So, I am marking the angle

alpha in this graph here. 

So, as you see if we traverse the entire contour C in the clock vice sense, then the angle

alpha changes from minus pi by 2 to pi by 2 as the complex number moves along the

contour C 2. So, since s is of this form and omega naught is a constant, we would have

ds to be equal to j times small r e power j alpha d alpha. So, once again small r is also a

constant so, we do not need to differentiate the variable small r.

So, the integral I 2 therefore, becomes I 2 is equals to integral over C 2 F of s ds and that

is equal to limit small r tended to 0 integral from minus pi by 2 to pi by 2 L of s d of r e

power j  alpha divided by r e power j  alpha.  So, we get d of r e j alpha because,  ds

essentially  will  become equal  to  d of r  e power j  alpha.  Since,  j  omega naught is  a

constant and in the denominator we get r e power j alpha because, in the denominator of

the function F of s, we have F of s to be equal to L of s divided by s minus j omega

naught. And, if you notice along the curves C 2 we have s to be equal to j omega naught

plus r e power j alpha which implies that s minus j omega naught will essentially simply

be equal to re power j alpha.

So,  that  is  the  reason the  because,  we have  the  term s  minus  omega  naught  in  the

denominator of the integrant, we will have the term r e power j alpha appearing in the

denominator of the integral. Now, since this contour C 2 is of vanishingly small radius

and is situated very close to the point s is equal to j omega naught,  for all  practical

purposes the loop gain L of s does not change within this contour C 2. And therefore, L

of s is can be assumed to be a constant along the contour C 2 equal to L of j omega

naught.

So, this term L of s can be replaced by L of j omega naught simply because, the radius r

is tended to 0. So, we are only considering the point that are extremely close to point s is



equals to j omega naught and for all those points the loop gain L of s will be extremely

close to L of j omega naught. So, we can replace L of s by L of j omega naught. So, if

you do that the L of j omega naught is a constant, and it can be removed out of the

integral and all we would be left to evaluate is the integral minus pi by 2 to pi by 2 of d

of r e power j alpha divided by r e power j alpha. 

And, this can be shown to be equal to minus j times pi. Hence, when we combine that

with the term L of j omega naught we would get the expression of I 2 to be equal to

minus j times pi times L of j omega naught. So, we are now done solving I 4 founded to

be equal to equal to 0. We just solved I 2 and found it to be equal to minus j pi of L of j

omega naught. What we are left with are integrals I 1 and I 3, let us take these two

integrals up next.

(Refer Slide Time: 14:27)

So, I  1 plus I  3 which is  what  we need to evaluate  is  essentially, integral  along the

contour C 1 of F of s plus integral along the contour C 3 of F of s and that essentially

given by this expression, because F of s is L of s by s minus j omega naught. Now, if you

notice in the previous slide the curve C 1 and C 3 are essentially coincident with the

imaginary axis of our complex plane. Therefore, along these curves we would have s to

be of the form s is equal to j omega.

So, making that substitution so, that ds internal equal to j times d omega and the curve C

1 starts at minus j infinity and ends at a point it is just below the point s is equal j omega



naught. And hence, we would have the limits of the first integral namely the integral over

C 1 of L of s by s minus j omega naught ds. To start from minus j times capital R, the

capital R is tended to infinity and stop at j times omega naught minus small r which is

the extent to which the curve C 1 extends. So, the integrand will be L of j omega by j

omega minus j omega naught because, along this curve s is going to be equal to j omega

and we have replace ds by jd omega.

So, this first integral within the bracket essentially represents integral over C 1 of F of s

ds. The second integral represents the integral over the curve C 3, the curve C 3 starts at

point along the imaginary axis, just a little bit above the point s is equals to j omega

naught. In fact, the distance of the point at which it starts from the point s is equal to j

omega naught will be small r. 

So, the point at which it is start will be j times omega naught plus r that is the lower limit

of the integral, when we are trying to do the integration along the curve C 3. And it

extends all the way to plus j infinity or in other words plus j capital R, where capital R is

tending to infinity and the integrand once again is a same L of j omega by j omega minus

j omega naught and ds once again gets replaced by jd omega.

So, this is the sum of the integrals I 1 and I 3. Now, we know that L is of the form A plus

j B and if we substitute that in this expression we would have that this entire integral, the

sum of I 1 and I 3 can be written out as integral from minus infinity to infinity A of

omega plus j times B of omega by omega minus omega naught d omega. That is because,

the first integrals start with minus j infinity or minus j capital R or R is tended to infinity,

stops just a little bit before j omega naught. And the second integral start just a little bit

above j omega naught and go all the way to plus j infinity or plus j capital R, where R is

tended to infinity.

So, if you combine these two since the distance at which the first integral ends from the

point s is equal to j omega naught and where the second integral begins from the points s

is equal to j omega naught is small r, which is tended to 0. We can combine these two

integrals and write out the integral that we have shown here. The limits will go from

minus infinity to plus infinity A of omega plus j B of omega divided by omega minus

omega naught d omega. This is essentially simplified version of the integral that we have

written out here.



 And, from the previous slide we know that the other integral namely the integral I 2 will

be equal to minus j pi times L of j omega naught and that is going to be equal to 0. Now,

we know that L of j omega naught will essentially be equal to A of j omega naught plus j

times B of j omega naught. 

So, the integral here which I have shown which I have underlining now, has a real part

and an imaginary part and the expression minus j pi L of j omega naught also has a real

part and an imaginary part. So, if you compute minus j pi times L of j omega naught, we

would have here to be equal to minus j pi A of j omega naught plus pi B of j omega

naught. 

Hence, if we equate the real part of the integral plus the real part of this term minus j pi L

of j omega naught to be equal to 0 and imaginary parts correspondingly to be equal to 0,

we end up with these two expressions here. So, we would have minus pi times B of

omega naught is equal to integral  minus infinity  to infinity  A of omega d omega by

omega naught minus omega.

While, pi times A of omega naught will be equal to integral minus infinity to infinity B

of omega d omega by omega naught minus omega. So, we got these two expressions by

separately equating the real part and imaginary part of the equation that we have here to

0. 

Now, this equation tells an important story, what is B of omega naught? B of omega

naught essentially represents the imaginary part of the complex number L of j omega at

the frequency omega naught. What is A omega? A omega represents the real part of the

loop gain and let us say that has been specified over the entire frequency range, namely

omega going from 0 to infinity then, A of omega is known very well.

So, we see that if you specified A of omega we are automatically therefore, specifying

the numerical value of B of omega naught via this first equation. Conversely, if we are

specifying  the imaginary  part  of the loop gain which is  B of  omega over  the entire

frequency range, omega going from 0 to infinity. 

Then the second equation revels that this specified B of omega over the entire frequency

range can be used in combination with this particular integral on the right hand side to

compute A of omega naught or other words the real part of the loop gain at any particular



frequency omega naught. The trouble with the integrals on the right hand side; however,

is  that  the  frequency  where  is  from minus infinity  to  infinity  rather  than  from 0  to

infinity. So,  we can simplified  this  expression by taking one additional  step through

which we can replace a limits  of the integral  from minus infinity to infinity by 0 to

infinity. So, let us undertaking this next step for a sake of this last step of simplification.

(Refer Slide Time: 21:37)

To do this we apply the exacts same step that we have undertaken so far to the function F

of s is equal to L of s by s plus j omega naught, which is basically A plus j B by s plus j

omega naught. Please recall that two slides back we choose to apply Cauchy’s theorem to

the function F of s is equals to L by s minus j omega naught, here we are choosing to

apply to L is F is equal to L by s plus j omega naught.

Now, in order to apply Cauchy’s theorem to this particular function we have to introduce

a tiny semicircular kink to the contour C at the location s is equal to minus j omega

naught,  in  order  to  avoid  the  singularity  of  this  function  at  the  particular  point.

Otherwise, if you follow the exact same step as we did in the previous two slides, then

we would get a very similar expression that relates B of minus omega naught to A of

omega and A of minus omega naught to B of omega.

So, for negative frequencies omega the real part and imaginary parts of the loop gain are

related as given by these two equations.  Now, there is one last step that allow us to

replace the limits of these integrals in a manner that we have to plan to do; namely to get



the lower limit of both this integrals is to be 0 rather than minus infinity. To do that, we

notice that since the loop gain represents the transfer function of some physical system.

We would have the real part of the loop gain be an even function of frequency or in other

words you would have A of minus omega to be equal to A of omega. And the imaginary

part of the loop gain would be an odd function of frequency or in other words B of minus

omega would be equal to minus B of omega.

So, by exploiting the fact that if L of s, if L of omega is equal to A of omega plus j times

B of omega, we would have A of omega as a even function of frequency and B of omega

as odd function of frequency. We can use the expression we have in this slide along with

expression that we had in the previous slide combine them, take the linear combination

suitably and show that A of omega naught can be written out as 2 by pi times integral 0

to infinity omega times B of omega d omega by omega naught square minus omega

square. And B of omega naught is equal to minus 2 omega naught by pi times integral 0

to infinity A of omega d omega by omega naught square minus omega square.

So, this expression is directly the result of using the two equations that we have in this

slide along with two similar equation that we had in the previous slide. Combining them

appropriately the exact steps that allow us to get to the final expression from these two

expressions has been given in the lecture notes. But, what is important is what this two

equations tell us. What they tell us is that there is absolutely no freedom available to us

in picking the imaginary part of a loop gain, which is essentially going to be B of omega

naught.  If  we have specified  its  real  part  namely, A of omega over entire  frequency

range.

So, A of omega is specified everywhere, then all we can do is compute this integral that

we have on the right hand side to get B of omega naught. Likewise, if we have specified

the imaginary part of the complex number namely, B of omega over the entire frequency

range then we have no flexibility what so ever, left in determining the real part of this

complex number at any particular frequency omega naught. 

So, determine its real part we just have to compute the first integral that is shown in this

equation.  So, we would get A of omega naught to simply be equal to 2 by pi times

integral from 0 to infinity omega times B by omega naught square minus omega square d

omega and that gives us A of omega naught. So, this is a real big constraint on us control



engineers  because,  it  tells  us  that  we  cannot  independently  determine  the  real  and

imaginary parts of a loop gain or equivalently the magnitude and the phase of the loop

gain.

So,  if  we specify  one over  the  entire  frequency range thus,  other  gets  automatically

specified every single frequency omega naught and that is given by the expressions that

is shown here. But, the relationship between the magnitude and the phase is far more

intimate then what is apparent from these two equations. 

The intimacy of the relationship between the magnitude and a phase was revealed by H.

W. Bode who took this expressions further, made some simplifications reorganization to

reveal  how  closely  the  phase  characteristics  get  determined  by  the  magnitude

characteristics in the neighborhood of a frequency omega naught. So, what we shall do

next is follow along H. W. Bode’s footsteps and starting from these two expressions, we

shall see how the magnitude and the phase characteristics in a Bode plot are related.

(Refer Slide Time: 27:13)

To do that let us first chose to apply Cauchy’s theorem, this time to the function F of s is

equal to ln of L of s divided by s plus or minus j omega naught or in other words ln since

ln L of s given by ln of magnitude of L of s plus j times angle of L of s. You would have

F of s to be equal to ln of magnitude of L plus j times angle of L divided by s plus or

minus j omega naught.  So, we first apply to the case when we have s plus j  omega



naught in the denominator and subsequently to the case where we have s minus j omega

not in the denominator.

And, exactly as we did in the previous slides and then add the two, combine the two and

we would get the expression B of omega naught, where B is the angle of L and A is the

ln of magnitude of L to be equal to minus 2 omega naught by pi integral 0 to infinity A of

omega d omega by omega naught square by minus omega square. So, this expression we

borrowed from the previous slide, but we are applying it to the function F of s equal to A

plus j B. But, this time A does not represent the real part of L and B does not represent

the imaginary part of L.

Instead, A represents ln of the magnitude of L and B represents the phase of L or the

angle of L that is because, we have chosen our starting point to be that we would apply

Cauchy’s theorem to the function F of s is equal to ln of L divided by s plus or minus j

omega naught instead of directly L divided by s plus or minus j omega naught. Now, that

we have this particular expression let us rearrange it a little bit. 

So, the term omega naught in the numerator was taken to the denominator so, that and

the term minus 1 also observed by the integrant. So, that we would have B of omega

naught to be equal to 2 by pi times integral 0 to infinity A of omega d omega which is

same as what we had in the previous expression divided by omega by omega naught

minus omega naught by omega times omega.

So, by simple manipulation and rearrangement you can quickly see that the expression

that we have here on the right side is identical in every sense to expression that we have

decided on the left hand side. It is just a rearrangement and this arrangement has been

made to help us take the next step, in the next step what you would do is define a new

variable u. 

So, we have called u as ln omega minus ln omega naught and we shall right out this

integral in terms of u. So, the movement you define u to be equal to ln omega minus ln

omega naught, you notice that u is equal to ln of omega by omega naught or in other

words omega by omega naught will be equal to e to the power u. Likewise omega naught

by omega will be equal e to the power minus u. 



Finally, we would also have d omega by omega to be equal to du since, ln of omega

naught is a constant and hence, d of ln of omega naught will be equal to 0. So, by noting

that the term d omega by omega in the right most integral here is equal to du and omega

by omega naught is equal to e power u. And omega naught by omega is equal to e power

minus u, we can right that d of omega naught is equal to 2 by pi integral minus infinity to

infinity A of u du by e power u minus e power minus u. Kindly, note that the limits of

integration have also changed as a consequence of the change of variables. 

Earlier we have omega and omega was going from 0 to infinity, now when we right out

the same integral in terms of u which is ln of omega. We would ln of 0 to be minus

infinity and hence the lower limit of this integral becomes minus infinity. And, ln of plus

infinity still remains infinity, hence the upper limit still remains plus infinity. 

We would therefore,  have B of omega naught to be equal to 2 by pi integral  minus

infinity to infinity A of u du by e power u minus e power minus u. Now, we notice that e

power u minus e power minus u divided by 2 is essentially equal to sin hyperbolic of u. 

So, by noting this particular definition of sin hyperbolic of a variable we can write out

the same integral  here, as 1 by pi times integral minus infinity  to infinity A of u du

divided by sin hyperbolic of u. Next, what we do is under take integration by parts to

simplify this particular integral. This as not been done by me in this particular slide, but

it is in the lecture notes and you can refer to it at some later point. What we can show is

that  it  is  integral  here,  the  right  most  integral  that  are  currently  under  lining  can

essentially be simplified by using integration by parts to this particular expression here. 

Namely, that B of omega naught which is essentially equal to angle of L is equal to 1 by

pi  times  d  A by du,  where  A is  ln  of  magnitude  of  L noise]  times  ln  of  cotangent

hyperbolic of magnitude of u by 2 du. So, this is the relationship between the angle of the

loop gain and the magnitude of the loop gain. So, the angle of the loop gain is equal to 1

by pi times its integral of some slope of the loop gain namely d ln of magnitude of L

divided by du, waited by this function ln of cotangent hyperbolic of magnitude of u by 2

du. 

Now, if you examine this relationship it is not easy to tell exactly what it is about this so

called  simplification  that  sheds  any  further  light  on  the  relationship  between  the

magnitude and the phase characteristics of the Bode plot or the angle and the magnitude



of the loop gain in a Bode plot.  That  is  because;  we do not  know exactly  how this

particular function ln of cotangent hyperbolic magnitude of u by 2 looks like the moment

we plot this function thing will start to become immediately a bit more clear. So, if one

word to  plot  this  function  ln  of  cotangent  hyperbolic  magnitude  of  u  by  2  it  looks

something like this.

So, as u tends to minus infinity it tends to 0 as u tends to minus infinity once again it

tends to 0 and at u equal to 0 the function tends to infinity. So, this function is of infinite

magnitude in the neighborhood of u equal to 0 and it tends to 0 as you move further

away and as u is  tended to infinity. Now, we might  wonder  what  function does this

particular function resemble? 

A moments thought might lead us to suspect that perhaps this function ln of cotangent

hyperbolic of magnitude of u by 2 looks somewhat like a delta function, namely delta of

u. Because, if I want to draw a delta function, a delta function also has infinite magnitude

in the neighborhood of u equal to 0 and quickly goes to 0 outside of u equal to 0. So, you

would imagine therefore, that perhaps ln cotangent hyperbolic u by 2 is actually a delta

function, but the bad news is this function is not exactly a delta function.

So, a delta functions definition was provided to a provided in the very beginning of this

course and if you apply the definition we will discover that this particular function not

really a delta function. But, it can be approximated as a delta function simply because, it

weighs the integrand the namely d of ln of magnitude of L by du; significantly more in

the neighborhood of u equal to 0 compare to other location or other location of u. 

There is a second problem in equating or approximating ln of cotangent hyperbolic of

magnitude of u by 2 with a delta function. That is because, when we compute the area

under  the  curve  for  a  delta  function  or  when we compute  integral  minus  infinity  to

infinity delta of u du by definition we should get that area to be equal to 1. 

However, when we compute the integral ln of cotangent hyperbolic of magnitude of u by

2 du, we do not get that area to be equal to 1; instead you get it to be equal to pi square

by 2. Hence, this term ln cotangent hyperbolic u by 2 is not only not a delta function, but

also that it  is the area under the curve is not 1 it is actually equal to pi square by 2.

However,  in  order  to  simplify  analysis  and given  the  fact  that  it  raise  the  integrant



significantly more around u equal to 0, we can approximate ln cotangent hyperbolic u by

2 as pi square by 2 times delta of u approximately.

So, that the area under the curve for the term on the right hand side namely, pi square by

2 times delta of u will also be equal to pi square by 2. And this term will end up varying

the integrant significantly more near u equal to 0. So, by approximating this function ln

of cotangent hyperbolic magnitude of u by 2, as approximately being equal to pi square

by 2 times delta of u, we would have the relationship between the phase of L and the

magnitude of L to approximately be given by B of omega naught is approximately equal

to 1 by pi d A by du pi square by 2 delta of u du.

 Where, I have replaced ln of cotangent hyperbolic u by 2 with pi square by 2 times delta

of u. And B of omega naught essentially represents the angle L as based on the definition

that we have laid out at the beginning of the slide here. And, d of ln of magnitude of L by

du is essentially d A by du because, by definition A is ln of magnitude of L. Hence, d A

by du essentially represents this term here.

So, the term L of omega naught has been reproduced in this equation, the term d L d of ln

of magnitude L by du has been reproduced again here. Just that we have renamed the

same variable as A and the term ln of cotangent hyperbolic magnitude of u by 2 has been

approximated has pi square by 2 times delta of u. 

So, when we simplify this particular integral by noting that we have a delta function

within the integral and we remove the term pi square by 2 out of the integration. We

would get  that  d of omega naught is  going to be equal  to pi  by 2 times d A by du

evaluated at u equal to 0. This we get because, of the presence of the term delta of u

inside the integration.

Now, if you once again substitute what A the variable capital A stands for and what the

variable capital B stands for, we would get this very interesting expression. Namely, that

the angle of j omega naught which is essentially B of omega naught is approximately

equal to pi by 2 times d of dA by du essentially represents d of ln of magnitude of L. 

Because, by definition A is equal to ln of magnitude of L by du and u represents ln of

omega. Hence, we would have the angle of L at j omega naught to be approximately

equal to pi by 2 times d of ln of magnitude of L by df ln of omega at the frequency



omega equal to omega naught. Now, since we have drawn the Bode plots for quite some

time in this lecture series and perhaps also before this, we immediately recognize that in

a Bode plot the y axis is proportional to ln of magnitude of L.

 It is actually equal 20 times log to the base 10 of magnitude of L which is proportional

to ln of magnitude of L and the x axis is essentially log to the base 10 of omega which is

essentially again proportional to ln of omega. So, what this expression tells us therefore

is  that  the  angle  of  L at  any  particular  frequency  omega  naught  is  simply  equal  to

approximately the slope of the magnitude characteristic in a Bode a plot at the frequency

omega naught. 

So, if we have the Bode a plot where we plot log of omega versus 20 log of magnitude of

L t,  let  us  say  have  certain  Bode  a  plot  for  our  open  loop  gain.  At  any  particular

frequency omega naught, if we compute the slope of this curve then the slope of that

curve is proportional to the phase of the loop gain at that particular frequency. And what

is in tar indicates to us is that it is not necessary for us to separately draw the magnitude

and the phase characteristics of the loop gain.

If you are given the magnitude characteristics you can automatically derive the phase

characteristics  by  using  this  approximate  expression  and  that  is  the  power  of  this

relationship between the magnitude and phase that has been derived by H. W. Bode. So,

is this really true? To check, if this is really true, we can apply this expression to a few

common transfer functions that we have come across. And we tend to come across in

practice and see whether this relationship between the magnitude and phase are really

correct or not. 
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So, I have chosen to first apply it to the loop gain L equal to 1 by s pi alpha plus 1. This

is a first order system and for this system we can compute the magnitude of L at any

frequency  omega.  And  then  take  it  is  logarithm  and  take  the  derivative  of  log  of

magnitude  of  L  with  respect  to  log  of  omega  and  show  that  after  some  algebraic

simplification,  it  becomes  equal  to  minus  omega  naught  by  alpha  the  whole  square

divided by 1 plus omega naught by alpha the whole square. 

Where, omega naught is the frequency at which we are trying to evaluate the derivative d

of ln of magnitude of L by d of ln of omega. So, this is evaluated at omega equal to

omega naught. Hence, if Bode is gain phase relationship between true, we would have

that the angle of L would be equal to pi by 2 times minus omega naught by alpha the

square divided by 1 plus omega naught by alpha the whole square. 

So, what I have done on the right hand side is plotted the magnitude characteristics of the

loop gain for some particular alpha, in this case I have chosen alpha to be equal to 1. And

I  have  also  plotted  the  actual  phase  of  this  loop gain  which  is  quite  easy  to  derive

because, the angle of L actually is given by minus of tan inverse of omega naught by

alpha at any particular frequency omega naught. 

So, the actual phase has been shown in blue colour solid curve here and the approximate

phase has been shown by the red dashed curve here, which is obtained by using the

approximate gain phase relationship that we derived in the previous slide. Namely, that



the  angle  of  L is  equal  to  pi  by  2  times  approximately  equal  to  pi  by  2  times  the

derivative of ln of magnitude of L with respect to ln of omega.

 And, what you see from the graph on the right hand side is that the two are quite close

and the maximum difference between the two which you can compute is going to be

about 6 degrees, it is not a bad number. And as control designers we can live with the

small difference between the actual phase and the approximate phase.

 And the benefit  you would get from that is that we can just  rely on the magnitude

characteristics in order to perform our control design. Because, by taking the derivative

of the magnitude characteristics we can estimate the approximate phase characteristics of

the loop gain; provided this loop gain is the minimum phase loop gain.

And from that work out the other stability specifications such as the phase margin and so

on and so forth. Now, if you take a more general loop gain namely, L is equal to K times

s by z 1 plus 1 times s by z 2 plus 1 and so on and so forth up to s by z m plus 1. Let us

assume we have m 0’s z 1 to z m and n poles for our open loop system p 1 to p n. So, that

the denominator polynomial can be factorized as s by p 1 plus 1 times s by p 2 plus 1 and

so on and so forth up to s by p n plus 1. 

We can show with some algebraic manipulation that d of ln of magnitude of L by d of ln

of  omega  is  given  by  this  particular  expression  within  the  brackets  here.  Namely,

summation i going from 1 to m omega naught pi z i the whole square divided by 1 plus

omega naught by z i the whole square minus summation j going from 1 to n omega

naught by p j the whole square divided by 1 plus omega naught by p j the whole square.

So, this entire some multiplied with pi by 2 will approximately give us the phase of L at

any particular frequency omega naught. To verify whether this is correct or not I have

taken once again a specific numerical example L of s is equal to 1 by s times s plus 1

times s plus 2. And we the top graph plots some magnitude characteristics of this loop

gain. 

Since, we have an integrator initially we have a minus 20 dB per decade roll off, around

1 radian per second which is its first corner frequency the roll of will increase to minus

40 dB per decade. And at the second corner frequency which is at 2 radian per second



there will be an additional roll off introduced by the second by the pole at s equals to

minus 2.

And so,  the ultimate roll  off will  be minus 60 dB per decade and for this  particular

magnitude characteristics, we can compute the phase exact phase characteristics because;

we know the three terms that make up the loop gain. So, the exact phase any particular

frequency omega naught is given by angle of L of j omega naught is equal to minus pi by

2, which arises from the integrator 1 by s that we have. 

And then minus tan inverse of omega naught by 1 because, of the pole at s is equal to

minus 1 minus tan inverse of omega naught by 2 because of the other pole at s equal to

minus 2. So, this is going to be the exact phase. The approximate phase can be computed

by using this expression, which I am now highlighting between the brackets.

And the second graph here compares the approximate phase and actual phase. You see

that actual phase is shown in blue solid curve and the approximate phase is shown by

once again the red dashed curve. And it is evident from this that the two are very nearly

identical to one and other. It is only at some particular frequency is there is a difference,

but, if you zoom in and look at the difference it is going to be quite small; on the order of

a few degrees or at most 10 degrees, 15 degrees and this difference is small enough for

us control engineers to live with.

So, the importance of the second half of our discussion in this clip is that not only is the

phase characteristic completely determined if we are given the magnitude characteristic

of the open loop gain. But, in fact the phase characteristic is determined predominantly

by the slope of the magnitude characteristic in a Bode plot, in the neighborhood of the

frequency at which we are determining the phase characteristic.

So, although the magnitude characteristic at other frequencies or in particular the slope

of the magnitude characteristic at other frequencies also affect the phase at a particular

frequency of omega naught, that contribution is rather small. What is dominant is the

slope of the magnitude characteristic in a Bode plot or in other words so, slope of the ln

of magnitude of L versus ln of a omega at a particular frequency omega naught, is what

determines the phase characteristics at the same frequency omega naught.

Thank you.


