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Hello over the last few lectures we have seen how we can perform 2 degree of freedom

control design using the Nichols plot and with that discussion we bring to an end the

different tricks and techniques that we would be discussing in this course, regarding the

tools available and the controllers that are available for control of physical systems. What

we would  be  looking  that  starting  from this  lecture  onwards  would  be  some of  the

fundamental properties of feedback systems.

As we have occasionally pointed out mathematics is the language of control systems and

the  control  systems  that  we  have  designed,  therefore  how  to  essentially  how  to

necessarily obey some of the theorems in complex analysis and these theorems in turn

impose limitations on what we can do as control engineers.

So,  in  this  clip  we  would  be  looking  at  some  of  the  important  limitations  that  are

imposed  by  these  theorems  in  mathematics  which  the  control  systems  that  we  are

designing have to necessarily obey. So, we would be discussing 3 such constraints that

are imposed on the feedback systems and in particular on the loop gain because, all the

benefits and price of feedback is tied to the loop gain and the higher the loop gain the

better is our performance in terms of disturbance rejection or robust plucking and so on

and so forth.

So, the first theorem is what is known as the Bode sensitivity integral theorem and this

theorem attempts to quantify the limitations of feedback control. So, we know that we

cannot  achieve the benefits  of feedback namely very high gain over arbitrarily  large

frequencies, there will be a frequency at which the plants transfer function will start to

reduce and when the controller transfer function also does not assume very large values

in that frequency range, then the loop gain will inevitably cross over. So, the loop gain

will reduce from a value greater than 0 dB to a value less than 0 dB and beyond that

frequency  we cannot  expect  any meaningful  performance from our  feedback  control

system.



So, the gain cause of a frequency essentially determines the bandwidth of the feedback

control  system beyond which  we cannot  expect  any performance  improvements  that

would  accrue  as  a  result  of  employing  feedback  control.  But  these  same qualitative

observations  that  there  is  only a  finite  frequency range within which  we can  expect

benefits of feedback can actually be quantified, so there way we go about quantifying it

is by employing Bode sensitivity integrals.

The second limitation that we would discuss has to do with the connection between the

magnitude and the phase characteristics of the open loop system in a Bode plot. The

question that we would try to ask and subsequently answer is whether it is possible for us

to independently  design the magnitude  characteristic  and the phase characteristic.  Or

equivalently can be independently realize the real parts and the imaginary part of the

loop gain L of j omega.

So, let us say we have specified the real part of the loop gain over the entire frequency

range omega, do we have any freedom left in specifying the imaginary part of the loop

gain or equivalently if you have specified the magnitude characteristics of the loop gain

over the entire frequency range is there any freedom left  for us to specify the phase

characteristics.

Now, if you think a little bit about this particular constraint it is quite important to us as

control engineers, because let us say we can independently design the magnitude and the

phase  characteristics  of  the  loop  gain,  then  we  can  first  design  the  magnitude

characteristics  in  order  for  these  characteristics  to  satisfy  whatever  performance

specifications we might have.

So, you might want to achieve fairly high loop gains in some frequency ranges, so that

the  disturbance  specifications  or  tracking  specifications  are  met  in  those  frequency

ranges and having completed that design we can then turn our attention to the phase

characteristics and subsequently shape the phase characteristics in such a manner that our

final closed loop system would have whatever phase margin we would want it to have.

So, such a decoupled design approach would become possible, if it was actually possible

for us to independently design the magnitude and the phase characteristics of the open

loop system. But what we shall see in the second part of this clip is that unfortunately the

magnitude and the phase characteristics are intimately related.



So, if we specify the magnitude characteristics of the loop gain or equivalently the real

part of the loop gain over the entire frequency range, we are essentially also specifying

the phase characteristic over the entire frequency range or equivalently the imaginary

part of the loop gain over the entire frequency range. And we would have no flexibility

left to pick these 2 independently.

So, this is a second fundamental constraint that we control engineers have to contend

with  and  this  therefore  imposes  limitations  on  what  we  can  accomplish  as  control

engineers. Although it attractive for us to be able to independently design these 2, so that

having  taken  care  of  performance  then  we  can  separately  worry  about  stability  this

particular theorem states that this is not possible for us to realize.

The third constraint is an extension of what we would have discussed in the second part

of this clip, namely the relation between the magnitude and the phase characteristics. So,

the second part  will  reveal  that  it  is  not  possible  for us  to  independently  design the

magnitude and the phase characteristics.

The third part which is due to H W Bode indicates that the relationship between the

magnitude  and  the  phase  characteristics  is  even  more  intimate  than  what  would  be

revealed by the second constraint. So, it is not necessary for us to specify the magnitude

characteristic over the entire frequency range for us to determine the phase characteristic,

actually  it  turns  out  that  the  phase  characteristic  is  dependent  predominantly  on  the

magnitude  characteristic  in  the  neighborhood  of  the  frequency  at  which  we  are

determining the phase.

So, even though we may have a certain magnitude characteristic and other frequencies, it

is the magnitude characteristic in the vicinity of the frequency where we are looking at

the phase of the open loop system that predominantly determines the actual value of the

phase and this contribution is due to H W Bode and the consequence of this contribution

is that one can have a more simplified Bode plot wherein one does not even need to

separately  plot  the  phase  characteristics  of  the  plot.  If  one  plots  the  magnitude

characteristics then from the magnitude characteristics one can actually already extract

the approximate phase characteristics without separately plotting it  for the open loop

system.



So, it is these 3 particular limitations that we would spend the remaining time that we

have in this clip looking at, all of these 3 limitations arise from theorems in complex

analysis and therefore it will only prudent for us to refresh our memory regarding some

of the important definitions in complex analysis and subsequently we will be using one

important theorem called Cauchy’s theorem. And we will be applying it repeatedly for

different functions to extract the different limitations that we talked about just now.

So, the first property that we would be employing in doing the analysis in this clip is

what is known as analyticity of a complex function.

(Refer Slide Time: 08:25)

So,  the  definition  has  been indicated  in  this  slide  here,  so an  analytic  function  is  a

function  F  of  s  which  is  differentiable  everywhere.  So,  if  a  function  F  of  s  is

differentiable at a point s naught in the complex plane, then it is have said to be analytic

at the point s naught. Equivalently if we write this function in the form F of s is equal to

A plus jB, where the complex number s is given by s is equal to sigma plus j omega then

for a function to be analytic at a particular point.

Then we should have these 2 equations to be simultaneously satisfied delta A by delta

sigma should be equal to delta B by delta omega and delta A by delta omega should be

equal to minus of delta B by delta sigma.



So, an analytic function is something that we have already seen when we discussed the

proof  for  the  Nyquist  stability  theory  and  it  is  essentially  function  that  is  infinitely

differentiable and one simple example of an analytic function is F of s is equal to s minus

s  naught,  such a  function  is  analytic  everywhere  in  the  complex  plane.  Where  as  a

function of the kind f of s is equal to 1 by s minus s naught is analytic everywhere in the

complex plane except at the point s naught, simply because the function blows up at the

point s naught it is value would be infinity and therefore it cannot be differentiated at the

point s is equal to s naught.

So, the notion of an analytic function is quite a straightforward one and the next theorem

that would be using repeatedly in the course of this clip is what is known as Cauchy’s

theorem. And the Cauchy’s theorem is applicable to analytic functions and the statement

has been indicated here. So, if a function F of s is analytic everywhere within a certain

region bounded by a closed curve C and such a region has been shown here. So, if the

function F of s is analytic everywhere inside this shaded area of the, that is bounded by

the curve C.

Then the contour integral of F of s along the curve C which is given by the contour

integral F of s ds is going to be equal to 0. So, this is Cauchy’s theorem and we shall not

prove Cauchy’s theorem in this clip, but we shall just assume take it for granted and

apply it to different functions of interest to us as control engineers and see what kind of

limitations will this particular theorem impose on the loop gain or functions of the loop

gain of the open loop system. So, in order to quantify the limitations of feedback we

shall applying this theorem to the function F of s is equal to ln of capital S.
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Where the function capital S is given by capital S is equal to 1 by 1 plus L, where L is

the loop gain of the system. So, L corresponds to the loop gain and is given by L is equal

to the product of the controller transfer function and the plant transfer function. So, we

shall apply Cauchy’s theorem to the function f of s is equal to ln of S where s is equal to

1 by 1 plus L, if you recollect the function capital S is also called the sensitivity function.

So, if our loop gain L has all it is poles and zeros on the left half of the complex plane,

then there are no singularities in the function ln of capital  S in the right half  of the

complex plane, because the singularities will occur only at the location of the poles and

0’s of the term 1 by 1 plus L. So, the poles of the term 1 by 1 plus L are essentially the

poles of the closed loop system and the 0 of 1 by 1 plus L are essentially the open loop

poles of our system.

If our closed loop system is stable then all the closed loop poles will be on the left half of

the complex plane and if our plant and the controller both have their poles on the left half

of the complex plane, then the 0’s of capital S a sensitivity function will also be on the

left  half  of  the  complex  plane.  Therefore,  there  is  no  point  on the  right  half  of  the

complex plane at which the function F of s equal to ln of capital S is going to go to

infinity is going to process singularities.

Hence if  we define the curve C along which we would be in evaluating the contour

integral to encompass the entire of the right half of the complex plane or in other words



the  curve  C is  essentially  this  D shaped  contour  whose  flat  side  coincides  with  the

imaginary axis and whose bulging D shaped contour has a radius R that is tended to

infinity and hence encompasses the entire of the right half of the complex plane. If this is

the contour of the region within which we are going to be applying Cauchy’s theorem.

We note that in this region the function F of s is going to be analytic for the reasons that

we discussed just a few minutes back and hence we would have that the contour integral

of ln of S ds over the contour C which is essentially going to be equal to minus of the

contour integral of ln of 1 plus L d s and that is going to be equal to 0. Because F of s

equal to ln of s is an analytic function everywhere within the contour C that we have

defined here.

Now, this is going to be the starting point for us to derive the fundamental limitation as

far as feedback control is concerned and such a limitation is revealed by what is known

as the Bode’s sensitivity integral and that is what we would be getting to at the end of the

derivation. So, starting from this point where we have applied Cauchy’s theorem to this

particular function to the point where we derive the Bodes sensitivity integral and it is

implications and interpretation to us as control engineers.

There is quite a bit of algebra we shall patiently go through that algebra and I request the

viewer’s indulgence while we patiently simplify the expression that we have got here for

the particular function that we have assumed, namely capital S sensitivity function equal

to 1 by 1 plus L.

So, starting from this equation here namely that the contour integral of lawn of 1 plus L

ds is  equal to 0,  we can then break up the contour C which is  this entire  D shaped

contour into 2 smaller contours one, is the part C 1 which represents essentially the entire

of the imaginary axis and the D shaped part C 2 which encompasses the entire of the

complex plane on the right hand side.

So, the contour C can be looked at as a union of these 2 curves C 1 and C 2 and hence we

can write the contour integral ln of 1 plus L ds over the curve C is equal to the integral

over the curve C 1 of the same function ln of 1 plus L plus the integral over the curve of

C 2 of the function ln of 1 plus here.



Now, we have to separately simplify the 2 integrals, namely the integral over the curve C

1 ln of 1 plus L ds plus and the integral along the curve C 2 ln of 1 plus L ds. First we

shall take up the second integral namely integral over the curve C 2 of ln of 1 plus L ds,

let us first evaluate that, subsequently let us get to the first integral namely integral along

the curve C1 of the function ln of 1 plus L.

So, if you take the second integral you note that along the curve C 2 our complex number

would be of the form s is equal to Re power j phi, where R is the radius of the D shaped

contour and phi represents the orientation of the complex number s with respect to the

origin on this D shaped contour. So, in along the curve C 2 our complex number s will be

at a constant distance from the center of the complex plane given by the radius capital R,

but it is angular position will change and that is captured by the change in the phase phi

of the complex number s.

In particular if the d shaped contour starts somewhere near the positive imaginary axis

and ends somewhere on the negative imaginary axis, we would note that the angle phi

would change from a value of plus pi by 2 to minus pi by 2. Now since s is given by Re

power j phi along the contour C 2 we would have that the term ds is going to be given by

j times Re power j phi d phi. This is because the term R is a constant, so ds will be equal

to R times d of e power j phi and one can easily verify that the differential of e power j

phi  is  given by j  times e  power j  phi  times  d phi.  So,  that  is  how we obtained the

expression  for  the  term  ds  in  the  second  integral  which  we  are  now  taking  and

considering for simplification purposes.

There are a couple of other simplifications that we can make for the function ln of 1 plus

L on the contour C 2, since the radius of this contour is R capital R which is tendered to

infinity and hence this contour encompasses the entire of the right half of the complex

plane. We note that the values of s that we would have on this contour are going to be

significantly greater than all the poles and zeros of our loop gain L.

Now, when s is tended to infinity or equivalently when capital R is tended to infinity we

note  that  our  loop  gain  L,  which  is  essentially  a  cascade  of  the  controller  transfer

function in the plant transfer function will reduce to the term K by s power n. Since the

controller is a transfer function whose relative degree at least has to be 1 because, it is a

physically  realizable  transfer  function  it  has to  be strictly  proper and hence the new



denominator polynomial of the controller has to be at least it has to have a degree it is at

least 1 unit greater than it is numerator transfer function. And likewise since plant is also

a physical system and it  is it  has to be strictly proper and therefore the denominator

polynomial of the plant should have a degree that is at least 1 unit greater than it is

numerator polynomial.

We would note that in the limit s tends to infinity we can write the loop gain L which is a

product of the plant and controller transfer functions in the form K by s power n, where n

is the sum of the relative degrees of the plant and the controller respectively. Since each

of these subsystems the plant and a controller each have a relative degree of at least 1,

we note that the term n should be greater than or equal to 2.

So, the loop gain at very large frequencies is going to be a very small number firstly and

secondly it would be decaying as function of s in this particular manner in the form K by

s power n. This can be easily verified by taking any particular specific example of a

transfer function that represents the loop gain and tending s to infinity. We will note that

the effect of all the poles and zeros will go away and we would have L going to 0 in this

particular manner as yes is tended to infinity.

So, because L is going to be a very small number at very high frequencies because, L

rolls off the planned poles and 0’s result in reducing trend for L at high frequencies we

can make one more approximation. And it is that ln of 1 plus L is approximately going to

be equal to L in the limit that the magnitude of L is very small. Since we are now looking

at complex numbers on the contour C 2 where which are very far away from the origin,

which are at a distance of capital R from the origin and our capital R extended to infinity.

We note that the magnitude of L is going to be very small or those high frequencies and

in those frequency ranges we can approximate ln of 1 plus L to be approximately equal

to L itself, this we can obtain from the Taylor series expansion of logarithm of one plus

x. Where we ignore the higher order terms on account of the fact that the term L is very

small in magnitude with this particular approximation, we can write the integral over C

to ln of 1 plus L ds in this particular form.

So, we can have, we can replace the term 1 plus L by the term L which is what has been

done here and a term ds by j times R times e power j phi d phi there is a term j missing

here and I shall add that here and we note that L would be of the form K by s power n



and s would be of the form or e power j phi on the contour C 2 and hence we would have

this integral to be given by limit of R tends to infinity. The angle phi going from pi by 2

to minus pi by 2 because we are traversing this contour starting from some point on the

positive imaginary axis and finally going to some point on the negative imaginary axis

the angle phi changes from plus pi by 2 to minus pi by 2 as shown here.

So, the expression for ln of 1 plus L ds on the contour C 2 is going to be given by this

particular expression and here we note that n is greater than or equal to 2 and hence

therefore n minus 1 is going to be greater than or equal to 1. Since we have the term R to

the power n minus 1 in the denominator of the integrand and we are tending the radius R

to infinity, we would have that this particular integral namely integral over C 2 ln of 1

plus L ds is going to be equal to 0.

So, the second integral here namely this particular integral has therefore shown to be

equal to 0, as a consequence of the simplifying steps that we undertook just now. Let us

now focus on the first integral namely integral over C 1 ln of 1 plus L ds and we note that

on the curve C 1 we would have that  number s  to  be essentially  equal  to  j  omega,

because the curve C 1 essentially coincides with the imaginary axis with the consequence

that we would have ds to be equal to j times d omega. And I have substituted the same in

this expression and we have obtained ln of 1 plus L ds to be equal to j times integral

minus infinity to infinity ln of 1 plus L d omega.

So this simplification is obtained from this realization. Now, we note that 1 plus L the

complex  number  1  plus  L is  essentially  given  by  the  magnitude  of  1  plus  L times

exponential of j times the face of 1 plus L, this is by definition the complex number 1

plus L, it is given by the magnitude times e to the power j times the phase.

Hence we would have the ln of 1 plus L or locked logarithm to the base e of the function

1 plus L to be equal to ln of the magnitude of 1 plus L plus j times the angle of 1 plus L.

We get this expression by simply taking the logarithm of this particular expression, so

with this particular expression we plug it into the integral that we have here. and we

obtain that ln of 1 plus L ds over the contour C 1 is equal to j times minus infinity to

infinity  ln of magnitude of 1 plus L d omega plus j  times integral  minus infinity  to

infinity the angle of 1 plus L b omega.
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So, it would be the sum of these 2 integrals, let us evaluate these 2 integrals separately

and to do that let us first consider the second integral.  So, in the second integral the

integrant happens to be the angle of 1 plus L and this is the in the limits of integration

happen to be minus infinity and infinity. Now it so happens that the angle of 1 plus L is

an odd function of omega or in other words the angle of 1 plus L of minus j omega is

going to be equal to the negative of the angle of 1 plus L of j omega.

Now since the limits of integration of minus infinity to infinity, so we are going we are

allowing omega to assume all values both along the negative imaginary axis as well as

the positive imaginary axis and we have the integrand to be a function that is an odd

function of omega. We would have this  particular  integral  here namely integral from

minus infinity to infinity of the angle of 1 plus L d omega to be equal to 0, simply

because, the angle this function angle of 1 plus L is an odd function of omega.

What that leaves us with is just the first integrant integration alone and that is given by

the  term minus  infinity  to  infinity  ln  of  magnitude  of  1  plus  L d  omega  and since

magnitude of 1 plus L, the function magnitude of 1 plus L is an even function of omega.

We would have that the magnitude of 1 plus L of minus j omega to be equal to the

magnitude of 1 plus L of plus j omega. And as a consequence of this fact we would have

that integral minus infinity to infinity ln of magnitude of 1 plus L d omega to essentially

be equal to 2 times the integral 0 to infinity of the same terms.



So, the limits of integration can be changed from minus infinity to infinity to 0 to infinity

by multiplying this first integral by a factor of 2 and we note that this entire integral has

to now be equal to 0 as a consequence of Cauchy’s theorem. Now, if we note that the

magnitude of 1 plus L is going to be equal to 1 by the magnitude of s capital  S by

definition, where capital S represents a sensitivity function, we would have therefore that

2 times integral of 0 to infinity lawn of magnitude of 1 by S d omega to be equal to 0. Or

in other words minus 2 times integral 0 to infinity lawn of magnitude of S d omega to be

equal to 0.

So, if you were to cast this in better form we would get this particular equation, namely

that integral 0 to infinity lawn of magnitude of S d omega is equal to 0. So, this is called

the  bode  sensitivity  integral  and  what  this  indicates  is  that  the  integration  of  the

logarithm of  the  sensitivity  function,  namely  log  of  magnitude  of  S  over  the  entire

frequency range is always going to be equal to 0. No matter which particular controller

we pick and therefore which particular form the loop gain has as long as the poles and

0’s of the controller as well as the plant or both on the left half of the complex plane.

Now, this  particular  expression  is  essentially  an  expression  of  conservation,  what  it

indicates  is  that  as  control  engineers  we  might  wish  to  reduce  the  sensitivity  in  a

particular frequency range because, a reduction of sensitivity is essentially synonymous

with having a high loop gain.

Because S is equal to 1 by 1 plus L, if our sensitivity is small much less than 0 dB then

essentially we are having a loop gain L that is going to be much greater than 1 and as

control engineers we wish the loop gain to be much greater than 1 in the frequency range

where  we  are  expecting  performance.  But  what  this  expression  indicates  is  that  we

cannot achieve the benefits of feedback over the entire frequency range.
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What it indicates is that the area of reduced sensitivity which I have called as a one here

is going to be equal to the area of heightened sensitivity. So, if you were to reduce the

sensitivity  of  our  overall  systems  in  some  frequency  range  in  order  to  achieve  the

benefits  of  feedback.  We actually  end  up  increasing  the  sensitivity  in  some  other

frequency range, in such a manner that there is no net change in sensitivity.

So, the areas A 1 plus A 2 add up to 0, so this particular integral is also called as the law

of  conservation  of  sensitivity  dirt  because,  function  sensitivity  capital  S  is  1  whose

magnitude we desire to be as small as possible and hence we call this function ln of

magnitude of S as sensitivity dirt. We want to have as little of sensitivity dirt as possible,

but what this expression indicates is that sensitivity dirt is can is conserved.

So, if we reduce sensitivity dirt in a certain frequency range as we have done in this

range here  in  the  interest  of  reaping the benefits  of  feedback,  we inevitably  end up

increasing the sensitivity dirt in a different range which I have highlighted here. In such a

manner that the net increase in sensitivity dirt, in the rest of the frequency range will be

exactly equal to the amount of sensitivity dirt that we have reduced in one particular

frequency range.

In this case this frequency range happens to be up to frequency omega naught. So, this is

the first fundamental property associated with feedback systems, although in this clip we

do not discuss how we can put this to good use, we shall see later on that we can employ



this particular theorem to quickly come up with the estimates of the best possible gain

margin and phase margin for a feedback control system.


