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So,  after  plotting  the  bounds for  the  different  performance specifications  namely  for

robust tracking, output disturbance rejection and input disturbance rejection and also for

stability  you would wish to view all  these bounds. So, it  is for this purpose that the

function grpbnds can be employed. So, we have defined the bounds for each of these

different performance and stability specifications and the function grpbnds allows us to

view all these bounds together.
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And all the bounds have been plotted together here by once again using the command

plot bounds or plotbnds. So, after executing the function grpbnds the output is plotted

and it shows the bounds on the loop gain owing to robust tracking, output disturbance

rejection and input disturbance rejection over the entire frequency vector from 0.2 to 50

radians  per  second.  So,  in  order  for  our  loop gain  to  satisfy  simultaneously  all  the

different performance and stability specifications at any particular frequency, it should lie

in a region that is going to be the intersection of the permissible regions in which it needs

to lie in order for it to satisfy each of the individual performance specifications.

So, in order to obtain therefore, the intersection of this region and the boundary of this

intersection, a new function is used that is that is called sectbnds and that is highlighted

here. So, the function sectbnds helps us to obtain the intersection of the different bounds

on the loop gain at each of the frequencies, where were interested in performance and

stability.
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So, after executing the function sectbnds and then we plot the intersection of bounds it

looks as shown in this slide here. So, this indicates that the nominal loop gain has to lie

above the red curve at the top, which I am showing by means of the arrow here at 0.2

radian per second in order for it to satisfy all the 4 specifications simultaneously. Namely

robust  tracking,  output  disturbance rejection,  input  disturbance rejection  and stability

specification at 0.2 radians per second. Likewise, at 1 radian per second it should lie

above this green curve at 2.5 radian per second should lie above the blue curve at 5

radian  per  second should  lie  above the  cyan colored  curve,  at  10 radian  per  second

should lie above the purple colored curve and so on and so forth. 

Now, at 25 and 50 radians per second there were no performance specifications, we only

had the stability specification. And, the corresponding stability bound has been indicated

here and the loop gain has to lie outside this stability bound at 25 and 50 radians per

second; for the control system to be stable to the specified extent at these frequencies.

The next step after obtaining the intersection of bounds is to perform loop shaping in

order to determine the structure of the controller  that  allows for the loop gain to lie

within the permissible regions at each of the frequencies that have been shown here.
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In order to perform loop shaping we have to use this command lpshape, which I am

highlighting.  Now, lpshape  allows  us  to  plot  the  Nichols  plot  and  overlay  upon the

Nichols plot the different bounds that we have computed now and along with that also

the loop shape of the nominal plant. So, the input arguments to this command are the

frequency vector over which we want to plot the loop shape. And it so, happens that we

have chosen that frequency vector to be frequencies starting from 10 power minus 2

radians per second to 10 power 4 radians per second.

And, we have chosen 200 points in between in order to plot the loop shape and the

second input to this command is the intersection of all the bounds. And, the third input is

the nominal plant and the fourth input is a controller. Now, at the start of the design our

controller transfer function is just C is equal to 1 because, you have not yet obtained the

controller that satisfies all the bounds. However, if we run this part of the code we will

be led to a window where we can interactively perform control design.
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So, what you see in this window here is the Nichols plot of the open loop system. So, the

Nichols plot of the open loop system is shown here and the colors here of the open

circles indicate the loop gain at the different frequencies. And, these colors match the

corresponding colors of the bounds at each of these frequencies. For example,  at 0.2

radians per second the loop gain is here somewhere, as I am showing it by means of the

arrow here. And, the bound on the loop gain at 0.2 radian per second is indicated above it

here, likewise also at other frequencies.

So, when the controller  C is equal to 1 we note that the open loop system is for all

practical purposes violating all the bounds. So, the red circle which has to be above the

red bound is actually below the red bound and therefore, the performance specification at

0.2 radian per second is violated. The green circle is below the green bound, the blue

circle is below the blue bound, the cyan colored circle which is which corresponds to the

loop gain at 5 radians per second is below the corresponding the cyan bound and so on

and so forth. Therefore, with the controller C is equal to 1 we will not be able to achieve

any of the performance specifications that we have set out for ourselves.

Furthermore,  what you see is that the loop shape is entering this closed curve which

represents the stability bounds at 25 and 50 radians per second. And therefore, even the

extent of stability that we desire will not be achieved by using the controller C is equal to

1. However, what you have on the right hand side is this controller elements which can



be added and we can interactively change the structure of the controller in order for us to

achieve the desired performance specifications.
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For instance, we can choose to add gain for the controller or we can choose to add a real

pole for the controller, a real 0 for the controller, a complex pole, a complex zero, a lead,

lag, a notch. So, all these different controller structure configurations are available for us

to tune and by using these configurations we can appropriately modify the loop gain of

the  nominal  open  loop  system  and  make  sure  that  the  loop  gain  satisfies  all  the

performance bounds.

So, it will start with let us go with a simple gain element. So, we let us first try to make

sure that  the loop gain at  the lowest frequency that we have a picked namely at  0.2

radians per second is within its specified bound. Namely, the top most curve that you see

in the Nichols plot here.
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So, what I shall do here is I can take the entire loop gain and drag it up in this particular

manner. And, the software will allow us to place this loop at whatever location that we

want. And, if we do that then on the right hand side we see the kind of gain that we need

to choose in order for our loop shape to be located as indicated by the dotted lines here.

So, suppose we choose to go with this particular gain and hit apply.
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Then we have chosen a simple proportional controller with a gain of about 318 units and

we note that with this proportional controller the red circle is above the red bound. So,



we are able to satisfy the performance specification at 0.2 radians per second, the green

circle is above the green bound. So, at 1 radian per second also we are able to satisfy the

performance  specification.  The blue  circle  is  actually  below the  blue  bound and the

overall loop is encircling the critical point namely 0 dB comma minus 180 degree in such

a way that our closed loop system will be unstable.

So, what we would like to do therefore, is to drag this entire loop back towards the right

in order to prevent this loop from encircling the critical point, namely the point 0 dB

comma minus 180 degrees in  the way that  it  has done now. Because,  at  the present

moment if you compute the phase margin you will discover that the phase margin is

negative or in other words the close loop system is going to be unstable. So, in order to

drag the entire loop towards the right we can choose to add a 0 because, we know that

and 0 adds a phase lead.
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So, we can choose to pick a real 0 and suppose we choose to add this real 0 at some

particular frequency 4 radians per second. So, if I were to enter 4 in the box that has been

provided to me on the right top corner and hit add using input fields then the dotted curve

here will show how the loop shape will change upon adding this 0. So, if I am with this

change I can hit apply and when I hit apply the controller structure changes to 1 which

has a gain element cascaded with a real 0 of course, we know that a controller with a

single 0 is a non causal controller.



So, we have to also pick another pole. So, I shall now go and pick a real pole as an extra

element in my controller and I shall choose to locate this pole fairly far away, I shall

choose to locate it around 100 radians per second. So, I shall hit add using input fields to

see how the loop shape changes, when I include a term s by 100 plus 1 as part of my

controller structure and that is indicated by the dotted line dotted curve that you see here.

So, the solid blue curve here shows the loop shape with a single 0 and a gain term

cascaded with the plant. The dotted curve here shows the loop shape with a 0 and a pole

along with the gain cascaded with the loop shape. So, if I hit apply then the controller

structure will now include both a real pole as well as a real 0.
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Now, we  see  that  with  this  combination  we  are  still  not  able  to  meet  the  stability

specifications or the performance specifications at several of the frequencies. So, we are

able to meet it only at one end point to radian per second. So, we have to add many more

poles and 0’s for us to be able to meet them. So, I have undertaken this iterative design in

order to pick the poles and 0’s of our controller. And, what is attractive about this tool is

that it will allow us to interactively study how the loop shape changes when we change

the structure of the controller or the parameters of the controller.

So, before we freeze the structure of the controller or its particular parameters we can see

by means of the dotted curve, how the loop shape will change upon making the changes

that we desire to make. And by iteratively making the changes in order to ensure that



each  of  the  performance  and  stability  specifications  are  met,  we  can  finalize  the

controller  structure. I have already undertaken this design and the controller structure

that meets all the different controller specifications has been shown here. So, it is given

by C is equal to 1700 times s by 2 plus 1 divided by s by 38 plus 1 times s by 12 plus 1

divided by s by 400 plus 1 times s by 50 plus 1 divided by s by 500 plus 1.
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For this particular case the loop shape is shown here, you see that the red circle is well

above the red bound. So, actually at 0.2 radian per second here ended up designing a

control system significantly more conservative than what we would like it to be. But, it

meets the performance specifications better  than what we had intended it  to do. And

likewise, the green circle represents a loop gain at 1 radian per second and that is well

above the green bound here.

The blue circle is above the blue bound the cyan circle is just on the cyan bound. So, at 5

radians per second the performance specifications are just exactly met. Likewise, you

can also notice that the loop gain at other frequencies are well above the bounds at those

specific frequencies. And, the loop shape just touches this closed curve which represents

a  stability  bounds  at  25  and  50  radians  per  second  which  implies  that  the  stability

specifications are just met as a consequence of this particular controller structure.

So, having performed loop shaping to determine the structure of the feedback controller,

the next step is to perform shaping of the prefilter, in order to determine the nominal



dominant  dynamics  of  the  overall  closed  loop system and that  is  performed using a

function pfshape. So, the input argument to pfshape are indicated here. The first input

argument is the index of the problem that we want to solve and since we are interested in

restricting  the variation  of the transmission  function between the specified  limits  the

problem type is 7.

And, the second input is a frequency range over which you want to restrict the variation

and we have specified in the line above, that the frequency range has to be less than or

equal to 15 radians per second. W 1 is a specified weight for robust tracking and that is

basically the combination of t upper and t lower and so on and so forth. P here represents

the uncertain plant, C here represents the feedback control that we have already design

and F is a prefilter. So, at the moment we have not yet designed a prefilter so, F is equal

to 1. So, on another words F is tf of 1 comma 1.
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We can now run this part of the code and we will be led to a window, where we can

perform prefilter shaping in a manner similar to the way we performed loop shaping and

determine the structure of the feedback controller.
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So, once again this here shows the overall transmission function and the prefilter is right

now chosen to be just f is equal to 1 or its gain k is equal to 1. And, we can once again

play around with the pole and 0 locations of the prefilter and the red dotted lines here

indicate the transfer functions t upper and t lower. So, we want the maximum variation of

the transmission function to be between these two dotted lines. It so happens that for the

controller that we have design the performance specification as far as robust tracking has

been met much better than what was expected.

The blue curve here shows the upper limit of the transmission function, while the green

curve here shows the lower limit of the transmission function. And, we see that at each of

the frequencies the difference between the upper limit and the lower limit is much less

than what we desire it to be. And, that was because we choose a feedback controller

whose gain had to be so high in order to meet the other performance specifications such

as disturbance, rejection of output disturbance and input disturbance; that as far as robust

tracking was concerned the high gain resulted in very small variation in the transmission

function of the overall system.

However, while  the restriction  of the variation in the transmission function has been

successfully achieved by the feedback controller. The nominal transmission function has

to be designed and this is done by using the prefilter. So, we can choose the prefilter to

have a real pole for instance and we can choose to place the pole, let us say at 3 radians



per second. And, if we do that if we apply it we see that there is an improvement in the

extent to which the transmission functions t upper and t lower which are indicated by the

blue curve and the green curve here fall between the specified limits indicated by the red

dotted lines.
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So, we want the dominant poles to be at minus 1.5 plus minus 2 j. So, what we need to

do therefore, is to select a complex pole here whose zeta and omega n are chosen in such

a manner that the real part of this complex pole is minus 1.5 and the imaginary part of

this complex pole is 2 units. I have chosen that to be the structure of our prefilter and

with  that  choice  we  note  that  the  maximum  and  the  minimum  variation  in  the

transmission function of our overall system fall well within the bounds t upper and t

lower, that we had specified for ourselves.

With this we have completed the design of the prefilter and the feedback controller. The

next step is to check for performance. The first check that we need to do is to ensure that

our stability specification has been met.
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And the function that allows us to check for stability is the function chksiso. The input

argument, the first input argument to this function is a problem type and for stability

considerations the problem type has to be equal to 1. And, w 1 is the frequency range

over which we have to check for the stability specification. W 4 is the specific weight for

stability, we wanted t 1 max to be less than or equal to 3.5 dB for essentially in the linear

scale above 1.41 units.

And, that essentially becomes W 4, P is of course, the set of uncertain plants and C is the

controller. So, if we run this execute this particular line of the code we will be able to

check whether at all the frequencies the maximum value of the transmission function is

within the specified upper limit of 3 dB or not.
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And that has been done here in this slide. So, this slide here shows the transmission

function of the feedback part alone. And, the blue dotted curve on the top, which I am

now indicating by means of this arrow here indicates the line 3 dB. And, the black curve

here shows the maximum value the transmission function at different frequencies. And,

we see that at no frequency is a transmission function exceeding 3 dB in magnitude and

this in turn implies that the stability specification of our closed loop system has been

met. It so happens that the specification that the magnitude of t 1 should be less than or

equal to 3 dB, ensures that the phase margin of our closed loop system is at least 40

degrees.

So, the design that we have executed now ensures that our closed loop system has a

phase margin of at least 40 degrees, regardless of the uncertainty that we have in the

plants  parameters.  So,  having  therefore,  completed  the  different  steps  in  the  design

performed essentially loop shaping to determine the structure of the feedback controller

and then design the prefilter. And, also verified the closed loop transmission function t 1

satisfies  the  specified  stability  limit.  The  last  step  is  to  verify  that  the  disturbance

rejection and robust tracking specifications have been met in the time domain.
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So, what I have done therefore, in the next slide is plotted the step response of the closed

loop system for the different parameters of the plant. And, what we see here is that the

closed loop system step response for different parameters, almost all sit one on top of

another. And, the dominant dynamics of this is decided by the desired closed loop pole

locations; namely minus 1.5 plus minus 2 j.

Now, the spread in the response is much lesser than what we were with simply because,

the other performance specifications in terms of output disturbance rejection and input

disturbance rejection demanded such a high loop gain at the frequencies; where robust

tracking had to be performed. But, the variation of the overall transmission function at

these  frequencies  was  much  smaller  than  what  we  were  willing  to  tolerate.  As  a

consequence therefore, the step response of the overall closed loop system for all the

different possible transfer functions of the plant can have all sit nearly one on top of

another.
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Likewise,  we  have  also  plotted  the  output  disturbance  rejection  performance.  We

expected  the  output  disturbance  should  be  rejected  by  90  percent  or  the  output

disturbance should leak by an extent of at most 10 percent to the output of the overall

feedback system. And, what we see here is that the amplitude of the disturbance in this

case  we have  chosen the  frequency  of  the  disturbance  to  be 1  radian  per  second is

suppressed to just 1 percent of its initial magnitude.

So, although we desired 10 percent leakage or better we have managed to do much better

than what was expected of us and the amount of leakage that we have of the output

disturbance to the output is merely 1 percent at 1 radian per second. We can also perform

this  test  of  the  output  disturbance  rejection  at  other  frequencies  up  to  5 radians  per

second and what we will see is that even at other frequencies the output disturbance has

been suppressed by the desired extent.
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Likewise, when we look at the input disturbance rejection, we note that the amplitude of

the response or the output due to input disturbance is nearly 6 into 10 to power minus 4

units, which indicates that we have managed to suppress the input disturbance by an

amount it is much larger than what was expected of us. We wanted 1 percent of the input

disturbance to appear at the output of our system and what we have succeeded in doing is

to suppress it not to just 0.01 units, but actually to 6 into 10 power minus 4 units.

Once again this  much larger suppression of input  disturbance compared to what was

desired was a consequence of coming up with a controller which resulted in a nominal

loop gain that was so high, that for such high values of the nominal loop gain the input

disturbance got suppress to a very small value. So, with this we come to the end of this

section  on  quantitative  feedback  theory. And,  the  goal  of  this  particular  clip  was  to

introduce to you the different functions in the QFT toolbox that you can use to firstly,

draw the plant templates.  Subsequently compute the bounds on different performance

and stability specifications plot those bounds, obtain the intersection of these bounds.

And finally, perform loop shaping and prefilter shaping and complete the design. The

toolbox also allows us to check for performance,  both in the time and the frequency

domains and even that has been discussed in this clip. With this we come to the end of

our discussion on quantitative feedback theory

Thank you.


