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So what you see here is the code that you would be using for performing control design

using the QFT toolbox. The first step as we discussed just a few minutes back is to

identify the frequencies of interest to us from the points of view of performance and

stability. And that set of frequencies has been indicated by this frequency vector w which

I am highlighting right now. 

Now, there is a basis for choosing the entries of this frequency vector w. For one thing

we are interested  in  output  disturbance  rejection  up to  a  frequency of  5  radians  per

second, we are interested in input disturbance rejection up to a frequency of 10 radians

per second So, if you notice here therefore, we have the numbers 5 and the number 10

both being entries  in the frequency vector  w for which we will  be plotting the plan

templates. 

But since, we have disturbance up to 5 or 10 radians per second, we also have to pick

frequencies  that  are  less  than this  these two numbers  So,  I  have  picked some small



frequencies 0.2 radian per second, 1 radian per second, 2.5 radian per second as some of

the  other  entries  at  which  we  would  be  concerned  about  both  input  and  output

disturbances. 

Now, you might ask why did we just pick 3 entries in the frequency range between 0 and

5 radians per second, we could have picked more, we could have picked less, it is just

that we picked enough number of them for us to be able to have enough bounds for us to

execute the design properly. The more we pick the better it would be but then we have to

keep track of many more bounds at many more frequencies and that would make the

control design procedure a little bit more confusing.

Hence, I have taken the middle path and chosen just enough frequencies for us to have

enough number of bounds for to execute design, but yet not get confused with having too

many bounds or too many frequencies. So, that justifies why we have frequencies up to

10 radian per second. The other performance requirement that we have for the control

system is on robust tracking. 

Now, if  you go back to the previous clip,  we noted that  we are interested in  robust

tracking up to that frequency at which the upper limit of the transmission function or t

upper, which was what we used in the previous clip fell to minus 20 db and it turned out

in the previous clip  that  the magnitude of t  upper came down to minus 20 db at  15

radians per second. 

Hence,  we  are  interested  in  robust  tracking  or  in  other  words  we  are  interested  in

restricting  the  variation  of  the  transmission  function  due  to  uncertainty  in  the  plant

parameters up to 15 radian per second and that is why the number 15 is also one of the

members of this frequency vector w. 

Now, while all these frequencies up to 15 radian per second are there in order for us to

drop bounds in the interest of achieving specified performance specifications made with

disturbance rejection or robust tracking, we cannot stop worrying about stability at 15

radian per second because, a loop gain might cross over at frequencies that are greater

than 15 radian per second. 

In order to make sure that, we have the stability bounds being satisfied at frequencies

beyond 15 radian per second also, I have picked two more frequencies namely 25 radian



per second and 50 radian per second where, we would draw only the bounds on based on

the stability specification and not on performance specification. It is worth noting, but

the two frequencies namely 25 radian per second and 50 radian per second are both

significantly greater than the corner frequencies of the plant, which are at 0, 1 and 2

radian per second nominally and hence the plant template are these two frequencies will

resemble nearly a straight line. 

Therefore,  it  does  not  matter  whether  we  pick  two  frequencies  or  many  more

frequencies,  the  shape  of  the  plant  template  will  be  independent  of  the  number  of

frequencies or the specific frequency we pick, because all of these frequencies are much

greater than the corner frequency of the plant. In principle we could have picked only 1

frequency but for the sake of being conservative in design I have picked two entries

namely 25 and 50 radians per second. 

So, to justify why these entries are there in the frequency vector, we have entries from 0

to  5  radians  per  second  because,  it  is  in  this  frequency  range  that  we  have  output

disturbance  affecting  our  system.  And the  number  10  exists  here  because,  the  input

disturbance exists up to 10 radians per second and in the frequency range 0 to 15 radian

per second we are interested in robust tracking and hence the number 15 also exists as

part of the frequency vector or the set of frequencies is very interested in performance.

And the last 2 entries namely 25 and 50 radians per second or frequencies at which, we

are not  any longer  interested  in  performance because we do not have disturbance  is

affecting our system at these frequencies or nor are we interested in robust tracking at

these frequencies but stability is still a concern.

Hence, we have these 2 entries at which, we would draw the stability bounds and make

sure that our loop gain is within the acceptable region of the Nichols plot, that is outside

these stability bounds. So, this is the first step of the control design using QFT toolbox

namely,  to  determine  the  frequencies  of  interest  to  us  from  the  points  of  view  of

performance and stability. 

The next step is to plot the plan templates at the frequencies that have been identified in

the first step; namely to plot the plant templates at each of the frequencies that we have

in the frequency vector w. So, let us recall what we mean by a plant template, a plant



template is a set of complex gains that a plant can assume at any particular frequency

omega. 

If the plant has no uncertainty associated with its parameters, then the plant will have

only 1 complex gain at a given frequency; however, if the gain of the plant or its pole

location is uncertain then depending on the specific gain and a specific pole location the

magnitude of p of j omega will be different at the same frequency omega and set of

different values at p of j omega can assume or a set of different magnitudes and phases

that p of j omega can have for the different possible combinations of the plants gain k

and its pole location p defines the plant template at that particular frequency. 

Now, how do we draw the plant template? 
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.

In order to draw the plant template code I want to first highlight the first part of the

where  we have  defined,  12 different  plants.  Now, all  of  these  plants  have  the  same

structure as the plant that, we have we are concerned about. Namely the uncertain plant p

of s is equal to k by s times s plus p times s plus 2. Now, so happens that each of these

plants  have  different  gains  and  different  pole  positions  and  therefore,  represent  the

possible transfer functions that our uncertain plant can assume, when its plant parameters

vary. 



So, for example, if you focus on the first line of the code, in this line we have varied the

gain of the plant from 0.3 to 3.00 and that is what I am highlighting now and the pole

location p in this line of code has been assumed to be equal to 1. So, that is from the first

line which i have highlighted here. 

So, this represents 3 plants, all of whom have the same pole location namely at s is equal

to minus 1 but each of them have different gains; one has a gain of 0.3, the other has a

gain of 1, the third one has a gain of 3.. Likewise in the next quote, we have assumed that

the pole location is close to 0 because, we know that our value of p in our plant transfer

function can vary between 0 and 2. 

In this case we have chosen the value p to be close 0, so, here are a set it to be equal to

0.1. And in this line of code we have defined 3 plant transfer functions and in this 3 plant

transfer functions once again the value of p is the same, namely 0.01 or close to 0 and the

value of gain is allowed to change, it can assume values between 0.3 and 3.

 So, the gain k here can take values between 0.3 and 3. It can take 3 values 0.3, 1 and 3.

Likewise, we have in the next line we have defined three more transfer functions. In this

case the pole location is assumed to be at x is equal to minus 2 and therefore, we have set

p is equal to 2 here and we have defined three plant transfer functions, where the pole

location is at x is equal to minus 2 and the gain is allowed to assume 3 different values. It

is nominal value of 1 and the minimum value of 0.3 and the maximum value of 3 and we

have repeated the same exercise at a different value of pole location p is equal to 0.2 and

obtain another three set off transfer functions. 

So, this entire set of transfer functions, represent the permissible set of transfer functions

that the plant can have when its gain and pole locations change. Of course, the gain need

not be only 0.3, 1 and 3 and the pole locations need not be just at 0.01, 2, 1 and. so on,

but in this particular case we have considered only 12 different combinations of the pole

locations and the plant gain. We can consider many more locations and get a better plant

template if we define more possible transfer functions, but the plant can assume when its

gain and its pole locations vary. 

So,  here  therefore,  we have 12 transfer  functions  all  of  which represent  the  transfer

functions that, our plant can assume for some combination of its open loop pole position

and gain. Now in order to plan plot the plan template at any particular frequency, we



have to substitute the value of that frequency for in each of these transfer functions and

compute their magnitude and phase and locate them on the Nichols plot. 

Now, in order to do that I shall first do it at one single frequency. So, I shall do it at

omega equal to 1, so this is the frequency at which I shall do it. I shall not do it at all the

other frequencies namely from 0.2 to 50, just for the sake of clarity. So, I shall comment

out the line of the code where you are computing it at all the other frequencies, we shall

compute the plant template at only one frequency, namely at omega equal to 1. 

Now, the  plant  template  also  has  to  represent  the  nominal  gain  of  the  plant  at  this

particular frequency, namely 1 radian per second and nominal gain of the plant is the

gain of the plant, when its parameters assume the nominal values namely, when p small p

is equal to 1 and the gain small k is equal to 1. So, the index of the transfer function at

which the plant pole location is p equal to 1 and the gain k is equal to 1 is essentially 2. 

So, among the set of different transfer functions that we have defined here which could

be the possible  transfer  functions that  our plant  can have when its  gain and its  pole

locations change. It is a second transfer function in this set which represents the nominal

transfer function of the plant. Therefore, the index of the nominal plant which has been

referred to as nompt in this code is equal to 2 because among these transfer functions, it

is a second transfer function that represents a nominal transfer function of the plant. So,

when we plot the plant template, the plant template will also indicate the location of the

nominal plant. 

So, with this extra information let us proceed to draw the plant template of this particular

uncertain plant at omega equal to 1 radian per second. And that brings us to the first

function of the q of tt will box and that function is what is known as pl ot tm pl, which is

a short form for plot template and it is intended to plot the plant templates, if you are

given an uncertain plant. The input arguments to this function are the frequency vector or

the set of frequencies at which, we want to plot the plant templates. Then the second

input argument is the set of uncertain plants which is denoted by capital P here and a

third input argument is the index of the nominal plant. So, we know that the nominal

plants index is 2. So, that is the a second third input argument to this function. 



So, if we were to run this specific line of code, we will be able to plot the plant template

at just 1 radian per second. So, I am executing just that line of code now and in a few

seconds time we get to see the plant template, but 1 radian per second.
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So, this is how the plant template appears, what you see therefore, is that the software

has computed the gain and phase values of p of j omega for the different combinations of

the  plants  gain  k  and  its  pole  location  small  p  and  at  the  center  here  which  I  am

indicating by this arrow is a location of the nominal plant.

So, at 1 radian per second the open loop gain of the nominal plant is around minus 10 db

and  the  open  loop  phase  is  somewhere  between  minus  180  degrees  and  minus  135

degrees what is the location of the nominal plant.
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Now, we can repeat this exercise of other frequencies also, in the frequency vector that

we have just defined. And the plant templates at the different frequencies are all plotted

together in this graph here. So, they have all been color coded for instance, the red circles

at the top represent the plant template at 0.2 radians per second. 

Now, this plant template would have many more points within it, if we had chosen many

more values of the plant gain k and its pole location p. In order to define many more set

of possible transfer functions that our plant can assume and computed the gains and the

phase values of these transfer functions, but each of these frequencies. Here we have

chosen 12 transfer functions, so, we have only therefore, represented 12 values of the

gain and phase for the uncertain plant. 

So, at 0.2 radian per second, this area which I am showing here by means of the arrow

represents  the  plant  template  at  1  radian  per  second the  green  area  the  area  that  is,

covered by the green circles here green open circles represents the plant template 2.5

radiant  per second. The blue area here represents the plant  template  at  5 radians per

second the cyan color area here represents the plant template and so on and so forth. And

as you see here, as a frequencies increasing, the width of the plant template is reducing,

which  effectively  means  that,  the  uncertainty  associated  with  the  phase  of  the  plant

reduces as the frequency increases and what frequencies that are much greater than the



corner frequency of the plant, namely at close to 25 and 50 radians per second. What you

see is that the plant template looks almost like a straight line.

The height of each of these plant templates is determined by the uncertainty in the gain

that we have. And in all cases, the uncertainty is a factor of 10 and therefore, the height

of each of these plant templates is equal to 20 db, which is basically equal to 20 log to

the base 10 of 10 units. So, the height of each of the plant templates here at each of the

frequencies is the same namely 20 db but the width is dependent on the kind of phase

uncertainty that we would have due to the uncertainty in the location of the pole of the

plant. And this phase uncertainty reduces with increasing frequency and that frequency is

much greater than the corner frequency of the plant. The phase uncertainty is so small at

the plant template practically looks like a straight line. 
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The next step in our design procedure is to compute the bounds on performance and

stability, in each of the frequencies where these bounds have to be computed. So, let us

first start with robust tracking bounds. We know that we are interested in restricting the

variation of the transmission function due to variation in the plant parameters up to 15

radians per second. So, in order to therefore, compute the bounds on the loop gain we

choose frequencies up to 15 radian per second. So, we define a new frequency vector w

vd 1 which has been highlighted in blue color as you see on the screen now. And this

frequency vector comprises the first six entries of the original frequency vector w. 



So, original frequency vector w had frequencies going from 0.2 to 50 radians per second

and the  6th  element  here  is  the  is  15  radians  per  second and they  are  interested  in

computing  the  robust  tracking  bounds  up  to  15  radians  per  second because,  we are

interested in restricting the variation in the transmission function due to uncertainty in

the plant only up to 15 radiant per second. 

So, this is the frequency vector up to which we are interested in computing the bounds

for robust tracking. Next we have also defined here, the transfer functions for the upper

and lower limit of the spread in the transmission functions in of the overall system and

we called them t upper and t lower when we discussed it in the previous clip. And very

similar  symbols  have  been  used  here,  tu  here  represents  the  upper  bound  for  the

permissible  variation  in  the  transmission  functions  and  t  lower  represents  the  lower

bound for the permissible variation in the transmission functions. 

When we allow the dominant  closed loop pole to be located  anywhere within the 2

rectangles defined by the complex number p is equal to a plus or minus jb where, a can

assume values between minus 1 and minus 3 and b can assume values between 1 and 3

And in order to draw the robust tracking bound we need to have an input to the function

that  draws  these  bounds  and  that  input  is  this  so  called  tracking  wake,  which  is

essentially a vector comprised of the upper bound t upper and the lower bound t lower

and that is what is has been labeled as w 1 here. 

So, w 1 is a tracking weight and this information will be used by a function that we will

be talking about in a few minutes time. In order to compute the robust tracking bound for

all the frequencies that are part of a frequency vector w bd 1, it is a first entry in this part

of the code and i am highlighting that again at this time. 

So, the second function in the queue of tt will box that I want to introduce to you is this

function called SISO Bounds siso bnds is a function that is used to compute the bounds

on the loop gain for a variety of different constraints that you might have siso bnds is a

short form for single input single output bounds. So, it is in10ded to compute the bounds

on the performance and stability of a control system that is in10ded to control a single

input single output plant. 



Now, if you go to the MATLAB command window and type help siso bnds then you will

get information about what the input arguments to this function are and what exactly to

the different input arguments represent.
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 So, in this power point slide I have pasted the result of piping help siso bnds in the

MATLAB command window and this  is  the  information  that  you get  regarding this

particular  function.  So, it  has  several  input  arguments,  it  is  intended to compute the

bounds for problems of different types. So, the first input argument to this function is the

problem type or p type. 

So, the same function is  used to compute the bounds for input  disturbance rejection

output disturbance rejection as well as robust tracking. So, the problem type represents

the specific problem for which we are going to be computing the bounds. Now if you

come to the bottom, m the indices have all been indicated and the problem types have

been listed out. Problem type 1 represents a constraint of the kind that is shown on the

right namely, F times PGH divided by 1 plus PGF is less than some weighing function or

performance specification. Here I want to indicate that f stands for the transfer function

of  the pre filter  p  is  a  transfer  function  of  the  plant,  g  is  a  transfer  function  of  the

feedback controller  that is cascaded with the plant and h is a transfer function of an

element that we might have as part of the feedback loop. 



In our case we have used unity gain feedback and therefore, in our particular control

problems h is going to be equal to 1.  So, problem type 1 is in10ded to draw the bounds

when  f  times  PGF divided  by  1  plus  PGF magnitude  has  to  be  less  than  a  certain

specified value Ws. Problem type 2 likewise is for the problem where F by 1 plus PGH is

less than Ws and if you notice this is the kind of specification that we would have when

we want to  suppress output  disturbance because the transfer  function that  relates  the

output to the output disturbance is essentially F by 1 plus PGH problem type 3 is F times

P by 1 plus PGH in magnitude being less than some particular performance specification

ws. 

And if you notice this is the problem type that will allow us to plot the bounds on the

loop gain when we want to suppress input disturbance because a transfer function for

input disturbance is going to be equal to P by 1 plus PGH. Likewise, your a bunch of

other different problem types, if you come to problem type 7 you note that the transfer

function is f times pg by 1 plus PGH and that represents the overall transmission function

in the event that is H is set equal to 1 between the output and the reference of a 2 degree

of freedom control system. And we want to restrict this variation the magnitude of the

variation of this transmission function between 2 way in functions Ws 1 and Ws 2.

So, this is the problem type 7. And if you go back to the specific problem for which we

are trying to plot the bounds you will recognize that this is the problem type that we need

to use in order to achieve robust tracking because, we want to restrict a transmission

function which is essentially given by f times PG by 1 plus PG to be within 2 limits

namely t upper and t lower. So, our Ws 1 here will be t lower and Ws 2 there will be p

upper. 

So, the first input to the function siso bnds is the problem type and if you are trying to

perform robust tracking or in other words restricting the transmission function to within

certain limits, owing to variation in the plant parameters our problem type input has to be

7. The second input to this function is the set of frequencies w at which we are expecting

to draw the bounds. So, this function will compute a bounds at each of the frequencies

that are elements of this frequency vector W. 

The third input is Ws which is the performance specification So, when we are trying to

achieve robust tracking, Ws as we discussed a few minutes back is comprised of the



transfer functions t upper and t lower. The next input is P, which represents the set of

uncertain plants. The input after that is capital R and as you see here when you type help

siso bounds what is RRS here stands for the disk radius of nonparametric uncertainty So,

in the problem that we have consider, we have we assume that we know the structure of

the plant namely it is a third order plant, it is just that the parameters of this plant are not

known but it is also possible that we may not even know the order of the plant. 

So, this next input here R captures the uncertainty associated with the structure of the

plant itself. In our particular problem in the problem that we are trying to solve now m,

we have no uncertainty associated with the structure of the plant, we are quite show that

it is a third order system it just at the parameters of the system or uncertain So, in our

specific  case  this  particular  input  r  which  is  the  rate  disk  radius  of  nonparametric

consultant t will be set to 0. 

The  next  input  is  NOM  which  designates  the  index  of  the  nominal  plant  and  it  is

therefore, synonymous with the symbol nom pt which we used a few minutes back when

you were trying to plot the plant template at different frequencies. The last 2 inputs have

to do with specific  location of the unknown controller  and the phase grid for bound

computation and these are not very relevant to us and therefore, we shall skip describing

them in  great  detail  and  now we  shall  return  to  the  code  that  computes  the  robust

tracking bounds. 

So, if we return to the code that computes the robust tracking bounds we see that the

bounds have been labeled as bd 1 and that is equal to siso bounds of these particular

inputs. I have highlighted that particular line of the code here, as we said the first input

argument is the problem type, to draw bounds for robust tracking the problem type is 7.

The second input argument is a frequency range over which you want to plot the robust

tracking bounds and that is up to 15 radiant per second. So, up to the sixth element in the

frequency vector and that is been defined as wvd 1 some a few lines earlier. 

And the third input argument is the tracking weight or the performance specification

which is essentially, comprised of the upper limit of the permissible variation t upper and

the lower limit of the permissible variation t lower. The fourth input argument is the plant

transfer function or a set of uncertain plant which is represented by capital T. The fifth is

the nonparametric uncertainty which in our specific case is 0 and therefore,  we have



entered it to be 0 and the last input argument is the index of the nominal plant which is

which happens to be 2, So, nompt is a last entry input argument to this function siso

bnds. 

So, once this from this line is executed,  the bounds at all  the different entries of the

frequency vector wbd 1 are computed. And then after computing this bound we would of

course, like to be able to view these bounds in the Nichols plot. So, the third function in

relation to the QFT toolbox, which will allow us to plot the bounds after computing them

at  different  frequencies,  is  the function  plot  bnds.  So,  this  is  the  function  that  I  am

highlighting now. This function allows us to plot the bounds that have been computed by

the function siso bnds. 

So, let us now run just this part of the code to see how the bounds appear at the different

frequencies from between 0.2 and 15 gradient per second. So, I am executing just this

part of the code and in a few seconds time you will be able to give the bounds cut the

different frequencies. 
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So,  what  you  will  see  therefore,  here  are  the  bounds  on  the  loop  gain  at  different

frequencies  in order for us to achieve robust tracking,  these bounds have been color

coded. So, the red bound at the top which I am showing by means of the arrow here

corresponds  to  the  bound  on  the  loop  gain  at  0.2  radians  per  second  and  what  it

essentially implies is that in this Nichols plot the loop gain, the nominal loop gain has to



be located above this  red colored curve in  order for it  to satisfy the robust  tracking

requirement at this particular frequency or in other words in order for the variation in the

transmission function to  be within  the specified  limits  of  t  upper  and t  lower at  0.2

radians per second due to variation in the plants parameters. 

So, it has to be located in the region above this red curve likewise at 1 radian per second

the bound on the loop gain is in depicted by this green curve here which, essentially

again implies that the loop gain has to lie above the green curve in order for the variation

in the transmission function at 1 radian per second. To be within t upper and t lower due

to variation in the plant parameters and similarly also at other frequencies 2.5,5, 10 and

15. So, we notice that they are not plotted the bounds at all frequencies, we have plotted

them only up to 15 radian per second because, we are not interested in restricting the

variation in the transmission function beyond 15 radian per second.

Since this  frequency is  much greater  than the location  of  the dominant  poles  of  our

closed loop system.
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Having seen  how we can block the  bounds on robust  tracking at  the  frequencies  of

interest  to  us,  you  can  repeat  the  same  exercise  for  plotting  the  bounds  on  output

disturbance  rejection  and  input  disturbance  rejection.  As  far  as  output  disturbance

rejection we note that we are interested in rejecting disturbance only up to 5 radii output

disturbance  only  up  to  5  radians  per  second  and  the  number  5  radians  per  second



represents the 4th element in the frequency vector which I am highlighting now. And

therefore, we define a new frequency vector which comprises only the first four entries

of the original frequency vector and be label this new frequency vector as wbd 2. 

So, it is for the entries of this particular frequency vector wbd 2 that we have to compute

the performance bounds or disturbance rejection bounds. as far as disturbance rejection

performance is concerned as we stated in the beginning, we wanted 90 percent rejection

of  output  disturbance  up  to  5  radians  per  second  therefore,  we  have  specified  the

performance or the weight as far as output disturbance rejection is concerned to be 0.1 or

other words we want the output disturbance to be rejected to 0.1h or 10 percent of its

original magnitude up to 5 radians per second.

So, it is a constant equal to 0.1. In principle w do can also be a function of frequency, if

you want different ex10se of suppression of disturbance at different frequencies it. So,

happens that in the problem statement that we have taken, We want constant separation

of disturbance at all frequencies namely, we wanted to be suppressed to 10 percent of its

original value all the way up to phi radians per second. So, w 2 is a constant equal to 0.1.

Now in order to plug the bounds,  we once again use the function siso bnds but the

difference  here  is  in  the  first  input  argument.  When  we  had  to  compute  the  robust

tracking bounds,  the problem type was 7.  However, if  we go back to indices  of the

different problem types we note that it is the problem type 2 that corresponds to rejection

of output disturbance. It is in problem type 2 that we want to ensure that the transfer

function relating the output disturbance to the output be the magnitude of this transfer

function be less than a certain particular value. 

Hence, the first input argument to the function siso bnds in this case when we are trying

to compute the output disturbance rejection bound is 2. The second input argument of

course, is a set of frequencies where we want to compute the bounds on disturbance

output disturbance rejection and that is wbd 2, which comprises the first 4 in piece of the

frequency vector w namely, up to phi radians per second. W 2 specifies the weight or the

performance specification or the extent  to which we expect  output  disturbance to  be

rejected  and  capital  P  again  represents  uncertain  plant  models  and  0  represents  the

magnitude of unstructured parametric consultanty, which in our case is actually equal to

0 and nom pt again represents the index of the nominal plant. 



So, once again if we run this code and use the same function plot bnds that we will be

able to plot the bounds on output disturbance rejection.
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That has been done here and in this slide we show the bounds on output disturbance

rejection in the frequency range where the output disturbance will affect our system So,

we have plotted output disturbance at 0.2 radians per second and that has been color

coded So, the red curve here represents the bound on the loop gain at 0.2 radian per

second in order for it to reject output disturbance. What this essentially means is that

once again the nominal loop gain has to light in the region above the red curve or on the

red curve in order for it to satisfy the output disturbance rejection at  0.2 radians per

second. 

Likewise the green curve here represents the bound on output disturbance rejection at 1

radians per second or in other words at 1 radians per second the nominal loop gain has to

lie  above  the  green  curve  in  order  for  it  to  satisfy  the  output  disturbance  rejection

specification and likewise also for the other 2 frequencies 2.5 radians per second and 5

radians per second. The same exercise has been repeated for input disturbance or the

same exercise has been repeated to compute the bounds for input disturbance rejection,

the only difference there once again is the problem type. 

So,  while  the  problem  type  had  to  be  2  in  order  to  draw  the  bounds  for  output

disturbance rejection, the problem type has to be 3 in order for us to draw the bounds for



input disturbance rejection. And by changing the first input argument to the function siso

bnds to 3 and redefining the frequency vector over which we would be interested to plot

the  bounds  in  the  case  of  input  disturbance  we  are  interested  in  rejecting  input

disturbance up to 10 radians per second. So, we make sure that the frequency vector also

has the number 10 as 1 of its entries. We are able to then again run the function siso bnds

and use the function plot bnds in order to plot the bounds for input disturbance rejection

and that has been shown in this slide here.
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So, after drawing the input disturbance rejection bounds, the output disturbance rejection

bounds and the bounds robust tracking what we are left with is to draw the bounds for

stability. Now as far as stability is concerned we should compute the stability bounds at

all the frequencies that are entries of the original frequency vector w because, we cannot

stop worrying about  stability  only at  15 gradient  per second at  which point we stop

worrying  about  performance.  Our  loop  gain  may  cross  over  higher  frequencies  and

therefore, we need to draw the bounds even at frequencies beyond 15 radian per second,

we picked 2 additional frequencies namely 25 and 50 radians per second and we have

computed the stability bounds at all frequencies that are entries of the original frequency

vector w. 
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And that set of stability bounds is shown here. So, if you notice on the right top we have

computed the bounds at 0.2 radian per second, 1 radian per second, 2.5 and so on and so

forth all the way up to 50 radians per second. So, what this essentially implies is that our

nominal loop gain has to lie outside the red curve here at 0.2 radian per second in order

for the stability specification to be met at 0.2 radian per second and. so, on and. so forth. 

So, at each of the frequencies if there is certain stability bound our loop gain has to lie

outside that bounder at best on that bound in order for the stability specification namely

that the maximum value of the transmission function at that frequency or being less than

3 db to be met. I just wanted to point to 1 important fact, when we were defining stability

bound we defined it in terms of db and said that the maximum value of the feedback part

of the transmission function namely, cp by 1 plus cp should be less than or equal to 3 db. 
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Now, in  this  particular  quote  we  have  to  convert  db  to  the  linear  scale.  So,  3  db

essentially come gets converted to 1.41 units in the linear scale. So, the performance

specification for stability is w 4 and is equal to 1.41 units, which essentially signifies that

the maximum value of our feedback part of the transmission function t 1 should be less

than or equal to 3 db. So, subsequent to drawing all the bounds we would wish to view

all the different bounds that exist for our loop gain.


