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So, we have the plant template at 1 radian per second to have this particular shape. And

in the first cut of design we note that our controller at the start we assume is C is equal to

1, because you have not yet designed the full controller, so in which case we would have

the loop gain L to be equal to C times P or simply equal to P itself. Therefore, at the very

start of our design, we note that the loop gain also occupies the same area in the Nichols

plot as the plant does.

Now, the  question  is,  is  this  an  acceptable  area  for  the  loop gain  to  occupy  in  the

complex  plane?  To answer  this  question  what  we  need  to  note  is  that  the  desired

difference between T upper at 1 radian per second and T lower at 1 radian per second in

the logarithmic scale, we find from the Bode plots that we had drawn a couple of slides

back. We note that the desired difference delta, which is the spread permissible spread in

the transmission function at 1 radian per second, if we find it numerically, to be equal to

2.3 dB.



So, to answer the question about whether this is an acceptable location for the loop gain

at  1  radian  per  second  what  we  need  to  check  for  is  whether  the  difference  in  the

logarithmic scale between the maximum magnitude of the transmission function and the

minimum magnitude of the transmission function namely T upper and T lower is equal to

2.3 dB or less than 2.3 dB. If it  is  not,  then we know that this  is  not an acceptable

location for the loop gain to lie.

Now, how do we compute  the value of transmission function T upper and T lower?

Firstly, we note that the difference between T upper and T lower is essentially equal to

the difference between T1 upper and T1 lower, because the transmission function T is

equal to the pre filter times T 1. Therefore, in the logarithmic scale, when we take the

difference between T upper and T lower, the pre filter terms get cancelled out and we

will be left with only the transmission function for the feedback control parts. So, this is

going to be equal to 20 log magnitude of T 1 upper minus 20 log magnitude of T 1 lower.

Now, since we know that our loop gain lies inside this particular area we can compute T1

at each of these locations, because we have the equation T 1 is equal to the loop gain L

by 1 plus L. So, each of the locations we can compute T1 and hence we can determine

what is the maximum magnitude of T1 and what is the minimum magnitude of T 1 if the

loop gain L, lies within this particular area. 

So, in this particular case we discover that the minimum magnitude of T 1 happens to be

minus 25 dB and that  is  at  this  right  extreme corner  of  the plant  template.  And the

maximum  magnitude  occurs  inside  the  plant  template,  because  the  plant  template

encloses the point 0 dB comma minus 180 degrees or in other words the critical point.

And at the critical point the transmission function assumes a value of infinity dB. 

So, while our specification is that the difference between T 1 upper and T1 lower in the

logarithmic scale should be 2.3 dB, in practice the upper value is infinity and lower value

is minus 25 dB. And hence the difference between the two is actually infinity. So, clearly

this location is not an acceptable location for our loop gain to lie in order for it to satisfy

our robust tracking requirements at this particular frequency. So, what do we do? 

To understand what needs to be done let us go back to the sensitivity equation that relates

the  uncertainty  in  the  overall  transmission  function  to  the  uncertainty  in  the  plant

transmission function. This was derived a few clips back and to refresh your memory the



equation was that delta T by T is equal to 1 by 1 plus L times delta p by P. What has

happened in this case is that for the controller C is equal to 1 our loop gain L has ended

up becoming so low that our delta T by T has become a huge number, in this particular

case it is infinity dB. 

So, in order to minimize delta T by T we should choose a higher value for loop gain. And

what  does  that  mean?  We should  push  up  the  plant  template.  We should  choose  a

controller  that adds gain and that controller  will in turn result in displacing the plant

template upwards.

(Refer Slide Time: 05:25)

So,  suppose  the  plant  template  gets  displaced  upwards,  then  as  we  move  the  plant

template up, so, when we say that we are moving the plant template up without moving it

sideways, we are essentially multiplying the plant with a proportional controller. And

hence the overall loop gain increases in magnitude, but does not change in phase. Hence,

the plant template stays put at the same X position in the Nichols plot, but gets displaced

along the Y axis.  So,  it  moves up when the controller  gain is  increased and at  each

location as it is moving up we can check for the maximum T 1 upper and T 1 lower at

each location  within the plant  template.  And determine  whether  it  is  now within the

specified limit, namely 2.3 dB or not. 

It  so  happens  that  when  the  plant  template  moves  to  this  particular  location  in  the

Nichols plot we discover that the minimum value happens to be 0.2 dB, which occurs at



the left top extreme of the plant template. And the maximum value happens to be 2.5 dB,

which occurs  close to  the bottom corner  of  the plant  template.  So,  at  this  particular

location  of  the  plant  template  we  would  have  the  maximum  difference  between  T

between the transmission functions for all possible values that the loop gain can assume

within this region to be utmost 2.3 dB.

Hence,  if  we  locate  our  loop  gain  at  this  particular  point,  we  can  ensure  that  our

transmission function T 1 changes by utmost 2.3 dB, when the plant parameters namely

its gain and its pole location change within the specified limits. However, we are not

guaranteed that our controller eventually is going to be a proportional controller. So, at 1

radian per second our controller phase may not be exactly 0 and therefore it may not

necessarily just push the plant template up or down. 

It may also result in displace in the plant template laterally. So, if the controller adds a

phase lag,  then the plant  gain will  move to the left  in the Nichols plot,  because the

overall phase lag of the loop gain will increase. On the other hand, if the controller adds

phase lead, it will move to the right in the Nichols plot, because the overall phase of the

loop gain will decrease.

So, since we do not know whether our controller is likely to add phase lead or phase lag

what  we need to  do is  that  at  each  of  the angular  positions  which  are the potential

locations, where the plant template can sit depending on how much phase lag or lead the

controller can add. We have to determine the extent by which the plant template needs to

be pushed up in order for the difference in the transmission functions within the plant

template to be within 2.3 dB.

So, in this case, for instance, when the plant template is at this particular location, it turns

out that it has to be pushed to this particular location, so that at this particular location of

the nominal loop gain the difference between T 1 upper and T 1 lower will be within 2.3

dB. Now, this activity has to be repeated at a range of different angular values. In fact, at

every possible angular position and this is clearly a tedious task to perform manually.

And hence there is a software called QFT toolbox, which automatically determines the

bound for performance specification, when it comes to robust tracking. So, in this case,

we have employed this software and determine the locations on which the nominal loop



gain  has  to  lie  in  order  for  the  difference  between T 1 upper  and T 1 lower in  the

logarithmic scale to be exactly equal to 2.3 dB. 

So, now if the loop gain is chosen to be above the region that has been demarcated by

this red curve, we would notice that the variation in the transmission function will be less

than 2.3 dB. So, on the other hand, if the loop gain were to be in the region that is below

this red curve, then the variation in the transmission function would be greater than 2.3

dB. So, this line therefore represents a boundary above, which the loop gain is allowed to

lie in order for T 1 upper minus T 1 lower in the logarithmic scale to be within 2.3 dB.

And hence this marks the performance bound on the loop gain at 1 radian per second 

Now, we do not know whether we would have stability issues at 1 radian per second or

not.  So, it  is useful to also determine the stability bound at  1 radian per second and

subsequently determine the intersection of these bounds at 1 radian per second. So, in

order to determine the stability bound let us return to the original location of the plant

template.

(Refer Slide Time: 10:39)

So, this was where the plant template was located for the controller C is equal to 1. So, in

other words, when the loop gain L was simply equal to the plant transfer function and the

plant transfer function assumed values within this curvy linear rectangle. So, we note that

this rectangle is partially inside the contour magnitude of T 1 is equal to 3.5 dB.



So, this contour divides the complex plane into two parts. If the loop gain assumes values

within this closed contour then for those particular values of loop gain if we compute the

transmission function T 1, we would see that its magnitude is greater than 3.5 dB. And

for regions outside this contour, if we compute the transfer function T 1, we would find

that its magnitude is less than 3.5 dB.

In this particular case, we see that this plant template is sitting partially inside this closed

contour, which means that for some combination of plant parameters, namely the plants

uncertain gain and its pole location in particular those combination of plant parameters as

result in the plant transfer function being in this particular region of the Nichols plot. We

would have the transmission function being greater than 3.5 dB. Indeed, since we already

saw in the previous slide that this plant template encloses the critical point namely 0 dB

and minus 180 degrees at that particular location the transmission function will have a

magnitude of infinity dB.

So, clearly whatever controller it is that we design it should make sure that no part of the

plant template is inside this contour, namely T 1 is equal to 3.5 dB. So, one possible way

to do it is to have a controller that attenuates the gain of the overall open loop system or

in other  words such a  controller  will  push down the plant  template.  So,  if  the plant

template is pushed down, then we need to push it down until every point within the plant

template lies either on or outside the constant transmission function T 1 is equal to 3.5

dB contour. So, it is at this particular location for the nominal loop gain that every point

within that plant template will lie outside the contour magnitude of T 1 is equal to 3.5

dB.

Now, if you were to use a controller that amplifies the gain, then we need to choose such

a gain for the controller that the plant template will be somewhere higher up here in this

particular manner. And once again no part of the plant template will be inside the contour

T 1 is equal to 3.5 dB, so in that case this will be the location at which the loop gain has

to lie in order for it to satisfy the stability specification for all possible combinations of

the plants gain and its pole location.

Now, we are not guaranteed once again that we would be using a controller that adds

phase lead or phase lag. Therefore, it is not necessary that the plant template just gets

moved up or down. It can also get moved sideways just as we saw in the previous slide.



Therefore,  we need to  repeat  this  exercise at  different  angular  positions  of the plant

template, because these are the angular positions that it can potentially assume depending

on the particular structure of the controller.

If the controller provides phase lead, then the plant template will be to the right of its

location, when the controller C is equal to 1. If the controller adds phase lag, then the

plant template will be to the left of that position, when the controller C is equal to 1. And

at each of these locations we need to determine what where the nominal loop gain has to

be in order for every point within the plant template to be outside the contour T 1 is equal

to 3.5dB.

Once again this can be either done graphically or it can be done with the help of software

and by using QFT toolbox we can automatically obtain. The locations where the loop

gain has to lie in order for the worst case plant to utmost have a magnitude of 3.5 dB.

And if you use software to plot this curve, it would look something like this. So, for all

possible locations of the loop gain on this particular closed curve, we would have the

worst case plant to have a maximum value of T 1 being equal to 3.5 dB.

Hence, for values of the nominal loop gain L naught, which is equal to the controller

times the nominal plant p naught, which are outside this closed contour the red closed

contour, we would have the worst case transmission function T 1 to have a maximum

value of less than 3.5 dB. Likewise, for values of the nominal loop gain L naught that are

inside this red curve,  the worst case transmission function T 1 or in other words the

maximum value of the transmission function will be greater than 3.5 dB. And hence our

stability specification will be violated 

So,  once again this  closed contour  divides  the Nichols  plot  into two parts.  The part

region, which the nominal loop gain is allowed to lie for the closed loop system to have a

T 1 max of at least 3.5 dB. And a part within which it is not allowed to lie. Now, just as

we had the  performance specification  divide  the  Nichol’s plot  into two regions,  one

where the loop gain of the nominal system is allowed to lie in order for it to satisfy the

robustness requirement and the other where it is not allowed to lie. So, also we have in

case of stability two regions in the Nichol’s plot, one where the loop gain allowed to lie

and the other where it is not allowed to lie 
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So, what I have therefore shown in this particular slide are the two bounds. This is the

performance bound at 1 radian per second and this here is a stability bound at 1 radian

per second. So, in order for the closed loop system to be stable the loop gain, the nominal

loop gain L naught should lie in the region that is outside the stability bound and in order

for the robustness requirement to be satisfied or in other words in order for the difference

between T 1 upper and T 1 lower to be within 2.3 dB at 1 radian per second. The nominal

loop gain has to lie above the performance bound 

So, in order for both of them to be met it should lie in the region that is the intersection

of these two bounds. And in this particular case at this particular frequency that region

simply ends up being bounded by the performance bound itself, because the performance

bound and the stability bound do not intersect in this particular case. Now, we can repeat

this exercise at other frequencies of interest to us.
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So, I have repeated this, now at 2.5 radians per second. So, a 2.5 radians per second the

plant template is situated at this particular location in the Nichol’s plot. And the green dot

at  the center  indicates  the  nominal  plant  transfer  function  p naught  or  the value  the

magnitude and the phase of the plant transfer function for the nominal gain k naught

equal to 1 and the nominal pole location p naught equal to 1. And when the gains k and p

changes the plant transfer function assumes a range of other complex numbers and that is

represented by this curvy linear rectangle. So, this is the plant template at 2.5 radians per

second.

Now, we can once again compute the performance bound on the loop gain at 2.5 radians

per second. So, we can look at what the permissible variation delta is but 2.5 radians per

second.  So,  delta  j  of 2.5 can be found out  from the bode plot  that  we draw at  the

beginning of this clip. And then we can determine where the loop gain has to lie in order

for the difference between T 1 upper and T 1 lower in the logarithmic scale to be within

the number delta of at 2.5 radians per second.

And the boundary of that region is given by this green curve here. And it represents the

performance bound at 2.5 radians per second. Likewise, we cannot forget about stability

at  2.5 radians per second. So, assuming that  the gain crosses over a 2.5 radians per

second we want to make sure that the maximum value of T 1 or magnitude of T 1 max is

within the specified stability limit or in other words it is within 3.5 dB. 



So,  we  have  also  computed  the  stability  bound  at  2.5  radians  per  second.  And  the

stability bound is another closed curve that is shown here. So, in this case for the closed

loop systems to be to be stable and the maximum value of T 1 to be within 3.5 dB, we

need  the  loop  gain  to  lie  outside  this  green  closed  curve.  And  for  the  performance

requirements to be met it should be above the green curve, which is the performance

bound at 2.5 radians per second.

So, the stability bound is this closed curve and the loop gain should lie. Outside of this

closed curve for the worst case loop gain to result in a transmission function T 1 whose

magnitude is within 3.5 dB. And the nominal loop gain should lie above the performance

bound for the robustness requirement or in other words the difference in the logarithmic

scale between T 1 upper and T 1 lower at 2.5 radians per second to be less than or equal

to the specified amount delta of j 2.5 

So, in order for the loop gain to satisfy both these requirements simultaneously it should

lie in the region that is the intersection of these two permissible regions and that region is

bounded by the intersection of both these bounds. And this overall green curve here,

which is which represents the boundary of the intersection of these permissible regions

as  far  as  performance  and  stability  specification  is  concerned  represents  the  overall

bound on the loop gain at 2.5 radians per second.

In other words, the nominal loop gain has to lie about this particular green bound in order

for the closed loop system to both achieve the specified amount of robustness to plant

parameter variations in the overall transmission function and also achieve the specified

amount of stability for the closed loop system. So, this is repeated at other frequencies of

interest.  We discussed  that  we would  limit  restricting  the  performance  to  within  15

radians per second.
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So, I have taken a set of other frequencies. So, I have for example, considered a very low

frequency 0.2 radians per second and at 0.2 radians per second the overall bound on L is

given by this black curve here, this is at 0.2 radians per second. So, this software QFT

toolbox color codes the bounds, so at 1 radian per second we would have this red curve,

which represents the overall bounds the intersection of the performance bound as well as

stability bound at 1 radian per second. And the green curve is the overall bound at 2.5

radians  per  second.  The  cyan colored  curve  here  represents  the  overall  bounds  at  5

radians per second. The black curve here is for 10 radians per second and the purple

colored curve here is for 15 radians per second.

Now, as you can see these curves are rather non intuitive in their appearance and their

shape.  And hence it  is  not  easy to describe their  shape using a simple mathematical

expression. It is therefore best to employ software such as QFT toolbox in order to plot

all these different bounds, now that we have plotted the performance bounds. We are

ready to undertake the design of the controller  that  makes sure that at  each of these

particular  frequencies  the  loop  gain  is  located  within  the  permissible  areas  at  those

respective frequencies. But, before we do that we need to still worry about stability at

frequencies  beyond  15  radians  per  second.  Although  our  performance  specification

stopped at 15 radian per second because we found that the transmission function T upper

had fallen to minus 20 dB at 15 radian per second.



And therefore we were not expecting any tracking specifications beyond this particular

frequency. We cannot stop worrying about stability  at the same frequency. It  is quite

possible that the loop gain might cross over at a frequency that is greater than 15 gradient

per second. And if that happens, then we need to worry about stability at the frequency at

which the loop gain crosses over. Therefore, what we need to do is to continue to worry

about  stability  at  frequencies  beyond  which  we  have  stopped  worrying  about

performance. So, we need to take a few more frequencies compute the plant template at

those frequencies and simply plot the stability bounds at those higher frequencies.

(Refer Slide Time: 25:19)

So, in this case I have taken 50 radians per second as one of those frequencies. And as

we discussed two clips back at frequencies that are sufficiently high, the plant template

essentially reduces to a straight line in its appearance. So and the red dot here indicates

the nominal value of the plant transfer function at 50 radians per second. The reason that

it reduces to a straight line is because the at very high frequencies the phase lag added by

all the terms of the transfer function end up reaching their ultimate values 

So, when we design a controller, this plant template will no longer be located, where it is

situated now, but it could move anywhere in the complex plane. So, it could move here

for instance, it could move there for instance, it could move here and so on and so forth.

It depends on the gain of the overall open loop system at that particular frequency but

whatever it is that the controller does and wherever it is that the controller moves the



overall plant template. We should make sure that no part of the plant template enters this

forbidden circle, which is magnitude of T 1 is equal to 3.5 dB at this particular frequency.

Hence, what we do is we have to locate the plant template such that only the extremity of

the plant template  is sitting is making contact with this curve. And allow it  to move

around this closed curve or in other words allow the loop gain to assume a range of phase

values and determine the magnitude of the loop gain at which the worst case plant would

have the magnitude of T 1 to be equal to 3.5 dB. And if we do that we get this curve,

which essentially represents the curve on which the nominal loop gain is allowed to lie.

In order  for  the worst  case loop gain to  result  in  a  transmission function  T1 whose

magnitude is less than or equal to 3.5 dB.

So, this curve once again divides the Nichol’s plot into two parts. The region inside the

curve is the region where the loop gain is not supposed to lie. The nominal loop gain is

not supposed to lie in order for the overall transmission function T 1 to be less than or

equal to 3.5 dB. So, the region outside this closed curve is a region within which the loop

gain is allowed to lie and this guarantees that the worst case transmission function T 1

will always be less than or equal to 3.5 dB. So, having computed the stability bound

alone at 50 radian per second, I have included that along with the other bounds that we

had computed.
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So, we have computed bounds at a 0.2 radian per second, 1 radian per second, 2.5,5,10

and 15. In addition to 15 I have computed it at two other frequencies at a 50 radian per

second,  which  is  what  I  discussed  just  a  few  minutes  back.  And  also  at  another

intermediate frequency, which is once again higher than the frequency at which we are

expecting performance. In this case I have chosen to compute the performance bound at

25 radians per second 

What you will notice is that the performance bounds at 25 radians per second and at a 50

radian per second are almost coincident and that is because the plant template does not

change its shape at frequencies that are significantly greater than the corner frequencies

of the plant. In this case the corner frequencies of the plant happen to be around 1 or 2

radians per second and since 25 and 50 radians per second are significantly higher than

the corner frequencies of the plant, the plant template will not change its shape from 25

to 50 radians per second. And hence the stability bounds at these two frequencies remain

essentially the same. 

So, now that we have determined the bounds on performance and stability  at  all  the

different frequencies of interest to us. We are ready to execute the design. So, when we

are trying to execute the design, what we are trying to do is to come up with a controller

structure  that  ensures  that  the  loop  gain,  at  each  of  the  frequencies  is  within  the

permissible  regions  at  those  particular  frequencies.  For  instance,  at  0.2  radians  per

second the loop gain should be above the black bound that has been indicated here. At 1

radian per second the loop gain should be above the red bound, at 2.5 radian per second

it should be above the green bound and so on and so forth.

If the loop gain is exactly on these bounds, then the performance specifications will be

exactly  met.  On  the  other  hand,  if  it  is  above  these  bounds,  then  the  performance

specification would be met better than what is expected or in other words the variation in

the transmission function will be regulated to a magnitude that is less than what we had

wanted it to be regulated to.  And that would result in a slightly conservative design,

which is still acceptable, because, we have ended up doing better than what we were

asked to do.



So, now that we have computed the bounds. We need to perform loop shaping and to

perform loop shaping once again we take the help of the dialogue box that comes with

the QFT tool box.

(Refer Slide Time: 30:59)

And this dialog box essentially plots the bounds and super poses it with the Nichol’s plot

of the plant itself. So, the Nichols plot of the plant has been shown by this black curve

here. And the color coded circles here represent the loop gains at each of the frequencies

that are of interest to us. So, the red circle here represents the loop gain at the smallest

frequency namely 0.2 radian per second. The green represents the loop gain at 1 radian

per second and so on and so forth.

And if we compare the location of the loop gains at each of these frequencies with the

corresponding bounds, we note that they are all outside the specified bounds. We wanted

the red circle for instance to be either on or above the red bound. So, we wanted it to be

inside this particular region, but this is where it is currently located. We wanted the green

circle, to be above the green bound, the blue circle, to be above the blue bound and so on

and so forth.

Since it is not being met we have to now choose an appropriate controller structure that

will allow us to place these loop gains within the permitted regions in the complex plane

at  each of these frequencies.  And I  discussed that  this  can be done in  an interactive

manner  using  this  dialog  box.  For  instance,  we  can  start  by  using  a  proportional



controller and that proportional controller can be used to push up the overall gain, so that

to start with the red circle is within the red bound, but then you might end up with a

closed loop system that is unstable. And hence we can choose to pick 0 and locate the 0

such that the Nichol’s plot of the overall loop gain avoids the forbidden circle and so on

and so forth.

Some of these steps were discussed by me in the previous design that we undertook,

where  we  did  one  degree  of  freedom  control  design  that  took  care  of  disturbance

specifications. So, I have repeated the very similar steps in this particular case. And at

the end I have obtained the loop gain to look something like this. So, you notice that for

the particular controller that we have designed. And the controller structure is shown at

the bottom of this slide here.

(Refer Slide Time: 33:23)

So, for this particular controller the red circle is within the red bound, the green circle is

actually above the green bound, the blue circle is exactly on top of the blue bound and so

on and so forth. And if you look carefully, we also notice that this Nichol’s plot of the

loop gain, which is shown by the black curve here, is avoiding the forbidden circle. And

this in turn implies that our closed loop system is going to be stable. 

And it is the maximum value of the transmission function is going to be actually much

less than 3.5 dB. If this loop just touched this forbidden circle then for some particular

combination of the plants gain and pole locations. We would have the maximum value of



the transmission function to be exactly 3.5 dB. Since it is not touching, but it is actually

avoiding the forbidden circle,  namely this  stability  bound by a  certain  distance.  The

maximum value of the transmission function T1 for the worst case combination of the

plants gain and pole locations will be actually less than 3.5 dB.

So, we have, therefore now designed a closed loop system that is actually somewhat

conservative, because in each at each of the frequencies the loop gains are well within

the bounds that have been specified. If they were sitting exactly on top of the bounds that

was specified and the design would exactly satisfy the specifications that were set. If

they are within the bounds that were set, then it means that our closed loop system will

do better than what we were asked to do.

The variation that we are going to permit for the transmission function would be less

than what we have been allowed or in other words the dominant poles of the closed loop

system will  wander  in  a  region  that  is  smaller  than  the  rectangular  region  that  was

specified to us at the outset. 

So,  this  completes  the  design  of  the  feedback  controller  and  this  feedback  control

structure, which I said we could obtain by trial and error using the interactive dialogue

box that is available as part of the QFT software gives us the performance necessary to

restrict  the  variation  of  the  transmission  function  due  to  uncertainty  in  the  plant

parameters.  And  at  the  same time  ensure  that  our  feedback  system is  stable  by  the

specified amount, but we are not yet done with the pre filter design. So, at the moment

our pre filter is F is equal to 1, because we have not yet started with a design of the pre

filter. And the software QFT toolbox also allows us to design the pre filter.
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.

So, when the pre filter F is equal to 1, the software plots T upper and T lower so that is

plotted by the blue curve here. This is T upper and this is T lower. The green curve here

is T upper T lower. And the dotted red traces represent the actual bounds for T upper and

T lower, which was specified by us based on the fact  that the closed loop poles pcl

should lie within that is particular rectangle.

So, these two curves were obtained by us at the outset of our design procedure. And we

note that when we do not have a pre filter, the T upper and T lower violate these bounds.

So, parts of T upper and parts of T lower are outside the bounds in a in certain frequency

ranges.

So, once again this dialog box allows us to pick the pre filter structure that makes sure

that the transmission functions T upper and T lower are within the specified bounds. So,

we can choose the pre filter to have certain gains and certain pole locations and certain 0

locations that together make sure that this T upper and T lower are within the specified

bounds. And I have used the software to determine the structure of the pre filter and the

pre filter structure is shown here.
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We note that exactly as in the case of the root locus design the pre filter has unity DC

gain. And for this particular pre filter structure we note that both T upper and T lower are

within the permissible limits as specified by these upper and lower red curves. So, since

the spread delta of j omega between T upper and T lower is significantly less than what

we were permitted.

Our design in this case has been a little conservative or in other words as a consequence

of this particular controller and this pre filter we are permitting our closed loop pole to

wander in a region that is smaller in area compared to what it would actually vary within

namely  the  rectangle  that  we had specified  at  the  start  of  the  design procedure.  So,

having completed  the  design  it  is  only  prudent  to  check  for  the  performance  of  the

overall control system in the time domain.
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So, I have plotted here, the closed loop step response of the overall system for different

combinations  of  the  plants  gain  and  pole  locations.  And  we  see  that  we  have

considerably greater spread in the response than what we could achieve using the root

locus. For reference I have also plotted here the desired set of step responses. And we see

that the spread that was allowed in the desired set of step responses is actually greater

than the spread that we have accomplished with our particular controller and pre filter

combination.

And this  as I discussed was a result  of our conservative design,  where we ended up

choosing such a controller  structure that the loop gain was well  within the permitted

bounds at each of the frequencies of interest to us from the point of view of performance

and  stability.  However,  since  we  have  ended  up  with  a  closed  loop  system  whose

performance is better than what was specified to us, at this point we can conclude the

design.

If on the other hand, if this spread that we see here in the closed loop step response for

this particular controller  is found to be too conservative,  then we can go back to the

controller structure and fine tune it a little bit in an interactive manner using the QFT

toolbox  so  that  the  loop  gains  at  each  of  the  frequencies  lie  almost  exactly  on  the

particular bounds at those frequencies. And hence we would have a closed loop system

that just first satisfies the desired performance specifications.



Thank you.


