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Hello,  in the previous clip  we took a look at  how we could use the Nichols plot  to

undertake control design and the design that we undertook was that of a one degree of

freedom control system. But, in that one degree of freedom control system there were

multiple performance specifications. There was an input disturbance, there was an output

disturbance and each of them had to be rejected by different extents and then there was

also at a stability constraint.

And the general approach as we outlined in the previous clip was that we first identified

the set of frequencies where we are interested in achieving a certain performance or a

certain extent of stability for the closed loop system. And the second step is that at every

one of these frequencies we determine the permissible area in the complex plane where

the loop gain L can lie in order for it to satisfy a particular performance specification or a

stability specification.

So, if  we have multiple  performance specifications,  each specification will  allow the

loop gain L to lie within a certain region in the complex plane or in other words it will

allow the loop gain L to have a certain range of values for fail and magnitude. And the

actual  region  in  which  the  loop  gain  can  lie  for  it  to  satisfy  simultaneously  all  the

specifications would essentially be the intersection of all these different regions.

Hence, we performed is design in the Nichols plot which as we discussed is in some

sense a distorted version of the Nyquist plot and is once again a complex plane of the

loop gain L of j omega. So, each of the performance specifications resulted in what was

known as a performance bound. And this bound divided the Nichols plot into 2 parts; the

part in which the loop gain was allow to lie and the part in which the loop gain was not

supposed to lie.

So,  at  each  frequency  we  obtain  the  bounds  for  input  disturbance  rejection,  output

disturbance rejection and stability. Then we find the intersection of all these bounds and



that  tells  us the permissible  values of the loop gain that we can have at  a particular

frequency in order for it to simultaneously satisfy all the requirements. We repeat this at

all  the other frequencies of interest  to us from the point of view of performance and

stability and obtain similar bounds at other frequencies. And finally, execute the design

where we determine that controller structure which enables us to achieve loop gains for

at each of the individual frequencies that we have picked that are within the bounds at

that have been specified for each of those frequencies.

So, what we shall do in today’s clip is to use the Nichols plot to solve the problem of

robust tracking. So, if we go back a couple of clips, we discussed the problem of robust

tracking and solved it using root locus as the canvas upon which the design was done.

What  we shall  do  in  this  case  is  take  up  the  same problem,  but  relax  some of  the

constraints  that had to be imposed when we under took the design using root locus;

because, the root locus technique demanded such constraints to be placed for it to be

easily applied.

So, we shall relax those constraints and with that relax set of constraints root locus will

cease to be a intuitive and useful tool for performing design and we shall see how it can

be performed using the Nichols plot. So, the problem statement has been indicated on

this slide, we have a plant which is uncertain. And, if you recollect this plant is very

similar to the plant that we consider when we were undertaking 2 degree of freedom

control design using the root locus.



(Refer Slide Time: 03:57)

So, the plant has an uncertain gain K and we assume that the nominal value of this gain

is K naught equal to 1, but it  can vary by a factor of 10 it  can vary from 0.3 to 3.

Likewise  this  plant  also  has  one uncertain  pole  p.  Nominally, the  pole location  is  p

naught equal to 1, but the pole could lie anywhere between 0 and 2 or in other words the

pole in the complex plane the pole could be at anywhere between s is equal to 0 and s is

equal to minus 2.

So, this plant is identical to the plant that we considered when we undertook root locus

based design. When there was simultaneous uncertainty in the gain of the plant as well as

its pole location. Now, when we undertook root locus based design we insisted that the

closed loop pole be located at P cl naught equal to minus 1.5 plus 2 j and P cl naught bar

equal to minus 1.5 minus 2 j. This was very dominant closed loop poles were expected to

be located for the nominal values of the gain K of the plant and its pole location.

However, when the pole location vary or the gain changed we expected that the closed

loop poles should wander by a small amount about its nominal position. And this has

been indicated in this graph by this tiny dotted circle that I have drawn here; as the area

within which we were with permitting the variation in the closed loop pole.

Now, we had to restrict a variation of the closed loop pole to within such a small area

about  its  nominal  position.  Primarily  because  the  equations  that  we wrote  when  we

perform  the  design  using  root  locus  could  be  simplified  only  when  the  permitted



variation was much smaller than the typical distances between the other open loop poles

and zeros.

What we shall do in this clip; however, is to take a look at a problem that cannot be

handled using root locus, but is essentially of similar flavor as what we did earlier. In

particular, instead of restricting the variation of the closed loop pole to a very small

region near  the,  you know desired dominant  pole location namely at  minus 1.5 plus

minus 2 j.

We shall  allow for  variation  of  the  dominant  pole  P cl  anywhere  within  this  2  big

rectangular regions. So, we can have the closed loop pole P cl and P cl bar anywhere

within this rectangle. And therefore, the closed loop pole P cl and P cl bar would be of

the form a plus or minus jb, where a is the real part of the pole and b is the imaginary

part of the pole. And from the limits of this rectangle we see that we can allow for a to be

anywhere between minus 3 and minus 1 and likewise b can also be anywhere between 1

and 3.

So, what you see here is that we want to design a feedback control system whose closed

loop pole can vary within this rectangle of dimension 2 units along the real axis and 2

units  along the imaginary  axis.  And its  nominal  closed loop pole position  is  exactly

where  we  had  it  before  namely  minus  1.5  plus  minus  2  j.  Now, if  you  notice  the

dimensions of this rectangle, you note that the size of this rectangle is of comparable

magnitude to the typical distances between the other open loop poles of the plant. And

this is what makes it  difficult for us to employ root locus as the tool for performing

design.

The assumption that the distance over which the closed loop pole varies is much smaller

than the distances between the open loop poles breaks down in this particular problem

specification. And that is what makes it that is what make root locus a tool that cannot be

easily employed in this particular case. Now, if our dominant dynamics were allowed to

vary within this fairly large rectangle then what we essentially imply is that the closed

loop step response could assume any of the trends that have been shown in the graph on

the right. So, it could have a range of overshoots and the range of price times and settling

times.



So, what we are essentially saying is that as control engineers we are with the closed

loop  system  having  such  a  relatively  large  spread  in  its  response  because,  this  is

acceptable for our particular application. And if we permit for this large a spread in the

response here essentially therefore,  also indirectly saying that we are with the closed

loop pole wandering over a fairly large area in the complex plane. And, in this particular

case this area is bounded by the rectangle that we just talked about.

If you think about it this  problem is more general and also practically  more realistic

because, as control engineers we do not always desire for the closed loop response to

vary by negligible amounts when the plants model changes. Sometimes, it is to permit

some  variation  in  the  closed  loop  response  when  the  plants  model  changes,  but

unfortunately the tool of root locus does not permit us to execute design in a transparent

and  intuitive  manner;  when  such  relatively  large  variations  in  the  closed  loop  pole

position are permitted when the plants parameters change.

So, in comparison to what is now considered an acceptable variation in the closed loop

response. I have plotted on the left what was considered an acceptable variation in the

closed loop response when we undertook the design using root locus. Now, if you look at

the  graph  on  the  left  we  have  insisted  in  this  particular  case  that  the  variation  be

extremely small. And the price that we saw that we had to pay when we undertook the

design was that our controller the feedback controller ended up having a much larger

bandwidth than the overall transmission function as a consequence of having to restrict

the variation of the closed loop response due to uncertainty in the plants parameter.

So, that was the price that we needed to pay in the case when we undertook the design

using the root locus. So, in this case what we are saying is that if you are not willing to

pay such a  high price,  if  you are not willing to invest in controllers  with such high

bandwidths and correspondingly we are also with permitting a much larger variation in

the closed loop response of our overall control system.

Then how do we undertake systematically? The design of the feedback controller and the

pre filter that will allow us to get a control system whose closed loop response varies

within the particular bounds that have been indicated by this new set of step responses

within  this  particular  bound  and  no  larger.  So,  you  know  be  with  this  amount  of

variation, but we are not with any amount of variation. We want the closed loop poles to



still be restricted within a certain area. It is just that the area that we are considering in

this example is much larger and the area that we consider when we undertook the design

using root locus.

So, if we are willing to permit the closed loop poles to lie within the rectangles that we

have shown there then the overall transmission function T that relates the output to the

reference R. So, T is given by X by R can approximately be written as T is equal to P cl P

cl bar divided by s minus P cl times s minus P cl bar. This is the approximate transfer

function for the overall transmission function simply because by definition P cl and P cl

bar are the dominant poles of our closed loop system. So, for all practical purposes our

closed loop system looks like a second order system, we whose poles are at the points P

cl and P cl bar.

In practice; however, I want to underscore the fact that the overall transmission function

will have other terms in addition to P cl and P cl bar and the number of poles that it

would have an number of zeros it would have is dependent on the order of the plant as

well as the order of the controller. But, what we are claiming here is that whatever order

we might have for the controller or for the plant it has a pair of dominant poles. And

therefore, it can be approximated as a second order system whose poles are at P cl and P

cl bar.

The exact locations of P cl and P cl bar; however, can vary that is because whenever we

have plant whose gain and pole locations are different from the nominal gain and pole

locations then the closed loop pole P cl can lie at a different location. And what we want

to do is to design the feedback controller and the pre filter such that for any particular

combination of the plants gain K or its open loop pole position P, our dominant closed

loop pole P cl and P cl bar lie within the 2 rectangles that we have indicated. Now, if we

return  to  this  transmission  function  T  if  you  want  to  draw  the  Bode  plot  of  this

transmission function, then what we are essentially claiming is that we are willing to

permit.
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The Bode plot of the overall transmission function to be any one of the curves in this

bundled here; so, for each particular value of P cl and its corresponding value of P cl bar

that are within the rectangle. We have computed the transmission function T which is

approximately equal to P cl times P cl bar divided by s minus P cl times s minus P cl bar.

And for this transfer function I have drawn the bode plot.

Now, P cl and P cl bar can be numbers that would be of the form P cl is equal to a plus jb.

And we allow for the parameters a to vary between its particular limits namely minus 3

and minus 1 and we allow for b to vary between its particular limits namely 1 and 3 and

when we do when we take a number of values for a between its particular limits and

correspondingly a number of values of b within its particular limits.

And for each of these particular combinations of a and b we compute a transmission

function and then draw the Bode plot of that transmission function. We get the set of

curves that I have shown here. It is worth noting that the actual transmission function is

not going to exactly look like this because there are going to be other terms that are

contributed by the other closed loop poles of the overall system. In this case; however,

you are  plotting  the  bode plots  only  for  the  approximate  model  of  the  transmission

function.

Now, if you look at this transmission function what we can identify is that there is an

upper limit that we are willing to permit for the variation in the transmission function and



there is also a lower limit  which we are willing to permit.  The lower limit  has been

indicated by the blue curve and the upper limit has been indicated by the red curve.

Furthermore, there is also the nominal transmission function which we would get when

the dominant closed loop pole P cl is located at its nominal position namely P cl naught,

namely minus 1.5 plus minus 2 j. And that nominal Bode plot has also been plotted along

with the upper limit and the lower limit.

Now, there is this nominal transfer function and there is this spread in transfer function

namely delta of j omega that we are willing to permit.  Now, when we undertake our

control design we have to make sure that the spread in our transmission function does not

exceed delta of j omega at each of the frequency omega. And this in turn will guarantee

that our dominant closed loop poles will lie within the rectangle that we have defined in

the previous slide.

Now, we can obtain the exact numerical expression for the upper limit which is indicated

by the rectrace with some trial and error. But, also by making note of the fact that there

will be a particular closed loop pole location for which the corresponding Bode plot will

define the upper limit of the variation of the closed loop pole. And likewise we can also

obtain the expression for the lower limit of the permitted variation. Starting from the fact

that there will be a certain closed loop pole location P cl for which the Bode plot would

define the lower limit of the permissible spread in variation.

However, sometimes it so, happens that within a certain frequency range there will be

one particular closed loop pole for which the Bode plot will define the upper limit. And

in a different frequency range there will be another location for the closed loop pole

which will define the upper limit for the spread in variation. Hence, this transmission

function  T upper  has  been  obtained  with  some trial  and  error.  By  starting  with  the

guideline that I just talked about, but modifying it little bit in order to incorporate the fact

that in different frequency ranges, different closed loop pole positions can define the

upper limit for the permissible variation in the transmission function.

So,  we have  this  nominal  transmission  function  that  we need to  design  firstly. And

secondly, we also need to restrict  the variation  of  the transmission function  from its

nominal characteristic by the amount delta of j omega at each frequency omega. So, at



very low frequencies, the permitted variation of delta of j omega is quite small. And as

frequency increases we are willing to admit slightly larger variation in delta of j omega.

Now, we have 2 controllers namely a feedback controller and the pre filter. The question

is which controller  should we use to do what? Do we use the feedback controller  to

design the nominal characteristics of the control system? And do we use the pre filter to

restrict the variation in the transmission function? Or vice versa do we use the feedback

controller to restrict the variation in the transmission function? And do we use the pre

filter to achieve the desired nominal response for the overall transmission function? This

is the question that we first  need to answer before we undertake the design of the 2

controllers. 

(Refer Slide Time: 20:29)

To answer this question I have indicated the 2 degree of freedom control system here.

And I have defined the overall transmission function which is T and that is given by F

times CP by 1 plus CP. And I have defined T 1 as the transmission function for just the

feedback part of the overall system and that is simply given by T 1 is equal to CP by 1

plus CP.

Now, the question is do we design the controller C to restrict the variation delta of j

omega? Or do we design the controller C to achieve the desired nominal response for the

overall transmission function? To answer this question let us first write out that since T is

equal to F times CP by 1 plus CP. We would have 20 log T to be equal to 20 log F plus



20 log CP by 1 plus CP. Now, for a particular combination of the parameters of the plant,

our  transmission  function  will  assume  its  value  T  upper  which  is  the  maximum

permissible variation in the transmission function. And I shall call that particular plant

model as P upper or P u, P subscript u for short.

So, for this particular plant model we would have 20 log magnitude of T upper to be

equal to 20 log magnitude of F plus 20 log magnitude of C times P upper divided by 1

plus C times P upper. So, this is the equation that we would have that would relate the

transmission  function  T upper  2 a  particular  structure  of  the plank that  gives  us  the

transmission function T upper.

Likewise,  there  will  be  another  combination  of  parameters  of  the  plant,  namely  its

uncertain gain and its pole location that will result in the overall transmission function;

assuming the value T lower at a particular frequency omega. Hence, if we were to call

that particular plant which results in the transmission function being equal to T lower at

some particular frequency omega P l, P subscript l. Then we would have that 20 log T

lower  log magnitude  of  T lower  to  be  equal  to  20  log  magnitude  of  F plus  20 log

magnitude of C times P lower divided by 1 plus C times P lower.

Hence,  if  we  subtract  the  2  equations  that  I  am  highlighting  [under/underlining]

underlining here you will note that 20 log magnitude of T upper minus 20 log magnitude

of T lower is going to be equal to. We would have the terms 20 log F getting cancelled

from  both  these  equations.  And  hence  you  would  how  this  to  be  equal  to  20  log

magnitude of C times P upper divided by 1 plus C times P upper minus 20 log magnitude

of C times P lower divided by 1 plus C times P lower.

And on the left hand side we note that the term 20 log magnitude of T upper minus 20

log magnitude of T lower essentially  is a permissible  spread delta  of j omega at  the

frequency  omega.  So,  if  we  restrict  the  spread  to  within  delta  of  j  omega  at  all

frequencies omega we essentially ensure that our close loop pole does not vary outside

the boundaries of the rectangle that we have drawn 2 slides back.

So, we have this equation that delta of j omega is equal to 20 log C times P upper by 1

plus C times P upper minus 20 log C times P log magnitude of C times P lower by

magnitude of 1 plus C times P lower. Now, this equation tells us all that we need to know

in order to determine which controller we use for what purpose.



If  we note this  equation we see that  the pre filter  F is  not represented at  all  in  this

equation and what that essentially tells us is that no matter what we do to the pre filter,

we cannot use it to control the spread delta of j omega of our transmission function when

the plants parameters change. Therefore,  we have no choice,  but to use the feedback

controller for restricting the variation in delta of j omega and the pre filter for achieving

the overall nominal performance T nominal.

So,  now, that  this  analysis  has  revealed  to  us  the division  of  labor  that  needs  to  be

undertaken between the feedback controller and the pre filter namely, at the feedback

controller is intended to restrict the spread in variation of the transmission function at

each frequency. And the pre filter is employed in order to achieve the nominal response

of the transmission function at each frequency.

We shall now proceed with performing the design using the Nichols plot. Now, if you

recollect from the previous slide the first step in undertaking design using the recalls plot

is  to  select  a  set  of  frequencies  that  are  of  interest  to  us  from the  point  of  view of

performance. So, if we look at the transmission function of the overall system which I

drew  in  the  previous  slide,  what  you  see  is  that  the  transmission  function  has  a

bandwidth that is close to around 4 radians per second.

The upper transmission function has a bandwidth that is close to around 4 radians per

second and the lower transmission function has a bandwidth that is even lesser that is on

the  order  of  a  little  bit  more  than  1  radian  per  second.  So,  what  we are  essentially

claiming therefore, when we have decided to choose a bandwidth of around 4 radians per

second  for  our  overall  transmission  function  is  that  our  reference  signals  frequency

content will not exceed 4 radians per second.

If our reference signal had frequency content beyond 4 radians per second, then we had

to  choose our  dominant  pole  locations  for  our  overall  closed  loop system in such a

manner that the transmission function of the overall system assumes a magnitude close to

unity within the entire frequency spectrum of the reference signal.

So, what is therefore, clear from this discussion is that we will whatever reference it is

that we might choose to track, the frequency content of the preference is decidedly going

to be less than 4 radians per second. Hence, we are not obligated to restrict the variation



in the transmission function beyond 4 radians per second. Because, we will not have any

references whose frequency content is beyond this particular frequency for us to track.

On basis of this consideration, we shall choose an upper limit to the frequency up to

which we restrict  the variation  in  the transmission function.  Although this  frequency

could have been the frequency at which that upper transmission function or the upper

limit  T upper  falls  down to  minus  3 dB of  each DC value,  in  the  analysis  that  we

undertake during this discussion. We shall assume that the frequency up to which we

shall restrict the variation of the transmission function would be the frequency at which

the transmission function T upper falls to minus 20 dB. And this particular frequency it

so, happens is around 15 radians per second.

So,  although  we  could  have  stopped  with  restricting  the  spread  in  the  transmission

function only up to the frequency at which the upper transmission function T upper falls

to minus 3 dB. In the interest of coming up with a somewhat conservative design we

shall choose to restrict the variation delta of j omega up to the frequency at which the

transmission function T upper assumes a value that is greater than minus 20 dB, and in

this case it happens to be around 15 radian per second.

So, as part of the first step in the Nichols plot base design we have to pick a set of

frequencies between 0 radians per second and 15 radians per second within which we try

to restrict the variation of the transmission function and also achieve the desired nominal

response for the transmission function.

So,  this  is  the  first  step,  but  as  control  engineers  we  are  not  interested  purely  in

performance alone. We are also concerned about stability; however, the specifications

that have been given to us do not talk anything about the stability or the feedback part of

the control  system.  Or in  other  words the  specifications  do not  tell  us  the extent  of

stability that we desire for the transmission function T 1.

So, in keeping with the strategy that we would adopt in the Nichols plot to specify the

stability  requirement  namely  to  specify  the  maximum  permissible  value  for  the

magnitude  of  the  feedback  transmission  function  T  1.  We shall  add  this  particular

stability specification namely, that a magnitude of T 1 max should be less than or equal

to 3.5 dB.



So, this was specification that was not provided to us at the outset we were just told what

the dominant dynamics of the overall control system was for that does not reveal to us

what the stability specifications for the transmission function T 1 is. And hence we had

added  this  extra  specification  to  complete  the  problem  statement.  So,  we  want  our

transcription function T 1 to assume values less than 3.5 dB in the in the interest of

stability.

So,  when  our  transmission  function  T1  assumes  a  value  of  around  3.5  dB  which

corresponds to about 1.5 in a linear scale, the corresponding phase margin can be shown

to  be  close  to  around 40 degrees  which  is  typically  considered  an acceptable  phase

margin when we are undertaking control system design. So, having now decided which

controller  we  would  use  for  what  purpose  and  also  having  defined  the  problem

completely, let us now get started with undertaking a control design.

So, the first step in undertaking the control design is to determine the permissible bounds

for performance as well as for stability at each of the frequencies of interest to us. And

we have already decided that the frequencies of interest to us from the point of view of

performance go from 0 radians per second to 15 radians per second. So, let us take one

particular frequency within this range. 
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And, in this particular case I have taken 1 radian per second, now at 1 radian per second I

would have a plant transfer function P to be essentially equal to K by j 1 times j 1 plus P



times j 1 plus 2. Now, we know that the plant gain K and the plant pole location P are

uncertain.

Now, if we pick a particular combination of the plant gain K and P, for instance if we

choose the gain K to be its nominal value K naught. And the plant pole location to be its

nominal location namely at s is equal to minus 1 then the plant transfer function which is

the nominal transfer function of the plant is given by this particular expression.

We note that the value of K naught is equal to 1. So, the nominal plant transfer function,

at  1 radian per second is  given by this  particular  expression. Now, we note that this

results in the plant having a certain phase lag which is determined by the phase of the

complex number in the denominator and a certain magnitude.

So, if you were to indicate the magnitude of the nominal  plant and the phase of the

nominal plant at  1 radian per second what we would get is this particular location P

nominal in the Nichols plot. So, at 1 radian per second the plant has a phase somewhere

between minus 180 and minus 135 degrees. The exact numerical value can be computed

from the expression for P nominal at 1 radian per second. And it has a open loop gain

namely the magnitude of the plant is going to be somewhere between 0 and minus 20 dB

and it appears to be close to minus 10 dB.

So, this is the magnitude and the phase of the nominal plant at 1 radian per second.

However, the plant is an uncertain plant and what that essentially implies is that it can

assume different values of gain and different and its pole location can also assume a

range of values. Now, if the plants gain increases then we note that the value of the plant

transfer function P of j 1 we increase without changing the phase of the plant transfer

function. Likewise, if the value of the gain K reduces in the phase of this plant transfer

function once again will not change, but it is magnitude will reduce. 

So, in the first case it will increase in the another transform here and the second case it

will reduce.  The phase of the plan transform function will  remain the same which is

given by the by this number here and the magnitude; however, will reduce. Now, if the

pole location were to change, but the gain where to be its nominal value. So, if the gain

was equal to 1, but the pole location could assume values between 0 and 2 then we can

show that the plant transfer function will change its phase and magnitude along a certain

curve in the Nichols plot.



So, when the plant pole location is at s is equal to 0 and the gain is 1, the plant transfer

function will assume this particular magnitude and phase combination. And as the plant

pole location p goes from 0 to 1, the and the gain remains at 1, then the plants gain will

travel  along  this  curve  and  come  to  the  nominal  location  of  the  pole  and  gain

combination and when the plants pole goes from 1 to 2, then the plants gain and phase at

1 radian per second moves along this particular curve.

Now, if  the  plants  gain  and  pole  locations  change  independently,  then  the  complex

number P of j 1 essentially assumes values within this particular closed curve. And this

closed curve has a special name it is called the plant template at the frequency 1 radian

per second. So, by definition the plant template is the set of I shall write it down here,

plant template is the set of values P of j omega can assume, but a particular frequency

omega.

So, because an uncertainty in the gain and the pole location of the plant the plant transfer

function P of j 1 is not a single number, but is actually a set of numbers that we obtain by

plugging in the different combinations for the gain K and the pole location P within the

limits that have been specified to us. So, if we plug-in these particular parameters and

compute P of j 1 the set of magnitudes and the phase values of P of j 1 essentially define

a certain area in the Nichols plot as the area within which P of j 1 will lie and this area is

called the plant template.

Now, the attraction with doing control design using the Nichols plot comes from the fact

that  this  plan  template  does  not  change  either  its  orientation  or  its  size  when  it  is

multiplied with a controller. Because, in the undertaking feedback control design we are

essentially trying to determine the loop gain L, it is going to be equal to C times P. Now,

we would have 20 log of magnitude of L to be equal to 20 log of magnitude of C plus 20

log of magnitude of P. Likewise, the phase of L will be equal to the phase of C plus the

phase of P.

Now, unlike  the  plant  transfer  function  there  is  no  uncertainty  associated  with  the

controller  transfer  function.  So,  once  we fix  the  controller,  it  will  provide  a  certain

specific magnitude at a particular frequency and a certain specific phase lag or need at

that particular frequency. 



So, from these equations what we can conclude is that the effect of undertaking control

design which essentially involves coming up with an appropriate loop K is the effect of

multiplying the plant transfer function with the controller is to displace the plan template

either to the left or to the right depending on whether the controller provides a phase lag

or  a  phase  need.  Or  to  move  it  up  and  down depending  on  whether  the  controller

amplifies the gain of the overall open loop system or attenuate the gain of the overall

open loop system.

So, in the course of our design the set of values that our loop gain L can assume would

essentially be depicted by a closed curve whose shape would be exactly identical to the

shape of the plant template that we obtain with the controller C set equal to 1. The only

difference is that this set of values for the loop gain will be at a different angular position

and will be at a different gain in with respect to the plant template. But, the size and the

shape of this closed region would be exactly identical to that of the plant template itself.

And this is the attraction of a Nichole’s plot based design because, if you go back to our

discussion on the challenges  introduced by an uncertain plant when we are trying to

represent performance specifications in the Nyquist plot instead of the Nichols plot. We

noticed that when we multiply the Nichols plot of the plan transfer function with the

controller then the area within which the plant transfer function could assumed values in

the Nyquist plot not only got rotated, but also got scaled up.

So, unlike what happened in the Nyquist plot, in a Nichols plot the same area neither gets

scaled  up  nor  gets  rotated.  It  will  only  get  translated  in  the  Nichols  plot  when  we

multiply the plant transfer function with a controller.


