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Feedback control design using Nichols plot

Hello, in the previous clip we introduced a new design tool which was called as the

Nichols plot, in order to represent the constraint imposed on the loop gain by the various

performance specifications that would be given to us. The motivation for choosing this

plot arose from the in adequacies of the other plot that we have seen so, far. So, we could

rule  out  the  root  locus  very  early  on  because  performance  specifications  cannot  be

depicted using the root locus.

And  the  other  plot  was  the  Bode  plot  and  we  spent  some  time  talking  about  the

difficulties in indicating the performance specifications in a Bode plot especially, when

the performance requirements are not extremely stringent. And also the difficulty that

arise when we plot the boded plot of a loop gain. When we have a uncertain plant, in

which case we would have a bundle of loop gains each of which correspond to a certain

combination of uncertain parameters of the plant.

And hence, the question of which one of the loop gains within this bundle should be

designed our overall control system becomes problematic. And it was in this context that

we discovered that ironically the Nyquist plot is better at representing the constraints

imposed on the loop gain by a different performance specifications, simply because a

directly plots the imaginary part of the loop gain was as the real part.

So,  in  this  complex plane  of  the loop gain it  becomes  possible  for  us  to  depict  the

permissible areas in the complex plane where the loop gain is allowed to lie. So, we saw

how this could be employed to depict the permissible areas after in which the loop gain

can lie to reject output disturbance, to reject input disturbance, to achieve also stability,

where we introduced a new way of depicting the stability of the close loop system in

terms of the maximum value that the transmission function can be allowed to assume.

The final drawback though with the Nyquist plot was that when we have an uncertain

plant, we have in area in the complex plane of the Nyquist plot where the plant transfer



function P of j omega can assume its values. Now, when we multiply the plant with the

controller then the area gets magnified and rotated.

And since we would have designed the controller at the outset it becomes difficult for us

to proceed with a design. Simply because, a controller changes the shape as well as the

location  of the area within which the loop gain L of j  omega can assume its  values

depending on the plant uncertainty P of j omega and the controller transfer function C of

j omega. And this became the motivation for us to introduce the Nichols plot which is for

all practical purposes a distorted version of the Nyquist plot. While in the Nyquist plot

we plot the real part of L versus the imaginary part of L. In the Nichols plot, we plot the

angle of L versus the magnitude of L in the logarithmic scale.

And the effect of this is that if we have an uncertain plant and when we multiply this

plant transfer function with a controller transfer function, the particular choice of axis for

the Nichols plot results in the area within which the plant transfer function P of j omega

assumes values to neither change its shape nor change its size when multiplied with a

controller transfer function

We shall visit this again in the next clip, but in this particular clip we shall familiarize

ourselves with the design steps that are necessary for executing feedback control design

using the Nichols plot. For the sake of simplicity, let us undertake one degree of freedom

control design using the Nichols plot and I have indicated here the plant that we would

be trying to control.



(Refer Slide Time: 04:23)

So, indicated here the plant that we would be trying to control. The plant is given by P of

s is equal to 10 by s times s plus 1 times s plus 10. For the sake of familiarity I have

indicated the Bode plot of the plant here and we see that the plant has a phase margin of

about 50 degrees and a gain cross over frequency of around 0.784 radians per second.

Now, this plant is assumed to be affected by both input and output disturbances.

(Refer Slide Time: 04:56)

And the specifications on the rejection of the disturbances has been outlined in the next

slide.  As  far  as  output  disturbance  rejection  is  concerned,  the  specification  is  that



between 0.1 radian per second and 1 radian per second or in other words in this particular

frequency region we want a magnitude of the output disturbance to be suppressed by

minus 10 decibels. And at 10 radian per second, we want its magnitude to be suppressed

by 50 percent and we do not care about the performance as far as how to disturbances

concerned beyond 10 radians per second.

So, we are concerned about output disturbance,  rejection,  performance only up to 10

radian per second. Presumably because our output disturbance in this particular case has

it is frequency contained only up to 10 radians per second. And in the low frequency

range or in the frequency much less than 10 radians per second namely between 0.1 and

1 radian per second we wanted to be suppressed by minus 10 dB.

And at 10 radian per second we want it to be suppressed by minus 6 dB or in other words

suppressed  by  50  percent  and  we  do  not  care  about  the  performance  at  higher

frequencies. This is the output disturbance rejection requirement that has been specified

to us by the people who want us to design this control system. Now it so happens that the

control system is also afflicted by input disturbance and in this case we want the input

disturbance  to  be  uniformly  rejected  by  99 percent  or  rejected  to  0.01  of  its  actual

magnitude for frequencies between 0.1 and 1 and 10 radians per second.

So, the frequency range within which the output disturbance and the input disturbance

affects our plant is identical. It is between 0.1 and 10 radian per second, but the extent to

which each of  these disturbances  how to be rejected  are different.  In case of  output

disturbance, there is a frequency dependent demand on the extent to which it needs to be

rejected. At low frequencies it has to be suppressed by 10 dB and at 10 radian per second

it has to be suppressed by 6 dB and other frequencies and higher frequencies from care

about suppressing it at all.

Whereas, the input disturbance is to be suppressed by a factor of by 99 percent or by a

factor of 100 over the entire frequency range between 0.1 and 10 radian per second; so,

these  are  the  specifications  as  far  as  a  performance  is  concerned.  And  in  terms  of

stability, let us say we want our maximum value of the transmission function to be less

than or equal to 3 dB. This will ensure that the corresponding phase margin for the open

loop transfer function is going to be greater than 40 degrees.



Hence, for stability we want T max to be less than or equal to 3 dB. The question now is

how do we execute a design using the Nichols plot for this particular performance and

stability specifications? So, I shall now write down a different steps that are involved in

the design of a feedback control system in the Nichols plot to satisfy these performance

specifications.

(Refer Slide Time: 08:36)

The first step is to select a set of frequencies of interest to us for achieving the desired

performance or stability specifications. So, in this particular problem for instance, we

know that we are not concerned about performance as far as disturbance rejection is

concerned beyond 10 radian per second. So, we need to pick a few sample frequencies

between 0 and 10 radian per second, which are of interest to us because these are the

frequencies at which the closed loop system is going to get affected by both input and

output disturbances.

The second step in the design is to determine the permissible area in the Nichols plot,

where the loop gain L can lie in order for it to satisfy each performance or stability

specification  at  a  given  frequency.  So,  if  we  pick  one  particular  frequency,  we  to

determine  what  is  the  permissible  values  of  the  phase  of  L  and  the  what  is  the

permissible  values  of  the  magnitude  of  L  which  will  satisfy  the  input  disturbance

specification.



Similarly, what are the permissible values of the phase of L in the magnitude of L that

will satisfy the output disturbance specification and likewise also the permissible values

of magnitude and phase that satisfy the stability specification. This in affect boils down

to indicating the area in the Nichols plot because, the Nichols plot essentially plots the

phase of L versus the magnitude of L in the logarithmic scale. It boils down to indicating

the permissible area in the Nichols plot where the loop gain can lie for it to satisfy each

of these performance and or stability specifications.

The third step is to determine the intersection of these permissible areas because, for the

control system to simultaneously satisfy the multiple performance specifications, the area

in  which  the  loop  gain  can  be  permitted  to  lie  would  be  the  intersection  of  the

permissible areas and which it can lie for to satisfy each of the individual performance

specifications at a given frequency.

So, determine the intersection of the permissible areas in the Nichols plot where the loop

gain  L can  lie  at  a  given frequency. The fourth  step  is  once  we have  determined  a

permissible region in which the loop gain in lie at a particular frequency in order for it to

simultaneously  satisfy  the  performance  and  stability  specifications.  We  repeat  the

exercise at other frequencies also.

So, we have already selected a set of frequencies has part of our first step. So, we and

each of those frequencies that we have selected we determine the permissible area in the

Nichols plot in which the loop gain can lie in order for it to simultaneously satisfy all the

specifications at that frequency. So, repeat steps 2 and 3 for all frequencies selected in

step 1.

And the last step is once we have clearly identified the permissible areas in the complex

plane or in the Nichols plot where the loop gain can lie at each of the frequencies of

interest to us be. Then come up with a controller that will make sure that the actual loop

gain of the overall open loop system assumes values within this permissible areas and

this is part of a loop shaping exercise.

So, the last step is to perform loop shaping in order to make sure that the loop gain lies

within permissible areas at each of the frequencies of interest. So, these are the 5 steps

that are involved in execute in design in the Nichols plot.



The first step is to select a set of frequencies of interest to us for achieving the desired

performance of stability specification. The second step is that at each frequency that we

have picked we determine the permissible area in which the loop gain can lie for it to

satisfy every one of these performance specifications or stability specifications.

And the third step is to determine the intersection of all these permissible areas and that

would  represent  the  area  in  the  Nichols  plot  where  the  loop  gain  can  lie,  which

guarantees  that  it  will  simultaneously  satisfy  all  the  performance  of  stability

specifications at a given frequency. And the fourth step is to repeat this identification of

permissible area for all the frequencies that we have selected in the first step. And finally,

having determined the permissible areas at each of the frequencies of interest to us we

then execute the design where we determine a controller that makes sure that the overall

loop gain  assumes values  within the permissible  areas  at  each  of  the  frequencies  of

interest to us.

Now, let us undertake an actual design where we illustrate the each of the individual

steps that we have discussed here. So, in the particular problem that we just outlined the

notice that we had a certain input disturbance specification which have to be suppressed

by 99 percent over the frequency range from 0.1 to 10 radian per second. And output

disturbance rejection specification which was frequency dependent and a certain stability

specification.

So, we pick as a as part of the first step a few frequencies of interest to us in terms of

output  disturbance  rejection  and  input  disturbance  rejection  and  these  frequencies

therefore, how to be between 0 and 10 radians per second. As far as stability is concerned

we will have to pick a few more frequencies that are outside 10 radians per second for

reasons that we will get to in a minute. So, let us first start with one candidate frequency,

namely 5 radiance per second.



(Refer Slide Time: 17:29)

So, in order for us to reject output disturbance the transfer function at relates the output

disturbance and the output is given by 1 by 1 plus L. Now, at 5 radians per second, the

value of this transfer function is 1 by 1 plus L of j 5 and the magnitude of this has to be

less than or equal to 10 dB minus 10 dB in order for us to reject the output disturbance.

And, as we discussed in the previous clip, this equation essentially represents a certain

region in the Nyquist plot or equivalently in the Nichols plot where the loop gain L can

lie. And the boundary of that region is given by the red curve that has been plotted here.

Now, such a boundary can be plotted using what is known as a QFT toolbox. So, by

using this software we can determine the permissible values of phase and the permissible

values of gain for which we can achieve the specified performance requirements as far as

output disturbance rejection is concerned.

And this boundary is called as the output disturbance rejection bound. So, this red curve

is known as the output disturbance rejection bound and it divides the complex plane of

the loop gain L into 2 halves. One is the area which has been shaded by this gray color,

here  which  is  the  area  within  which  a  loop gain  should  not  lie  for  it  to  satisfy the

particular performance specification as far as output disturbance is concerned.

Therefore, for it to reject output disturbance by 10 dB the loop gain has to assume values

in the area above the shaded part. And the boundary of that shaded part is what is known

as  the  output  disturbance  rejection  bound.  Now  likewise,  we  also  have  an  input



disturbance rejection bound. We know that at 5 radians per second we want the input

disturbance to be rejected by 99 percent and the transfer function that relates the input

disturbance to the output is given by P by 1 plus L.

So, if you were to evaluate  this transfer function at  5 radians per second or in other

words compute p of j  5 divided by 1 plus L of j  5 and the magnitude  of this.  This

magnitude should be less than or equal to 0.01. Now once again, this is an inequality at

represents a certain region in either the Nichols plot or the Nyquist plot which essentially

tells  us the permissible  values of the magnitude  and the phase of the loop gain that

allows for the particular inequality to be satisfied.

So, if  we were to plot the Nichols plot here,  this  red curve once again indicates  the

boundary of this permissible region. In other words if loop gain lies anywhere in this part

that has been shaded gray, then this inequality will not be met. Hence, this red curve here

essentially  represents  the  boundary  of  the  region  which  ensures  that  this  particular

performance specification is just met.

And this red curve demarcates a complex plane into 2 halves once again, the gray half

which is the region in which the loop gain should not lie in order for it to satisfy the

output disturbance rejection specification. And the white half in which the loop gain is

allowed to lie in order for it to satisfy the input disturbance rejection specification.

The third specification is of stability, we are interested in stability at all frequencies that

we might where we are interested in performance as well. And the stability specification

namely that the maximum value of the transmission function should be less than or equal

to 3 dB results in what is known as the stability bound. Just as we had a performance

bound either for output disturbance rejection or for input disturbance rejection which

were  the  2  red  curves  in  their  respective  plots.  We have  a  stability  bound  which

represents the curve on which the magnitude of the transmission function is exactly equal

to 3 dB.

And this closed curve divides once again the Nichols plot into 2 parts, one is the part

inside the curve where the magnitude of T is greater than 3 dB and the other is the part

outside this curve where the magnitude of T is less than 3 dB.



Hence, for us to satisfy the stability specification at this particular frequency namely 5

radian per second, the white area is the area in which the loop gain is allowed to lie. If

we put all these bounds together we get a graph that looks something like this. The first

curve here corresponds to the output disturbance rejection bound. The second curve here

represents  the  input  disturbance  rejection  bound  and  the  closed  circular  curve  here

represents this stability bound.

(Refer Slide Time: 23:33)

Now, the same has also been plotted in the graph on the left, the output disturbance of

rejection bound, the input disturbance of rejection bound and the stability bound have all

been indicated. Now, in order for the output disturbance rejection to be met the loop gain

should lie in this particular area. In order for the input disturbance rejection specification

to be met the loop gain should lie in this particular area that I am currently shading which

includes significant parts of the area where the loop gain can lie in order to satisfy the

output disturbance specification.

In order for the stability specification to be met, the loop gain can lie in the area that is

outside of this circle which also once again overlaps partially with the area where the

loop gain can lie for it to satisfy the input and output disturbance rejection specifications.

In order for the loop gain to simultaneous satisfy all  these 3 specifications, it  should

essentially  lie  in  an area  that  is  the intersection  of  the  3 areas  namely  the  area,  the

permissible area for it to satisfy input disturbance rejection spec, the permissible area for



it to satisfy the output disturbance rejection spec and the permissible area for it to satisfy

the stability specification.

And  that  area  is  obtained  by  taking  the  intersection  of  these  3  bounds  and  that  is

indicated by this new red curve that is shown here. And this new red curve once again

divides up the complex plane into 2 parts, one is the plane within which the loop gain

should not lie, in order for it to simultaneously satisfy all the 3 specifications. And other

this is the region in which the loop gain is allowed to lie and this ensures that it will

simultaneously satisfy all the 3 specifications of 2 output disturbance and the stability

specification at 5 radians per second.

Now,  we  have  undertaken  computation  of  the  bounds  at  one  particular  frequency.

Determination of it is intersection at the particular frequency and hence determination of

the permissible area in the Nichols plot, where the loop gain can lie at that particular

frequency. We have to now repeat this at other frequencies of interest to us within the

frequency range that the disturbance is affect our system.

(Refer Slide Time: 26:01)

So, this has now been repeated at 10 radians per second and the 3 bounds have been

indicated here. The output disturbance rejection bound is given by this blue curve, the

input disturbance rejection bound is given by this closed curve and the stability bound

has been given by this other closed curve.



And the permissible area within which the loop gain can lie  which obtained by first

taking the intersection of all these curves that divides the complex plane once again into

2 parts. The part above this curve is the part where the loop gain can lie so, that the loop

gain simultaneously satisfies all the 3 specifications. And the part below it is a part where

it should not lie for it to satisfy simultaneously all these specifications.

(Refer Slide Time: 26:45)

This has also been repeated at one lesser frequency, namely at 0.1 radian per second.

Now, at this frequency the output disturbance rejection specifications given by this black

curve here; so, the loop gain should lie above this black curve for it to reject the output

disturbance by the specified amount at that frequency. The input disturbance rejection

specification has been given by this other black curve here. So, the loop gain should lie

above this curve for it to satisfy input disturbance rejection spec.

And for it to satisfy a stability specification it should lie outside this circle and you see

that there is no real intersection between these 3 curves. And the permissible area within

which the loop gain can lie at 0.1 radian per second is essentially the area that is above

the highest of these curves which is essentially the bound set by the output disturbance

rejection specification. And that has been shown in this graph here.

So, the area above 60 dB is the area in which the loop gain can lie at 0.1 radian per

second for it to simultaneously satisfy all the 3 specifications at this particular frequency.

Now, our requirements on performance stop at 10 radian per second, but there is no



guarantee that we can stop worrying about stability also at 10 radian per second because,

the gain might cross over at a frequency well beyond 10 radian per second. And hence, to

be sure that at that frequency where the gain crosses over we have our particular stability

specification being met.

(Refer Slide Time: 28:34)

We pick one more frequency which is much bigger than a frequency at which we are

interested in performance. So, we have picked one more frequency namely 100 radians

per second and at this frequency we are not concerned about performance at all, we are

concerned  only  about  stability.  So,  we  have  therefore,  indicated  that  is  stability

consideration by means of this cyan colored closed curve.

So, to summarize at 0.1 radians per second the loop gain should lie above the black color

curve in order for it to simultaneously satisfy the disturbance rejection specs as well as

the stability spec. At 5 radian per second, it should lie the loop gain should lie above the

red curve for it to satisfy stability  spec as well  as disturbance rejection specs.  At 10

radian per second, it should lie above the blue color curve sorry to satisfy once again the

stability and disturbance rejection requirements.

At 100 radians  per  second,  there  is  no performance requirement  because we are not

concerned about  disturbance  rejection  beyond 10 radian  per  second,  but  we are still

concerned about stability. Now this number 100 was rather arbitrary, it  could be any

number that  is  beyond 10 radian per  second and at  that  particular  frequency we are



concerned only about the stability bounds. And it does not matter what number we pick

because, the shape of the bound will be independent of the number that we pick when we

have no uncertainty associated with the plant.

And in this case we have picked 100 radian per second and that this frequency were

concerned only about stability. So, for the system to be stable at  this high frequency

whatever number it might be it should lie outside this cyan colored bound. The next step

for us is to execute our control design or in other words determine the structure of the

controller  that ensures that the loop gain is within these particular regions at each of

these frequencies.

In order to execute the design we once again use what is known as the QFT toolbox

which is a priced software that runs along with MATLAB, but if you have access to this

toolbox then you can open a dialog box.

(Refer Slide Time: 30:57)

Where the same bounds are represented and on top of these bounds we have also super

post the Nichols plot of the plant itself.  The software indicates through appropriately

colored circles, the loop gains at each of the frequencies of interest to us. For instance

this red circle indicates the loop gain at 0.1 radian per second and the red bound here

corresponds to the bound that 0.1 radian per second. The green circle indicates the loop

gain at 5 radians per second, while the green bound indicates the bound on the collective

performance and stability  at  5 radians per second. The blue circle  here indicates  the



bound the value of the loop gain at 10 radians per second and the cyan colored circle

indicates the value of the loop gain at 100 radians per second.

Now, we see that almost every single specification is being violated by just the plant

alone and in particular the red circle which is a loop gain at 0.1 radian per second is well

below the red bound and hence in  the area  that  is  not  permissible  at  0.1 radian per

second. The green circle is well below the green bound, the blue circle is well below the

blue bound and so, on and so, forth. This is the situation when our controller C of s is

equal to 1 in which case our loop gain is simply be equal to the plant transfer function.

Now, the software allows us to interactively change the gain of the controller and add

different elements to the controller namely poles and zeros including complex poles and

complex zeros that will allow us to change the appearance of the loop shape.

(Refer Slide Time: 32:52)

For instance, if we increase the gain of the controller by a factor of 100, the whole of the

Nichols plot gets 2 stop. So, if you remember the Nichols plot earlier look something like

this and it got pushed up by 40 decibels as a consequence of choosing a controller of this

particular structure. Now, if we choose this we note that our red circle which represents a

loop gain at 0.1 radian per second will sit exactly on the red bound. And therefore, will

just satisfied the specifications at 0.1 radian per second. The green circle; however, still

will be below the green bound, the blue circle will be below the blue bound.



And what is worse? When we look at the Nichols plot we see that it is encircling the

critical  point  namely  0 dB and minus 180 degrees  in  the wrong direction.  On other

words, at the gain cross over frequency the phase lag is greater than minus 180 degrees

and therefore, our close loop system is going to be unstable with a simple proportional

controller of gain 100.

So, the first thing that we do is to ensures stability and to do that we move this we try to

move the entire Nichols plot of the loop gain to the right. We know that since a 0 adds

phase lead, we choose a 0 for the controller and that will shift the entire Nichols plot to

the right.

(Refer Slide Time: 34:21)

So, once we choose a 0 at s is equal to plus 1 so, this can be done in an interactive

manner. So, we have chosen a 0 at s is equal to plus 1. We see that a Nichols plot has

moved to the right, but it still passes through this forbidden circle within which the loop

gain should not pass in order for the transmission functions maximum value to be less

than or equal to 3 dB.

Hence, we are still not at stable enough for our design to be concluded; however, this 0

has had the beneficial effect of pushing the green circle which represents the loop gain at

5 radians per second above the green bound. And hence at 5 radians per second the loop

gain is within the permissible area at that particular frequency. It has also pushed the blue



circle above the blue bound which indicates that at 10 radians per second the loop gain is

within the permissible area at that particular frequency.

The only concern now is with stability because, the loop now still passes through the

forbidden circle. And which indicates that our transmission function will assume a value

will assume a magnitude it is greater than 3 dB. And hence our close loop system will

have a much smaller phase margin and what we had initially planned for. To address this

issue the try to move the Nichols plot further to the right which essentially means that we

have to add a phase lead. So, we choose to multiply our controller transfer function with

another 0.

(Refer Slide Time: 35:56)

So, this time the 0 has been chosen to be at 5 radians per second and as a consequence

we note that our Nichols plot gets transformed to the curve that has been shown by the

dotted line here.  Now, when we examine this  curve we see that  all  the performance

specifications are met.

The red circle which is the loop gain at 0.1 radian per second is exactly on the red bound.

The green and blue circles are above their respective bounds and hence the loop gains are

higher than what they need to be in order for all the specifications to be met at those

particular frequencies. And this curve also is not inside the forbidden circle which is

necessary for stability to be satisfied.



So, in principle this controller satisfies all the specifications, but the problem with it is

that it is a non causal transfer function. So, we only have 2 zeros and hence a numerator

polynomial will be of degree 2 and we have no denominator polynomial at all and hence

you have to add to controller poles for the sake of causality. We should make sure that

we add these poles  in  such a  manner  that they do not affect  the performance at  the

frequencies of interest to us. And since the frequencies of interest as far as performance

are up to 10 radians per second we choose to add the pole for the controller at a much

higher frequency.

(Refer Slide Time: 37:20)

In this case, the controller pole has one controller pole has chosen to be added at 150

radians per second and as a consequence the Nichols plot changes to curve that has been

shown here. Once again we see that the loop gain is within the permissible regions in for

all the frequencies that we have considered and even at 100 radians per second the loop

gain is outside the forbidden circle.

But, still  adding a single pole for the controller  does not make the controller  transfer

function completely causal because, the numerator is of degree 2 you have to add one

more pole. And since far away poles do not significantly affect the magnitude or phase

characteristics at lesser frequencies, we choose to add a second pole at 500 radians per

second.
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And, we fine tune the position of the first pole we initially had placed it at 150 radians

per second and a software here allows us to interactively change its position in order to

fine tune the loop shape. So, each time the location of this pole is changed, the software

will reveal the manner in which a loop shape changes. And by interactively doing this I

discover that the pole at s is equal to 40, at omega equal to 40 and the pole at omega

equal  to  500  ensure  that  all  the  performance  specifications  have  been  met  and  the

forbidden circle which is required for stability is just avoided by the loop shape.

So, with this we are done with the control design using the Nichols plot because, this

particular controller is firstly, not only causal. But, also places the loop gain at each of

the frequencies of interest towards namely 0.1 radian per second, 5 radian per second, 10

radian per second and 100 radian per second in the regions that are permissible at each of

these frequencies. In the next clip we shall take a look at performing control design in the

case of an uncertain plant. In such a case we would need to design a 2 degree of freedom

control system using the Nichols plot.

Thank you.


