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Hello in the previous clips, we have taken a look at a one degree of freedom control and

this was performed primarily using a bode plots. Although root locus was also employed

to look at stability issues during the design of one degree of freedom control systems and

subsequently we looked at 2 degree of freedom control and in this, we employed the root

locus technique in order to design robust control systems, that ensure that the variation in

the  transient  response  of  a  closed  loop  system  is  within  specified  limits  owing  to

variation in the or owing to variation or uncertainty in the model of the plant.

However we discussed that, as elegant and intuitive as root locus based design approach

was, it is not possible to represent the constraints imposed on the closed loop system by

specifications such as input disturbance rejection, output disturbance rejection and so on,

when one performs design using the root locus. Hence, the topic of a few clips starting

from the present clip, is to perform 2 degree of freedom control design, where one is not

concerned  only  about  achieving  robustness  of  the  overall  transmission  function  to

variation in plant parameters, although this would also be one of the specifications.

But in addition to that there are other specifications as well. For instance, I have drawn

the block diagram of the control system that, we would be interested in over the next few

clips.



(Refer Slide Time: 01:57)

If you look at this feedback block diagram, you see that the control system is afflicted by

output disturbance D out, input disturbance D in and then there is also a certain reference

that needs to be tracked and the frequency content of D out and D in and the reference,

all are may all be very different and the expected tracking performance in tracking the

reference or the rejection performances for rejecting D in or D out in their particular

frequency ranges might also be quite different.

And on top of  all  of  this  we may have an uncertain  plant.  So,  a  plant  whose,  pole

locations and the gains and the zero locations might be uncertain. So, the plant model

itself has some uncertainty associated with it. So, despite all of this, despite the presence

of plant uncertainty, despite the presence of an output disturbance, despite the presence

of an input disturbance, we want our output X of the overall control system to reject

these disturbances by the specified amounts and track this reference by with the specified

degree of accuracy.

So, how does one design the feedback controller and the pre filter in order to solve a

problem of this kind? So, the first step in our attempt to address problems of this degree

of complexity is to come up with a suitable design tool that will show us in a very clear

and  transparent  manner  the  constraints  imposed  by  each  of  these  performance

specifications on the performance of the overall control system. So, if you recollect the



performance  of  the  control  system is  intimately  tied  to  the  loop  gain,  which  is  the

product of the controller in the plant transfer functions of our open loop system.

The  higher  the  loop  gain,  the  better  is  our  performance,  in  terms  of  rejection  of

disturbances and achieving robustness to variations in plant parameters. And the loop

gain is in general a complex number. It has a magnitude and it has a phase. Now each of

the  performance  specifications  namely,  the  rejection  of  output  disturbances  and  the

rejection of input disturbances and the robust tracking requirements, impose constraints

on the loop gain or in other words, the magnitude and the phase of the loop gain, how to

assume values only in certain specified ranges in order for them to reject disturbances or

track references according to the specifications.

So, what one wishes therefore, is a tool that will allow us to clearly depict the constraints

imposed  on  the  loop  gain  of  our  feedback  system  by  the  different  performance

specifications that have been given to us. Now, what are the different design tools that

we have looked at so, far? We have looked at the Nyquist plot and then subsequently, we

looked at the bode plot and the third design tool that we have looked at is the root locus.

Now, right away we can disqualify root locus as a good candidate for depicting these

restrictions on the loop gain imposed by the performance specifications, because the root

locus is not a good tool for depicting performance specifications. So, what that leaves us

with is the Nyquist plot and the bode plot, it turns out that despite the fact that the bode

plot has significant advantages over the Nyquist plot in terms of the appearance of the

loop gain in a bode plot namely, that the asymptotic loop gain looks like a bunch of

broken straight lines and the product of the controller and the plant gets converted to a

summation operation, when one uses the bode plot for doing design.

It turns out ironically that, when it comes to representing the constraints imposed on the

loop gain by the different performance specifications. The Nyquist plot is actually better

than the bode plot. But it also turns out the despite the superiority of the Nyquist plot

compared to the bode plot, in terms of depicting the constraints though, the loop shape

itself  might be non intuitive in it  is appearance,  the constraints  can be depicted in a

transparent and clear manner in a Nyquist plot compared to a bode plot. 

But despite this advantage, what you would see is that the clarity that, one can get with a

Nyquist  plot is still  not adequate enough for us to execute our control  design in the



presence  of  multiple  performance  requirements.  In  terms  of  multiple  disturbance

rejections  and achieving  robustness  to  plant  parameter  variations  and also  achieving

robust tracking of certain reference signals within certain specified ranges.

So, what we shall  therefore, introduce in this clip is a new tool which is called as a

Nichols plot, which allows us to address some of the important limitations of the nyquist

plots  and  therefore,  enables  us  to  represent  the  in  constraints  imposed  by  the

performance specifications in a transparent manner.

To get started let us first revisit the bode plot and try to understand, why the bode plot is

not that is good of a tool, when it comes to representing the constraints imposed on the

loop gain by the different performance specifications. 

(Refer Slide Time: 07:44)

So, I have shown here the same block diagram on the left and on the right, I have plotted

the  bode plot  of  the  open loop system.  Now let  us  take  one  particular  performance

specification for instance we are let us say interested in output disturbance rejection.

Now, the transfer function that relates the output X to the output disturbance D out is

given by X by D out is equal to 1 by 1 plus L of j omega, where L is equal to C times P

of j omega. So, if we want to reject the output disturbance by a certain amount then, what

we generally insist, is that the magnitude of X by D out, should be which is in a sense

equal to the magnitude of 1 by 1 plus L of j omega, should be less than or equal to some



small number epsilon o, the subscript o is intended to indicate that, this is the output

disturbance that we are talking about.

Now, when we undertook control design using the, bode plots several lectures back, what

we assumed was that this number epsilon o was a very small  number. If the number

epsilon 0 is a very small  number then in order for 1 by 1 plus L to be a very small

number, we need to have the magnitude of L to be much greater than 1. Now in this

limit, we can approximate the term 1 by 1 plus L of j omega to be approximately equal to

1 by L of j omega.

And we can ignore the term, 1 in relation to the magnitude of the loop thing L and hence

make  this  approximation,  if  the  result  that  you  would  have  the  corresponding

performance constraint on the loop gain to be that, 1 by L of j omega magnitude of 1 by

L of j omega should be less than or equal to epsilon 0 or equivalently the magnitude of L

of j omega should be greater than or equal to 1 by epsilon 0. Now this performance

constraint can be very readily shown on the bode plot.

So, if the frequency range of interest is within this shaded region, along the X axis of the

bode plot, then within the shaded region, we need to have the magnitude of the loop gain

be greater than or equal to 1 by epsilon 0. So, if I were to draw a horizontal line here,

which corresponds to the magnitude being equal to 20 log of 1 by epsilon 0, then in this

frequency range, we need the loop gain to assume a magnitude that is greater than the

shaded region here.

 And if that is done, that we will be able to reject the output disturbance in this frequency

range by the desired extract now this approximation works fine as long as we assume

epsilon 0 to be a very small number much smaller than unity, but suppose epsilon 0 is a

small number, but not exceedingly small. So, let us say instead of epsilon 0 being 0.01 or

0.001, we are with epsilon 0 being 0.5 or 0.4 or in other words, some small number that

is  still  comparable  in  magnitude  2  unity,  then  you  can  easily  appreciate  that  this

particular approximation cannot be made.

This  approximation  works only under  the condition  that,  the term 1 plus  L is  much

greater  than  unity,  but  that  is  not  going  to  be  the  case,  when  our  performance

specification is such that epsilon 0 is not a very small number. So, in such a case the

actual constraint on the loop gain is given by the equation magnitude of 1 plus L of j



omega should be greater than or equal to 1 by epsilon 0. This is the correct constraint that

the loop gain has to satisfy, in order for it to reject a disturbance by the desired specified

amount epsilon 0.

Now, this equation has multiple values for the magnitude and a phase of the loop gain

that can satisfy it. To see this, let us first substitute the loop gain L of j omega as some

magnitude L and some phase e power j phi. So, let phi be the phase of the loop gain and

small l be the magnitude, in which case you would have 1 plus l of j omega to be equal to

1 plus l cos phi plus j times l sin phi and the magnitude of this entire term, which is

essentially 1 plus capital L of j omega should be greater than or equal to 1 by epsilon 0.

So, the magnitude of the term given here is essentially given by square root of 1 plus l

cos phi the square plus l square sin square phi, it is essentially square root of the real part

square of the real part plus the square of the imaginary part and that should be greater

than  or  equal  to  1  by  epsilon  0.  Now let  us  first  consider  the  equality  in  order  to

determine the minimum permissible values of the loop gain, that satisfy the specified

performance requirement. 

So, if you consider only the equality and not the inequality, we would have square root of

1 plus l cos phi the square plus l square sin square phi to be equal to 1 by epsilon 0. Now

if you are given an equation of this kind, we note that for each particular value of phi,

there exist a particular value of small l that satisfies this equation. Hence, if epsilon 0

happens to not be a very small number, but a number that is comparable to unity, then for

each particular  value  of  phase,  which  I  which,  I  shall  indicate  by a  dot  here  in  the

complex plane, there exists a certain magnitude, which is indicated by the blue dot here

beyond which the performance specifications are met.

For a different value of phase, which are indicate by a different red dot in the phase plot

of  the  bode  plot.  There  exists  a  different  magnitude  at  which  beyond  which  the

performance  requirements  are  met  at  a  particular  frequency  omega,  where  we  are

interested in rejecting the disturbance. Now for different possible values of phase, which

are indicate by a different circular dots, there exist different magnitudes for which the

equation that I have indicated here and I now, underlining with the blue marker is going

to be met. 



Now, I have a continuum of angles and corresponding to that, I have a continuum of

magnitudes at which this equation is met and beyond which this, inequality that are now

underlining with the blue marker is going to be met. So, all these blue dots are going to

essentially merged together, when we are trying to represent them together and they are

going to end up (Refer Time: 15:30) and becoming a band and likewise all these red dots

are going to merge together and end up looking like a band.

And this one is to one relationship between the magnitude and a phase that together

satisfy the equation that, we have at the right extreme gets lost, when you are trying to

represent the constraint imposed by this disturbance rejection specification on the loop

gain  of  the  system.  Hence  we  cannot  independently  point  out,  the  magnitude  for  a

specified phase at which this equality is valid and beyond which, this inequality becomes

valid and this loss of information happens, because we are not able to separately indicate

the  desired  magnitude  at  a  specified  phase  beyond  which,  the  disturbance  rejection

performance is going to be met using the bode plot.

Now, the same problem also exists with the, bode plot when we are trying to specify

robust tracking requirements. So, for instance the tracking error E is related to the output

X by the transfer function, which is identical to that of the output disturbance namely 1

by 1 plus L of j omega. So, if the tracking errors magnitude has to be within a certain

limit which, I shall call as epsilon r, then corresponding to that, I will have 1 by 1 plus L

of j omega, should be greater than or equal to 1 by epsilon r. 

Now, once again for each particular value of the phase of L, there exists a magnitude of

L beyond which  its  inequality  is  met.  And this  one  to  one relationship  between  the

magnitude  that  corresponds  to  a  certain  phase  of  the  loop  gain  beyond  which,  this

equation is valid is lost, when we are trying to depict this inequality in the case of a bode

plot.

All these problems actually become far worse, when we are confronted with a plant that

has uncertain dynamics. So, if there is a uncertainty associated with the gain of the plant

or the locations of the poles of the zeros of the plant then,  we do not have a single

transfer function to represent the dynamics of the plant. If you have a single transfer

function for the plant then, we have a single curve for the loop gain and let us say, I shall



draw the magnitude curve here to indicate the magnitude characteristics of the loop gain

for a plant which has no uncertainty.

Now, suppose we have a plant that is uncertain, then for a certain specific value of gain.

The curve that, I have drawn would be a valid for a higher gain, the curve would be

higher up, for a lower gain, the curve would be lower down for uncertainty associated

with the location of the poles of the plant, then we would have a different curve and for

uncertainty  associated  with  the  zeroes  of  the  plant  we would  have  another  different

curve. So, in essence therefore, you would have a bundle of loop gains with each a curve

within that bundle, corresponding to the loop gain for a certain specific combination of

parameters of the uncertain plant.

The same thing also happens, when we are looking at the phase characteristics. So, the

nominal phase characteristics of the plant might have a single curve, but when there is

uncertainty associated with either the pole location or the 0 location of the plant then,

these phase responses will also show a certain spread. So, for each particular permissible

location for the pole of the plant, you will have a certain curve and similarly for each

particular location for the permissible location for the 0 of the plant, you will have a

certain curve.

So, once again the phase characteristics get transformed from a single curve to a bundle

of curves. Now the question is how do we perform the design when we are given a

bundle of loop gains in order to meet both the performance specification as well as a

stability specification. Now a stability specification, now becomes slightly more difficult

to impose because even if, we were to go with a certain phase margin the question still

remains as to which one of the curves within this bundle of phase curves do we apply the

phase  margin?  Because  each  of  the  curves  within  this  bundle  has  a  different  phase

margin and the worst case phase characteristic, need not necessarily correspond to the

worst case magnitude characteristic.

Hence  it  is  not  possible  for  us  to  extract  just  a  single  curve  from  the  magnitude

characteristic and the corresponding phase characteristic of that loop gain and just design

our feedback control system for just that curve alone and hope that our design is going to

be valid for all other curves. If even if, it is likely to work, it might result in a overly



conservative  design  because,  the  worst  case  magnitude  characteristic  need  not

necessarily correspond to the worst case phase characteristic.

Hence  you  begin  to  now appreciate  the  difficulties  in  representing  the  performance

specifications  for  example,  in  output  disturbance  rejection  or  for  reference  tracking,

when we are using bode plots and also the difficulty in representing the different possible

values of the loop gain, that the overall system can assume owing to uncertainty in the

plant dynamics, because in the presence of plant uncertainty we do not have a single

curve for the magnitude and a phase characteristics of the loop gain.

But rather we have a bundle of curves with each curve corresponding to a particular

combination of the parameters of the plant and the question us to, which one of these

curves do we take in order to perform our design or do we or which is the so called worst

case curve for which we, we need to perform the design? All become difficult to resolve,

when one adopts the bode plot for performing design in the case of uncertain systems,

where multiple performance specifications have been provided. 

Now, let us briefly revisit the plot which in the beginning, we argued was a little inferior

to the, bode plots, when it came to performing control design and that is the Nyquist plot,

what we will see ironically is that despite the Nyquist plot of a certain transfer function

being non intuitive and despite the fact that the Nyquist plot of the controller times, the

plant may not be easily visualized, if you have given the Nyquist plot of the controller

and the plant separately. 

When it comes to depicting the constraints imposed on the loop gain with a different

performance specifications,  the Nyquist  plot  out does the bode plot  in  terms of  it  is

ability to depict these, constraints in a transparent manner. Let us see that by considering

for instance the constraints on rejection of output disturbance, exactly in the manner as

we have done here. 



(Refer Slide Time: 23:05)

So, I shall first plot the Nyquist plot, it is essentially plots, the real part of the loop gain L

of j omega with respect to the imaginary part of the loop gain L of j omega. 

Now, any arbitrary point in this complex plane of imaginary part of L versus the real part

of L, essentially represents the complex number L of j omega. Now if we, revisit the

requirement  on  the  loop  gain  in  order  for  it  to  satisfy  our  disturbance  rejection

specification, we had that the magnitude of 1 plus L of j omega, has to be greater than or

equal to 1 by epsilon 0. This was the specification and we had difficulties in representing

the  specification  in  a  transparent  manner  in  the  bode  plot,  because  this  1  is  to  1

correspondence between the magnitude of the loop gain and the phase of the loop gain at

which, the equation 1 plus magnitude of 1 plus L equal to 1 by epsilon 0 is met was not

possible.

This problem; however, goes away when we used the Nyquist plot, because if this dotted

line represents a complex number L of j omega, we know that a critical  point in the

Nyquist plot is the point minus 1 comma 0, we note that the complex number that starts

from minus 1 comma 0 and ends at the point l of j omega essentially represents, the

complex number 1 plus L or in other words 1 plus L of j omega. Now the magnitude of 1

plus L refers to the length of this line segment, the length of this line segment is given by

the magnitude of the complex number 1 plus L of j omega.



Now, let us first focus on the equation magnitude of 1 plus L of j omega is equal to 1 by

epsilon 0. Now for this equation, we know that the magnitude of this complex number 1

plus L has to be a constant equal to 1 by epsilon 0. So, if I were to draw a circle here

centered at the point minus 1 comma 0 and of radius equal to 1 by epsilon 0, then all the

points on the boundary of the circle on the periphery of the circle are, points that satisfy

this particular equation.

So, we are now able to clearly indicate the magnitude and the phase combinations of the

loop gain, that satisfy the equation magnitude of 1 plus L is equal to 1 by epsilon 0, how

about the inequality? That we are interested in namely magnitude of 1 plus L is greater

than or equal to 1 by epsilon 0 that essentially refers to, all the complex numbers that lie

outside of the circle. So, the points on the circle along with the points that lie outside the

circle are the points that satisfy, the inequality magnitude of 1 plus L greater than or

equal to 1 by epsilon 0.

So, we see therefore, that we can very clearly depict the combination of magnitude and

phase values  of loop gains  that are  permissible  for us to be able  to  reject  an output

disturbance by the amount epsilon 0. The same argument also holds, when we are trying

to minimize the tracking error to a certain amount epsilon r, now the transfer function

that relates a tracking error to the output as we discussed in the previous slide is once

again given by 1 by 1 plus L of j omega. If you want the magnitude of this will be less

than or equal to epsilon r, where epsilon r is another small number, but not so small that,

we can ignore unity in comparison with L of j omega.

Then we would have the magnitude of 1 plus L of j omega should be greater than or

equal to 1 by epsilon r. Now this inequality represents the region in the complex plane of

the Nyquist plot, that is outside of a circle of radius 1 by epsilon r therefore, in order for

us to track references with error less than or equal to epsilon r, we need to choose our

loop gain to be some point in the Nyquist plot, that is within this region that is outside of

the circle of radius 1 by epsilon r.

In a similar manner, if you want to suppress the output disturbance to a factor of epsilon

0, we should choose a loop gain that assumes values that are outside of a circle of radius

1 by epsilon 0 and with a center being a minus 1 comma 0. Now if you want, if you want

to consider the input disturbance specification the transfer function, it relates to the input



disturbance is given by X by D in is equal to magnitude of P by 1 plus L. So, P of j

omega divided by 1 plus L of j omega and we might want this to be less than or equal to

a  certain  other  small  number  epsilon  in,  where  the  subscript  in  represents  the  input

disturbance the rejection requirement.

So, once again if we have no uncertainty associated with the plant, then we can write this

as magnitude of 1 plus L of j omega, should be greater than or equal to 1 by epsilon in

times magnitude of P of j omega. So, in the frequency range omega of interest to us,

where the input disturbance affects our plant, we need to choose the loop gain to lie in a

region that is outside of a circle of radius given by 1 by epsilon in times magnitude of P

of j omega and centered at a point minus 1 comma 0.

So, if the loop gain assumes values outside the circle, we are then guarantee to be able to

reject the input disturbance by the specified amount epsilon in. Now as far as depicting

stability is concerned that, 2 can be done in a fairly straightforward manner using the

Nyquist plot. In fact, the notion of the phase margin and the gain margin essentially arose

from the Nyquist plot and the points at which the, Nyquist plot of a certain open loop

system crosses the negative real axis.

But  there  is  one  other  alternative  way,  whereby  we  can  represent  the  stability

specification in a Nyquist plot. So, if we go back and look at the threshold of instability

in a Nyquist plot so, I am drawing the Nyquist plane here, it is the real part of L versus

the imaginary part  of L and the critical  point minus 1 comma 0 is  located here if  a

Nyquist plot of the loop gain, it just passes through the point minus 1 comma 0, then our

closed loop system is on the threshold of instability.

So, at this frequency which I shall call as omega gain crossover frequency, we would

have the magnitude of L to be equal to 1, because it is passing through the point minus 1

comma 0 and the phase of L will be equal to minus pi radians. Now what this indicates?

Therefore,  is  that  at  the  point  omega  gc  at  the  frequency  omega  gc  the  overall

transmission function t which relates the output to the reference which is given by the

expression T, is equal to L by 1 plus L and this in turn is given by 1 times e to the power j

times minus pi, because the phase of L at the gain crossover frequency is equal to minus

pi divided by 1 plus 1 times e to the power j minus pi.



Now, we know that e to the power j minus pi is essentially equal to minus 1. So, the

transmission function will be equal to minus 1 by 1 minus 1. Hence the magnitude of T

at omega gc, when the Nyquist plot of the loop gain, exactly passes through the point

minus 1 comma 0 will be equal to infinity, if on the other hand our Nyquist plot was such

that, it did not really result in our closed loop system being on the threshold of instability,

but it was actually a stable system in which case, the Nyquist plot looks the way it has

been depicted in the blue dotted curve here.

We would have the magnitude of L to be less than 1, then the angle of L is equal to minus

pi, hence at the gain cross over frequency, which is the frequency at which the magnitude

of the loop gain, becomes equal to 1 unit the phase of L will not be exactly equal to

minus 180 degrees, but the phase of L which is given by this angle here, will be actually

greater than minus pi radians and in such a case the magnitude of T at the gain cross over

frequency will be less than infinity and it is evident from this Nyquist plot that, the angle

made by the loop gain, when it is magnitude is 1 with the negative real axis is essentially

given by the phase margin phi. 

So, if we compute magnitude of T at the gain crossover frequency, you would have it to

be equal to the magnitude of 1 e power j times minus pi plus phi divided by 1 plus

magnitude of 1 plus 1 e power j times minus pi plus phi. Now we can show that, when

the phase margin phi increases, the magnitude of the transmission function drops. So,

when phi is equal to 0, we saw that the magnitude of the transmission function becomes

equal to infinity. 

And when the phase margin phi increases the magnitude of the transmission function

progressively drops, hence one alternate way of a specifying the stability of the closed

loop system, that is different from the notions of the phase margin in the gain margin is

the magnitude of the transmission function. The maximum magnitude of the transmission

function,  that  we are  willing  to  allow, if  we prevent  the  transmission  function  from

assuming values greater than a certain specified amount, we are essentially placing a

lower limit on the permissible phase margin of our system, because if our phase margin

is larger then, our transmission function is going to be lesser in it is magnitude.



(Refer Slide Time: 35:06)

And hence we are going to be guaranteeing a stability of our closed loop system. Now,

the relation between the transmission function T and the loop gain is given by T is equal

to L by 1 plus L and in the interest of stability, we wish to specify that the magnitude of L

by 1 plus L, which is the magnitude of T should be less than or equal to T max and we

see that this performance specification also can be represented as a certain permissible

region in the Nyquist plot, where the loop gain can be allowed to lie. 

To do that let us first rearrange, the left hand side of this equation as magnitude of L by 1

plus L being equal to magnitude of 1 by 1 plus 1 by L and that should be less than or

equal to T max and this in turn implies, that the magnitude of 1 plus 1 by L should be

greater than or equal to 1 by T max. Now if we were to draw the inverse of the Nyquist

plot or in other words, the real part of 1 by L versus the imaginary part of 1 by L, then

some point in this complex plane represents the complex number 1 by L.

And hence  the  phasor  connecting  the  point  minus  1  comma 0,  to  the  point  1  by  L

represents the complex number 1 plus 1 by L and if we want the magnitude of 1 plus 1

by L to be greater than or equal to the magnet of 1 by T max, what we are essentially

saying? Is that, we want the complex number 1 by L to lie outside of a circle centered at

the point minus 1 comma 0 and of radius given by 1 by T max. So, if I were to draw this

circle then the permissible values of 1 by L are the values that lie outside the circle in

order for our closed loop system to be stable by the specified amount.



Now, the permissible values of 1 by L, that are the values that are outside or on the

periphery of this circle here, correspond to certain permissible set of values of the loop

gain and those permissible set of values can be depicted in the Nyquist plot, just as we

depicted the permissible values from the loop gain for it to, either reject disturbances or

track references. 

Hence we see that the Nyquist plot can allow us to clearly represent the performance

specifications, in terms of disturbance rejection or in terms of robust tracking or in terms

of stability by indicating the permissible area within the Nyquist plot, where the loop

gain can lie in order for it to satisfy each of those particular requirements.

The last part that we would be interested as part of 2 degree of freedom control design is

to  design  a  control  system  that  achieved  a  certain  amount  of  robustness  to  plant

parameter variations. So, if you have an uncertain plant, P of j omega, then we would

have a magnitude of the plant and the phase of the plant being uncertain either or account

of the fact that the gain of the plant is uncertain or it is pole locations are uncertain or it

is 0 locations are uncertain.

Now, let us see whether this uncertainty can be represented effectively in the Nyquist

plot. If we were to plot the Nyquist plot of the loop gain, you would have the real part of

L versus the imaginary part of L. Suppose at the outset our controller was C equal to 1,

then initially our loop gain will be simply equal to P of j omega. Now P of j omega

represents a certain complex number in the Nyquist plot, now when the magnitude of the

complex number varies,  because of uncertainty in the gain of the plant this complex

number P of j omega either, increases or decreases in magnitude.

Now,  when  the  phase  of  the  complex  number  P  of  j  omega  changes,  because  of

uncertainty associated with the poles or the zeroes of the plant then, the orientation of

this complex number changes, hence the set of complex numbers P of j omega, that the

plant can assume due to uncertainties in it is structure is essentially depicted by this area

in the complex plane. So, these are the possible locations, where the complex number P

of j  omega can lie.  Now when we are about to design a controller  C, we would be

multiplying the complex number P with C. 

Now,  since  C  is  a  certain  fixed  complex  number  with  a  certain  fixed  phase  and

magnitude the effect of multiplying the plant complex number with that, of the controller



is to increase the size of the magnitude of P by the amount given by the magnitude of C

and change the phase of P by the amount given by the angle of C. So, in other words, our

area which represents, the locations where our complex number P of j omega can lie, we

will get distorted because of multiplication of P of j omega with C of j omega. 

So, it will get magnified and will get notated by a certain amount dependent on the phase

of the magnet of C and the angle of C. Now the fact that, the shape of this region within

which the values P of j omega can lie can change on account of multiplying P of j omega

with the controller transfer function C of j omega, is the one thing that makes the Nyquist

plot unattractive as far as dealing with uncertain plants is concerned. Apart from that,

when it comes to representing the constraints imposed on the loop gain by the stability

specifications or the performance requirements, the Nyquist plot is decidedly better than

the bode plot, because it clearly indicates the area in the complex plane, where the loop

gain l is allowed to lie.

The only  issue  with it;  however,  is  that  when we have  an uncertain  plant,  then  the

uncertain plant results in an area in the Nyquist plot, where the plant transfer function we

have a complex number P of j omega, can lie and when this area gets multiplied by the

controller transfer function C of j omega, the area gets expanded and rotated and now

assumes a different orientation and a different size compared to the size of the original

area and this variation in size that occurs, because of our controller transfer function is

what makes the nyquist plot and unattractive plot, when we are dealing with uncertain

plants, because we have not yet design the controller and we do not know exactly by

what amount it would amplify? Or rotate the area that is occupied by P of j omega in the

complex plane.

And hence in order to address this, one important problem, when we are trying to design

a  control  system for  uncertain  plants,  what  we would therefore  use? Is  essentially  a

distorted Nyquist plot, where instead of plotting the imaginary part of L versus the real

part of L, we would plot 20 times a logarithm of the magnitude of L versus the phase of

L. 
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So, the X axis of the new plot would be the angle of L and the Y axis of the new plot

would be the magnitude of L, but in a logarithmic scale.

So, 20 times logarithm of magnitude of L. So, if we were to choose this as the plane in

which, we represent our performance specifications, we can show that the area within

which,  the plant  transfer function P of j  omega can lie,  when we are dealing with a

uncertain plant. We will not change either it is size or it is orientation, when we multiply

it with a controller transfer function, it just gets translated in this plane, we shall return to

this  point  2  clips  down the  line,  but  at  this  juncture  it  suffices  to  mention  that  the

important motivation for us to distort the Nyquist plot.

And plot the angle of L, what system magnitude of L in the logarithmic scale? Instead of

plotting the real part of L versus the imaginary part of L, had to do with the fact that the

area within which, the complex number P of j omega can lie, when we are dealing with

an uncertain plant does not change, it is shape or does not change, it is orientation, when

multiplied with the controller transfer function. When it is represented in this particular

plot and this plot has a special name it is called the Nichols plot. 

So, just as the bode plot plots the magnitude of the transfer function L in the logarithmic

scale versus log of frequency and the phase of L versus log of frequency. This plot plots,

the magnitude of L in the logarithmic scale along the Y axis and the phase of L, along the

X axis so once again, we will discard the frequency information just, as we did in the



case of the Nyquist plot and just plot the magnitude versus phase. So, let us now briefly

look at the Nichols plots of some common transfer functions. 

The important points in a Nichols plot correspond to the point at which, the magnitude of

L becomes equal to 0 dB. So, that is indicated by this horizontal line here and the point at

which, the phase of L becomes equal to minus pi radians. So, the phase being equal to

minus pi and the magnitude being equal to 0 dB, corresponds to a certain point here and

this  is  the  critical  point,  the  way  in  which  the  Nichols  plot  of  a  certain  loop  gain

encircles, this critical point will determine, whether our closed loop system is going to be

stable or unstable.
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Now, let us look at the Nichols plots of some common transfer functions. In order to help

built  familiarity,  I  have  first  plotted  in  the  bode  plot  of  this  transfer  function  and

alongside it, I would plot it is corresponding Nichols plot. So, a first transfer function, we

are considering is P of s is equal to 10 by s plus 10 and we note that, the bode plot starts

with at with a gain of 0 dB and that the cornel frequency of 10 radian per second, the

bode plot will start reducing in magnitude at the rate of minus 20 dB per decade. 

So, the asymptotic bode plot would look something like this, where the corner frequency

is going to be 10 radians per second, the phase plot of course, starts at 0 radians and

asymptotically approaches minus 90 degrees or minus pi by 2 radians, because this is a

first  order plant,  now if  one way to plot the Nichols plot of this  plant 1 is trying to



essentially  plot  the  magnitude  characteristic  versus  the  phase  characteristic  and  the

Nichols plot looks something like this.

When the loop gain is close to 0 dB, the phase is also close to 0 and as the loop gain

reduces in magnitude the phase also becomes more negative and as the loop gain tends to

minus infinity the phase tends to minus 90 degrees and asymptotically approaches it and

we note that, the critical point namely 0 dB and minus 180 degrees is quite some distance

away from the Nichols plot and hence a first order system can never be destabilized by

employing proportional controllers. 

The second example, I have considered is a second order system namely P of s is equal

to 10 by s times s plus 10. So, in the low frequency end, the bode plot of this plant will

have a minus 20 dB per decade role of on account of the presence of the integrating term

here and at the frequency corner frequency of 10 radian per second. The characteristic

will  roll  off  at  the  rate  of  minus  40 decibels  per  decade  as  far  as  the  phase of  this

characteristic is concerned you see that,  it  starts at minus 90 degrees, because of the

presence of the integrator.

And  asymptotically  approaches  minus  180  degrees,  because  a  term 1  by  s  plus  10

changes it is phase from 0 to minus 90 degrees. If one were to plot the Nichols plot of

this transfer function then, we note that at very low frequencies and the magnitude is

very high, the phase is closed to minus pi by 2 and as the frequency is increasing, the

magnitude  starts  to  drop  and  a  phase  lag  starts  to  increase  and  the  phase  lag

asymptotically approaches minus 180 degrees.

So, just as in the case of the Nyquist plot, the frequency information is marked out on the

Nichols plot of the transfer function. 
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If you were to now consider, another transfer function. In this case, it is a third order

system P of s is equal to 10 by s times s plus 1 times s plus 10, we see that, we have 2

corner  frequencies  namely  s  is  equal  to  1 and s  is  equal  to  10.  So,  the initially  the

magnitude characteristic rolls off at minus 20 dB per decade on account of the presence

of the integrator.

And in between 1 and 10 radian per second, the role off is minus 40 dB per decade and

beyond  10 radian  per  second,  the  role  off  is  minus  60  dB per  decade  and  a  phase

characteristics starts at minus 90 degrees and crosses over at some particular frequency

and finally, asymptotically approaches minus 270 degrees, because we have 3 open loop

poles for the plant. 

The  corresponding  Nichols  plot  looks  as  shown  here,  at  very  low  frequencies,  the

magnitude is very high and a phase is close to minus 90 degrees and as the frequency is

increased  the  magnitude  characteristic  drops  and  at  some  particular  frequency.  The

magnitude becomes equal to 0 dB and at that frequency, we see that the phase lag is not

exactly minus 180 degrees is actually greater than minus 180 degrees and hence, we have

a positive phase margin. 

And as the frequency is  increased the magnitude characteristic  drops further  and the

angle,  the  phase  lag  increases  and  ultimately  asymptotically  approaches  minus  270

degrees and if you use a same transfer function, but this time, multiply the numerator by



a factor of 1000, then we see that this entire, Nichols plot of the plant gets shifted up by

60 dB, because of the multiplication of the numerator by a factor of 10 to the power 3

and as a consequence, the Nichols plot of the new transfer function, which is given here

P of s is equal to 10000 divided by s times s plus 1 times s plus 10 is shown by a loop

trace here.

For  reference,  we have  plotted  in  dotted  red  curve,  the  Nichols  plot  of  the  original

transfer function P of s is equal to 10 by s times s plus 1 times s plus 10, we note that in

the  first  case,  we  had a  positive  phase  margin  and  we  had a  positive  gain  margin;

however, when the gain of the open loop system is increased by a factor of 10 to the

power 3, we note that at the frequency at which the gain crosses over namely, when the

gain becomes equal to 0 dB, the phase lag is larger than 180 degrees and hence, the

phase margin is essentially negative and so is the gain margin negative, as a consequence

a closed loop system, with this as the open loop transfer function is unstable.

So, the gain margin and the phase margin information can be gleaned from a Nichols

plot, just as we can glean it from the Nyquist plot or the bode plot and by looking at the

way in which, the Nichols plot of a plant passes pass to the critical point 0 dB comma

minus pi radians, it is possible to judge, whether the closed loop system is going to be

stable or unstable? 

What we shall do in the next clip is to employ the Nichols plot to execute a design,

where we have multiple performance specifications namely in terms of input disturbance

rejection and output disturbance rejection.

Thank you.


