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Hello. In the previous clips, we have seen how to perform 2-degree of freedom control

design in order to achieve robustness for the closed loop systems response to variation

implant  model.  We have  seen  that  it  can  be  employed  to  achieve  a  high  degree  of

insensitivity to variation in the plants gain, to variation in the plant pole and indeed to

variation in multiple parameters of the plant including it is gain and perhaps all its poles

if that happens to be the case.

So, in this clip what we would look at are some of the notes in connection with 2-degree

of freedom control and some of the issues associated with 2-degree of freedom control

and we shall see how these can be addressed. So, the first point that I want to address is

this apparently magical manner in which the transient response of a 2-degree of freedom

control system becomes insensitive to variation implant parameters.

So, what is it that is really going on behind the scenes that helps us to achieve such a

high degree of  insensitivity  to  variation  in  the  plants  parameters.  To understand this

question what I have done here is I have plotted the Bode plot of the plant alone which



has been shown as the red trace in this graph here, while the blue trace shows the Bode

plot of the feedback controller times the plant.

Now, if you look at the gain cross over frequency of the plant alone, you see that it is

quite small. It is close to about 0.2 radians per second whereas, if you look at the gain

crossover frequency of the plant times the controller it is exceedingly large, it is about

42.8  radians  per  second.  Now, 42.8  radians  per  second as  a  number  is  significantly

higher and a location: where we wanted our dominant closed loop dynamics to lie which

was at minus 1.5 plus minus 2j.

Hence what we see from a Bode plots of the feedback part of the 2-degree of freedom

control system alone is that it is not really the feedback part of the control system that

gives us a desired transient response. The desired transient response has dominated by

the poles placed at minus 1.5 plus minus 2j is actually obtained from the pre filter of the

overall control system.

So,  our  2-degree  of  freedom control  system can be  thought  of  as  a  cascade  of  two

subsystems; one is the pre filter and the second is the feedback control system. And, we

see from the Bode plot of the feedback control system that it is not the feedback system

that  gives  us  the  desired  transient  response  because,  the  feedback  system  has  a

bandwidth that is much higher than what has been dictated to us as a desired dominant

closed loop pole positions.

So, the desired dominant closed loop pole positions are guaranteed to us primarily by the

pre filter. Then what is the role of the feedback control system? The role of the feedback

control system is to deal with the uncertainty associated with the plant. It ensures that the

high loop gain that the feedback control system achieves in open loop ensures very small

variation in the response of the feedback part of the control system to changes in the

plant parameters within the bandwidth that is of important to us. Namely up to a corner

frequency as dictated by the dominant dynamics of our feedback control of our overall

control system namely minus 1.5 plus minus 2j.

Hence, we see that the role of making sure that the transient response is dictated by the

poles at minus 1.5 plus minus 2j is taken up by the pre filter while the role of ensuring

minimal  variation  in  the  overall  transmission  function  due  to  variation  in  the  plant



parameters within the frequency range dictated by the dominant dynamics of the overall

system is taken care of by the feedback control part of the overall system.

So,  the 2-degree of  freedom controller  has a finely divided distribution  of  roles  and

responsibilities  between  the  pre-filter  and  the  feedback  controller.  The  feedback

controller is intended to deal with uncertainties associated with the plant while, the pre

filter is designed to give you the desired dominant dynamics or the overall transmission

function relating the output to the reference.

This is the first point that I wish to make. The second point has to do with the controller

structure that we obtained in the course of the designs that we undertook over the last

three clips.
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So, if we look at the controller structure in all cases the controller had a structure of the

kind that has been shown here. It was of the form K times S plus Z times S plus Z bar

divided by S plus P 4 a square because we are assumed that the controller has coincident

poles we have the term S plus P 4 the square appearing in the denominator. And, we went

over the elaborate design step necessary to determine the locations of the Z of the zeros

Z and Z bar which are intended to restrict the variation in the closed loop pole due to

changes in the plant parameters.



And, the gain K of the feedback controller ensures that the for the nominal value of the

plant parameters the closed loop poles are located exactly where we want them to be

located namely at P cl naught and P cl naught bar. Now, if one were to draw the Bode

plot of a controller that has this particular structure we note that when we substitute S is

equal  to  j  omega  and look  at  the  magnitude  of  the  controllers  transfer  function  for

frequencies that are below the corner frequencies of both the 0, as well as the poles of the

controller then the magnitude response will be flat as seen from the plot here.

Now, when the when we approach the corner frequency of the 0 Z or Z bar then beyond

this  corner  frequency  there  will  be  a  40  decibels  per  decade  rise  in  the  magnitude

characteristics  because,  we have two zeros  contributing  to  the rise  in  the  magnitude

characteristics. So, this is the region where we have plus 40 decibels per decade rise in

the magnitude characteristics.

But, then at some far away location we have the pole two poles P 4 and P 5 which are

coincident and at that particular location you would have a minus 40 decibels per decade

characteristic that gets added on to the plus 40 decibels per decade characteristic of the

two  zeros.  And,  hence  beyond  that  frequency  you  would  once  again  have  a  flat

characteristic since these two contributions cancel each other out. So, this is once again

going to be about 0 dB per decade slope.

What is a little worrisome about this characteristic is that for frequencies beyond P 4 we

note that the magnitude of the controller transfer function has to be quite high namely

around 80 decibels per decade. This may be because the example we considered was a

peculiar one where we assume very large variation in plant parameters and we imposed a

restriction that the closed loop pole should very by a very small amount in response to

variation  in  the  plants  parameters.  And,  this  is  what  has  resulted  in  such  a  high

magnitude for the controllers gain for frequencies beyond P 4.

What is more worrisome though is that this gain has to be maintained for all frequencies

starting from P 4 and all the way up. So, all the way up to infinite frequency we need to

have the magnitude characteristic of the controller b equal to 85 or so, decibels and this

is an impractical proposition there is no physical controller that can give us infinite gain

bandwidth product which is what is demanded by a controller of this particular structure.



So, how do we address this issue and how do we achieve a controller which has a finite

gain bandwidth product this is the next question that I want to address. To address this

question let us return to the steps that we had undertaken in order to obtain the structure

of this controller and determine the locations of the poles P 4 and P 5.
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So, in order to determine the locations P 4 and P 5 of the controller we first noted that the

root locus of the overall system would have branches, but crossed over from the left half

of the complex plane to the right half of the complex plane on account of the two poles P

4 and P 5. And, we considered a point Q on this branch and we demanded that the gain at

which the root locus process over or the gain at which the point Q will cross over from

the left half of the complex plane to the right half of the complex plane should be greater

than the maximum gain that the overall open loop system would assume when we have

variation in plants parameters.

So,  this  was what  was captured by the equations  that  we wrote three  clips  back we

determine the maximum value of gain which is K max in terms of the distances P 1 P cl

max, P 2 P cl max, P 3 P cl max, Z P cl max and Z bar P cl max all these terms for known

the only term that does not known as P 4 P cl max the square and that was what had to be

determined and that had to be less than K Q and K Q was essentially P 1 Q P 2 Q P 3 Q

divided by Z q times Z bar Q times P 4 Q times P 5 Q and these two terms if there if P 4



and if P 4 and P 5 are coincident poles these two terms will simply be equal to P 4 Q the

square.

Now, we noted that since the points P 4 and P 5 for assume to be very far away from the

origin then in a plot where we indicate the locations of the three of the plants poles and

the two of the controller zeros these three plant poles and two controller zeros that are

near the origin will appear as though they just constitute a single lumped pole at the

origin. In other words the big picture of the root locus gets simplified to something that

looks like this.
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We have one lumped pole at the origin that is the effective contribution of the three plant

poles and the two controller zeroes near the origin and then we have the we have the far

away controller poles P 4 and P 5 which together result in one of the branches of the root

locus namely the branch on which the point Q lies to cross over from the left half to the

right half of the complex plane.

In order to determine the location of the point Q we first apply the angle criterion of the

root locus and that is what has been done here. At the point Q the sum of the angle

subtended by all the open loop poles and zeros has to be equal to minus pi and we have

three open loop poles here one effective pole near the origin which I have called as a P l

and the two poles P 4 and P 5 and the three angles together should add up to minus pi.



Since P 4 and P 5 are coincident poles we get the angle subtended by the first pole near

origin which is the angle Q P l plus 2 times the angle Q P 4 should be equal to minus pi.

And, since the point P l is situated close to the origin and we are trying to determine the

point Q at which the root locus crosses over from the left half to the right half of the

complex plane we noted that the angle Q P l is minus pi by 2. And, that allowed us to

determine that the angle subtended by each of these poles P 4 and P 5 at the point Q has

to be equal to minus pi by 4 or equivalently 45 degrees.

And, with that simplified picture available to us we could determine the distance of the

point Q from the origin to be equal to the distance of the poles P 4 and P 5 from the

origin they both had to be equal to l and we could then express K max some constant

times l square because the term P 4 P cl max represents the distance of the point P 4 from

the point P cl max which is situated very close to the origin. So, for all practical purposes

we could assume that the distance of the point P 4 from P cl maxes nearly equal to the

distance of the point P 4 from the origin itself and hence we could replace the term P 4 P

cl max with the term ls l and we would get l square in the expression for K max.

And, likewise in the expression for K Q we had K Q to be equal to P l Q times P 4 Q

times P 5 Q, P 4 and P 5 are coincident poles. So, those distances are the same from the

fact that this is a right angle isosceles triangle we noted that P 4 Q and P 5 Q are both

equal to root 2 l, where l is a distance of P 4 from the origin and hence and P l Q was

equal to l and hence K Q was equal 2 l cube. So, K Q was equal to 2 l cube and K max

was given by this constant times l square by setting K Q to be greater than K max we can

work out what the value of l had to be. Now, these were the steps that we have adopted in

order to obtain the position of the poles P 4 and P 5 and complete the controller design.

Now, suppose we want a controller with a fine finite gain bandwidth product we note

that we cannot have the denominator polynomial of the controller be exactly of the same

degree as a numerator polynomial of the controller. This is precisely what landed us in

the trouble that we just talked about a few minutes back we ended up with a controller

with infinite gain bandwidth product.

So, we have to have a controller that is strictly proper or in other words the number of

poles of the controller should exceed the number of zeros. So, since we have to have two

zeros in order to restrict the variation of the closed loop dynamics of the overall system



we need to have at least three poles for our controller. The question now becomes how

does one determine the location of these three poles. To address this question we can

follow the exact same steps as what we have done so far.
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So, if we assume that we have three poles P 4, P 5 and P 6 and Q represents the location

at which the root locus cross over into the from the left half of the complex plane to the

right half of the complex plane and P l represents a lumped pole at the origin. Then to

determine the location of Q we can once again start by applying the angle criteriol. So,

the angle of Q P l plus 3 times the angle of Q P 4 should be equal to minus pi this is

under the assumption that the points P 4, P 5 and P 6 are going to be coincident or in

other words there all be going to be sitting at the same location in the complex plane.

Now, once again we note that the angle Q P l is going to be equal to minus pi by 2.

Hence we would have 3 times angle Q P P 4 to be equal to minus pi by 2 or other words

angle Q P 4 to be equal to minus pi by 6 or equivalently it is going to be equal to 30

degrees.

So, unlike the previous case where we had two poles for the controller if we choose to go

with three poles for the controller the angle subtended by these three poles assuming that

their coincident is going to be equal to 30 degrees at the point Q instead of 45 degrees as

it happened in the previous case. So, if I want to connect these two poles which are



assumed to be coincident to the point Q then the angle formed by this line with respect to

the real axis is going to be equal to 30 degrees.

Now, what we need to determine is a distance of each of these poles from the origin. So,

what we need to determine is the distance l which has been shown here now from this

triangle we note that P l Q is going to be equal to l by root 3 because this is a triangle a

right angle triangle with one of the angles being 30 degrees and the hypotenuse is going

to be equal to 2 l by root 3.

So, we would have K max to be equal to P 1 P cl max P 2 P cl max P 3 P cl max times P

4 P cl max times P 5 P cl max times P 6 P cl max divided by Z P cl max times Z bar P cl

max. And, since we have chosen P 4 P 5 and P 6 to be coincident we would have this to

be equal to P 1 P cl max times P 2 P cl max times P 3 P cl max times P 4 P cl max the

cube divided by Z P cl max times Z bar P cl max.

Now, we noted that the distance P 4 P cl max represents a distance from the point P 4 to

your point that is very close to the origin situated near the dominant poles minus 1.5 plus

minus 2 j. Hence for all practical purposes this distance from the point P 4 to the point P

cl max is approximately going to be equal to the distance of the point P 4 from the origin

itself. So, this distance going to be approximately equal to l. Hence, we would have K

max to be equal to P 1 P cl max times P 2 P cl max times P 3 P cl max divided by Z P cl

max times Z bar P cl max times l cube that is going to be the value of K max.

However, K Q is going to be equal to P l Q times P 4 Q the cube I am taking P 4 Q the

cube  because  we  have  3  poles  namely  P 4,  P 5,  P 6  which  are  all  coincident  and

therefore, are at the same distance from the point Q and we note that if this is a right

angle  triangle  with  the  angle  at  the  point  P 4  being  equal  to  30  degrees  then  from

trigonometry we see that the distance P l Q is going to be equal to l by root 3. So, that is

one term and the hypotenuse of the triangle which is going to be equal to the distance P 4

Q is going to be equal to 2 l by root 3 and that is going to get cubed. So, we are going to

have a gain at which the point Q crosses over from the left half to the right half of the

complex plane to be given by 8 times l power 4 by 9.

Now, in order to make sure that none of the closed loop poles are going to be on the right

half of the complex plane when the plant parameter changes by the maximum possible

value by which it can change we have to ensure that K Q should be greater than K max



the same equation has to be applied and we note that K max has a term l cube times some

constant whose numerical value we already know and we note that K Q is given by 8 by

9 l power 4.
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So, if we apply this inequality K Q greater than K max we would have 8 by 9 l power 4

should be greater than P 1 P cl max times P 2 pc l max times P 3 P cl max divided by Z P

cl max times Z bar P cl max times l cube and l cube here cancels with l power 4 there.

So, that we would get l should be greater than 9 by 8 times this term here the term within

the square bracket which I shall not write again in the interest of brevity.

So, by applying this equation we can now obtain the new locations where the points

where the controller poles P 4, P 5 and P 6 have to be located and if we do that and

finally, compute the controller gain K for this new controller we would end up with a

controller  whose  denominator  polynomial  is  of  third  degree  while  a  numerator

polynomial would be of second degree because of the two controller zeros that we have

chosen and hence we would have a controller with a finite gain bandwidth product.
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To illustrate this we have undertaken the design for the case for the first example that we

had taken up and we see that in the blue trace is the original controller which had just a

pair of poles along with the two zeros that was added and this controller has infinite gain

bandwidth product and is therefore, not practically realizable.

In contrast through the slight modification in the design steps that we just undertook we

have ended up with a controller whose Bode plot is shown by the red trace here and this

controller has three poles and two zeros and this hence a strictly proper controller and we

see  that  beyond  the  corner  frequency  of  39  radian  per  second  the  magnitude

characteristic falls down at minus 20 dB per decade and hence this controller will have a

finite gain bandwidth product and hence we would also be practically realizable.

The third and final aspect of root locus based 2-degree of freedom control design that I

wish to discuss is concerning the number of lumped poles that we have near the origin. If

we return to the original root locus of the overall system we notice that we could exploit

the fact that the three of the plant poles and the two controller zeros were very close to

the origin compared to the two controller poles P 4 and P 5 in order to lump the effect of

these three poles and two zeros as just a single lumped pole at the origin.

If the plant had four poles instead of three poles and we have added our two controllers

zeros then the effective number of poles or the lumped poles near the origin would have

been two; namely the difference between the number of poles and the number of zeros.



Because, very far away from the origin this collection of n poles and m zeros we simply

look like n minus m poles sitting at the same location.

Hence can we allow the number of poles near the origin to be anything other than one

can it be 2, can it be 3 or can it be 0. This is the question that we shall try to answer in

this last segment.
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So, in the first example we consider that we had one pole near the origin and because we

had one pole near the origin if we consider the point Q on the branch that was about to

cross over from the left half to the right half of the complex plane we could conclude that

this one lumped pole added subtended an angle of minus 90 degrees at the point Q the

negative sign comes because this is a pole write a subtending the angle and not the 0.

And, hence the other poles P 4 and P 5 needed to together subtended an angle of 90

degrees at the point Q and if the points P 4 and P 5 were assumed to be coincident then

each of them ended up subtending an angle of 45 degrees at the point Q. But, suppose

instead of having a single lamped pole near the origin we had two lumped poles near the

origin. I shall redraw the complex plane in order to depict this scenario. So, we have two

poles near the origin and we also have above poles P 4 and P 5.

What is going to be the consequence of having two poles two lumped poles near the

origin. We would have these two lumped poles if our plant was a fourth order plant and



we had just two controller zeros. Then we note that in the vicinity of these two lumped

poles each of these poles subtend an angle of 90 minus 90 degrees. And, hence the two

together subtend an angle of close to minus 180 degrees. What is indicates is that the root

locus will cross the imaginary axis at a point it is situated very close to these two lumped

poles.

In other words, I will have no control over the location at which the root locus crosses

over from the left half to the right half of the complex plane by appropriately positioning

the far away controller poles P 4 and P 5. This is in contrast with the first case where by

appropriately locating P 4 and P 5 at a sufficiently far away distance from the origin we

could get  our closed loop system to be stable  even when the plants  gain assume its

maximum value possible.

However, in the case where we have two lumped poles near the origin since the root

locus crosses the imaginary axis at a point that is very close to these two lumped poles

because each of these poles contribute to approximately minus 90 degrees phase. And

therefore,  together  the  contribute  to  close  to  minus  180  degree  phase  this  far  away

controller poles have very little role in determining the location at which the root locus

crosses over. Hence, there is no way in which we can guarantee that our closed loop

system is going to be stable by appropriately positioning the points P 4 and P 5.

So, what is the remedy if we are stuck with such a situation? The remedy is to add one

more controller 0 near the origin. So, that the net number of poles and zeros near the

origin would be 1 instead of 2. This problem also exists if we have the number of poles

lumped poles near the origin to be more than 2. So, if it is 3 or 4 or any other number

apart from 1, then we would have no control over the location at which the branches of

the root locus cross over from the left half to the right half of the complex plane by

suitably changing or controlling the positions of the points P 4 and P 5, the far away

poles of the controller.

Hence,  if  we are lucky then for the maximum variation in the plants parameters  our

control system would be stable, but there is no way whereby we can design the control

system to be stable by suitably choosing the structure of the controller. Hence we need to

make sure that the number of lumped poles near the origin is 1 or less.



Now, if  you look at  the  next  situation  which  is  the opposite  of  what  we have  been

looking at now namely where we have no poles at all near the origin. Or in other words

we have the complex plane and in the complex plane there are no lumped poles near the

origin and we just have the two controller poles P 4 and P 5 what will the consequence

be. We note that if we have no lumped poles near the origin then it means that all the

branches to a root locus near the origin that have originated from the poles near the

origin have already sunk into the corresponding zeros near the origin and there are no

branches coming out.

So, the only branches will be the branches coming from the points P 4 and P 5. And, if P

4 and P 5 are separated from one another then you would have a branch originating from

each of them they collide at a at the midpoint and then take away into the complex plane.

The angle at which the asymptotes of these two branches of root locus tend to infinity

will be plus minus 90 degrees.

So, what we would see in this case is that we would have no concern about the instability

of  the  overall  closed  loop system because,  of  these  branches  of  root  locus.  That  is

because these branches of root locus will always subtend an angle of plus 90 degrees or

minus 90 degrees with respect to a real axis and hence will never cross over from the left

half to the right half of the complex plane.

So,  since  no  issue  of  instability  arises  in  this  scenario;  there  is  no  need  for  us  to

undertake the elaborate design steps that we undertook in the first case where, we had a

single lumped pole near the origin in order to determine the location of the points P 4 and

P 5 to ensure that the closed loop system is stable even for the maximum permissible

variation in plant parameters.

Hence the last mode in association with 2-degree of freedom control design performed

using the root locus is that we have to ensure that the number of lumped poles near the

origin or in other words the difference between the number of poles and the number of

zeros placed near the origin should be equal to either 1 or 0 in order for our closed loop

system to be stable. If we are given a plant whose degree is such that the number of

lumped poles is more than 1 than we have to add enough controller zeros near the origin

to ensure that the net number of lumped poles near the origin remains either equal to 1 or

0.



With this we conclude our discussion on 2-degree of freedom control design to achieve

robustness against planned parameters performed using the tool of root locus.

Thank you.


