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Introduction to 2-degree of freedom control

Hello, in the clips that we have in the previous clips we have looked at one degree of

freedom control of physical systems and in the previous clip in particular, we took a look

at some of the drawbacks of one degree of freedom control and I highlighted 2 important

drawbacks.  One was  the  fact  that  the  control  system is  a  rendered  more  sensitivity

measurement  noise  because  we  cannot  independently  control  the  bandwidth  for

measurement noise and that for reference tracking.

The second problem was the fact that, we cannot engineer the sensitivity function and the

transmission function independently; if the consequence that the transient response of the

closed loop system is rendered sensitive to variation in plant parameters.

So, therefore,  we discussed that  having one more controller  in  our feedback system,

would potentially help to resolve these problems. So, what we shall do starting from this

lecture or starting from this clip is to look at how adding one more controller  to the

feedback loop, would help resolve the problems that we talked about and also helped to

achieve other things, whose which will did not discuss in the previous clip. So, in the

schematic here I have shown the one degree of freedom control system that we have

been looking at all this time.
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So, we have a single controller  C. Now, we discovered that this single controller has

significant advantages. So, it allows us to reject disturbances tracked references and so

on and so forth but it there are there is scope for improvement, and the problems were

the ones that we talked about in the previous clip.

Now, a two degree of freedom control system essentially has one more controller as part

of the feedback system. So, this would be just one controller there would be one more

controller  with  which  we  can  achieve  performance  specifications  that  we  could  not

achieve with a single controller. Now the first question that one needs to answer when

one thinks of adding another controller in the feedback loop is where to position it in this

feedback loop.

There are several locations where we can have the other controller; for instance we can

have it as part of the feedback path and I shall do that now. I shall remove this feedback,

I shall take the output x feed it through feed it to another controller C 2, and the output of

that controller I shall feed to my I shall compare with the reference r and the error is fed

to the controller C 1 as is shown here.

So,  this  is  one  location  mainly  the  feedback  path  where  we  can  insert  the  second

controller, but that is not necessarily the only location where we can insert the second

controller. One other possibility I shall draw now. So, in the feedback path let us say we

do  not  we  choose  not  to  insert  this  controller,  but  instead  we  insert  it  before  the



reference,  but  insert  it  between  the  feedback  system  namely  this  part  here  and  the

reference r. So, let us say this is the location where we insert our second controller C 2.

So, this is one other configuration that is possible.

In fact, people have looked at other configurations far more clever configurations also.

So, for instance there is one other control strategy, which is called conditional control

where you have the plant P under you have a controller C. The controller C has been

chosen to be equal to C equal to T by P naught, where P naught is the nominal model for

the plant P and T is the overall transmission function that we desired.

Now, if  one were to apply a  reference r  and one,  but simply feed the output  of the

controller to the plant, the overall transfer function relating the output x to the reference r

will be the transmission function T. But then it is possible that the plant model P and the

model  P  naught  are  not  identical  to  one  another.  So,  it  is  possible  that  you  have

uncertainty in the plants dynamics. Now, what is done in this case is we take the output x

and compare it with T times r. Remember that if the plant P at the exact same model as P

naught,  then  x  of  s  will  be  equal  to  T times  R  of  s.  Therefore,  in  the  absence  of

uncertainty in the plant model T times R will be exactly equal to x. So, if you were to

take the difference between these 2 this difference will actually be 0.

However if there is a difference between P and P naught, then these 2 signals namely T

times R and x will be different from one another and that difference is going to manifest

as a non 0 signal in this path here, and that is going to be manipulated by another transfer

function, which we shall now call C 2 and this will become the first controller C 1 and

that is fed back to the plant. So, you notice in this case that you have this feedback path

operational, only when there is an error between the actual plant model and its nominal

model hence this kind of control strategy is called conditional feedback.

Here  to  we  use  2  controllers  to  accomplish  our  feedback  objective  of  achieving

robustness in tracking this reference r even in the presence of plant uncertainty in other

words  the  difference  between  P  and  P  naught.  Now,  there  are  other  fairly  clever

configurations of C 1 and C 2 the people have come up with and that have been reported

in literature and the first question that we need to resolve in this clip before we can go

any further  is  which of  these multiple  configurations  do we adopt  for our  particular

requirement.



Now, to answer this question what one needs to recognize is that, regardless of which

configuration we use,  regardless of whether C 2 is acting as a pre filter  and appears

immediately after the reference r and before the feedback part of the system or whether it

is part of this feedback conditional feedback system. Or whether it is in the feedback

path as we first drew, ultimately there will be only 2 transfer functions associated with

the  overall  feedback  system,  that  we  can  independently  tune.  And  those  2  transfer

functions will be the transmission function T and a sensitivity function S. So, regardless

of which of these structures we use, we will ultimately have the ability to tune only 2

functions independently.

Even if we insert more controllers let us say we have C 3 in the feedback path here or we

have other controllers elsewhere, we will see that they will their effects will all get lump

together and at the end of the day, you will have the ability to independently design only

2 functions, mainly the transmission function and the sensitivity function. So, exactly

which one of these different configurations we adopt is nearly a matter of choice. From a

fundamental  prospective,  it  does  not  matter  what  can  be  accomplished  with  one

configuration can in principle be also accomplish with a second a different configuration.

The difference though might arise from the point of view of practical realization, but that

is outside the scope of this course, because in this course we have focused on the theory

of feedback control.

So, anyone of these multiple configurations would be suitable for us. In this clip and in

future clips we shall adopt this particular configuration, the one that I have shown to the

left. And in this case we shall not call this C 1 and C 2, but we shall call the transfer

function C 2 as F or in other words the pre filter. And the transfer function C 1 we shall

rename it as C, which was what we have been using all alone and we shall call it the

feedback controller.

So, the reason for choosing this particular names are obvious, the feedback controller is

the controller it is part of the feedback loop, the pre filter is one that is not part of the

feedback  loop.  But  is  cascaded  with  the  feedback  loop  and appears  in  between  the

reference r, in other words it filters the reference r and feeds this filtered signal to the

feedback system and hence it is called as a pre filter.



In all our future design examples, we shall stick with this particular configuration for the

2 degree of freedom control system. Having talked about the particular configuration that

we would adopt for doing feedback control design, we shall now take a look at the use of

2 degree of freedom control. If we go back to the previous clip, we saw that there were 2

problems that we highlighted. The first problem that we highlighted was our inability to

reject measurement noise while achieving high bandwidth for reference tracking that is

one problem and the second problem was our inability to design the sensitivity function

and the transmission function independently.

So, what we shall do here you see, how the 2 degree of freedom control structure will

allow us to address the first problem. So, we shall first see that and subsequently we will

move to the second problem. So, the first problem is one of measurement noise; I shall

draw the feedback block diagram here.
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So, we have the controller C, we have the plant P the output of the plant P is x, and when

you are measuring this output inevitably you will end up adding this noise n and the

overall  signal  which  is  the  x  which  is  the  noise  plus  the  signal  x  is  fed  back  and

compared with the reference r. And, the difference between r and the signal is the error

which is fed to the controller c. So, this is the standard one degree of freedom control

configuration.



Now, for the sake of simplicity, let us assume that our plant has a certain disagree. So,

the bode plot of our plant which is log of magnitude of P versus log of omega, let us say

it look something like this. So, magnitude plot has a certain flat characteristic up to your

certain frequency and then the corner frequencies of the plant come in to the picture. So,

the it will roll off at minus 20 dB per decade or its multiples. So, this is approximately

the bode plot of the plant. Now, suppose we want this plant to have 0 tracking error to

DC references, then we need to achieve infinite loop gain, but DC and one can easily see

that  an  integrator  thus  precisely  this.  So,  if  you  have  an  integrator  as  part  of  our

controller structure, then we would have let us replace C here with the term K I divided

by s.

So, because we have an integrator we would have the low frequency characteristics to be

rolling off at minus 20 dB per decade and the roll off will only increase with when we

come to the corner frequency. So, the plant and generally the bandwidth of the closed

loop  system gets  reduced.  So,  this  is  actually  preferable  from the  point  of  view of

minimizing the effect of noise, especially if this noise signal here is a wide band signal.

Typically the kind of noise that we come across or that we encounter are wide band

signals typically noises of the noises like Gaussian white noise affect our measurement

signals and therefore, the only way for us to minimize the effect of noise is to minimize

the close loop bandwidth of our system. That is because the transfer function with relates

the output x to the noise N is given by x is equal to minus CP by 1 plus CP times N. And

therefore, if we make the close loop bandwidth of the transmission function which is CP

by 1 plus CP very small, then we will be minimizing the amount of noise we are letting

in to our system and getting it to affect the output.

Now, how do we minimize the bandwidth? What I have plotted here is essentially the

bode plot of our open loop system or in other words log of magnitude of CP versus log of

omega, and this is the plot that we would have when we have a integral controller as our

as part of the controller structure. Now, if we want to minimize the effect of noise, we

have only one way forward and that is to minimize the closed loop bandwidth further.

And  we  know  that  there  is  a  relationship  between  the  open  loop  gain  cross  over

frequency and the close loop band width. So, these 2 number are typically very close to

one another. So, one can minimize the close loop band width by equivalently minimizing

the gain cross over frequency.



Now, how does one minimize the gain cross over frequency? The only way we can do it

if you are stuck with an integral controller is to reduce the integral controllers gain. So, if

we were to reduce the integral controllers gain, then our close loop, the bode plot of our

open loop system would look something like this. And our gain cross over frequency it

was initially  the plants gain cross over frequency was somewhere there,  that became

something smaller with the use of the integral controller and if you attenuate the gain K I

of the integral controller, further it becomes even smaller. So, omega g c that we will try.

And a smaller is the gain of the integral controller, the better it is as far as rejection of

noise is concerned, but what is the price we are paying for reducing this bandwidth of the

close loop system to such low values? The price is obvious; we will not be able to track

fast changing reference at all because our close loop bandwidth when it is very small

cannot track references, that are out whose frequency content is outside the bandwidth of

the overall closed loop system.

And with the one degree of freedom control structure there is really nothing we can do

about this. Now if our gain has come down to a very low value, in the frequency range of

interest to us control engineers, which is essentially up to the gain cross over frequency.

We notice that the plant has nearly flat gain characteristics or the plant can therefore, be

modeled approximately as a proportional system. So, I  can remake remove the plant

transfer function assume that it does not it does not exhibit dynamics, in the frequency

range of interest to us namely the frequency range up to omega g c double prime here.

And up to the frequency I can model the plant a simple proportionality gain K P. And K

P is the DC gain of the plant. So, the gain of this flat characteristic will essentially be 20

times log of K P. 

So, if this is the approximate model of our plant and we have a integral controller then

the approximate transmission function T which is given by C times P by 1 plus C times P

is given by T is equal to K I by s times K P divided by 1 plus K I by s times K P which

essentially is equal to K I K P divided by S plus K I K P, now I shall call K I K P as a

new constant K naught. So, I shall call this as K naught by S plus K naught.

Now, in general we want K I K P to be much less than 1 to be a very small number for us

to achieve an adequately no close loop bandwidth that filters out to a large extent white

noise that might affect the measurement signal this as I discussed as the problem that the



transfer  function  with relates  to  a  reference  to  the  output  is  also given by the  same

transmission function x is equal to CP by 1 plus CP times R. And hence having a very

low bandwidth  for  the  overall  close  loop system,  then  severely  restrict  the  range of

signals that we can track with our close loop system, and that is a big problem for us as

control engineers.

I sketched out this problem using 1 degree of freedom control system, to highlight the

fact that there is no simple resolution to the problem of measurement noise if one were to

use only a single controller  as part of our feedback system. However, if one were to

allow another controller to come into the picture, in this case it is going to be the pre

filter, then we do not have to make this compromise between the achievable close loop

band width as far as packing reference is concerned and the bandwidth necessary to

restrict the effect of measurement noise how do we do that? So, if you are using a 2

degree of freedom control system, we would have a pre filter F also cascaded with our

feedback system and our reference would be filtered by the pre filter F. 

Therefore our overall transmission function, they no longer be equal to CP by 1 plus CP,

but it will be equal to F times CP divided by 1 plus CP. Because this overall feedback

system as a transmission function of CP by 1 plus CP and that gets multiplied with F and

therefore, this is going to be the transmission function that relates X of s to the reference

R of s. Now however, as far as the noise is concerned, because the noise does not in any

way pass through this pre filter F you would have the transfer function relating the noise

to the output namely X of S by N of S to still be equal to minus CP by 1 plus CP.

And what we saw in this particular example that we considered, was this was equal to

minus K naught by S plus K naught which is a first order low pass filter or very low

bandwidth because we have chosen K naught which is equal to K I times K p to be to be

a very small number.

Now, how do we engineer this pre filter F in order not to limit the bandwidth of the close

loop system to a very small value, we can see that if we choose the pre filter F to be of

the kind F is equal to S plus K naught by K naught in other words we are essentially

cancelling  the  dynamics  of  our  feedback  system.  And  replacing  it  with  the  desired

dynamics let me call that K 1 and therefore, replacing it with the term of the kind K 1 by

S plus K 1 then we would have the overall transmission function from X from R to X



namely X of s by R of s to be equal to K 1 by S plus K 1 times S plus K naught by K

naught  which is  the transfer function of our pre filter  multiplied  by the approximate

transfer function of our feedback system, which we have obtained to be K naught by S

plus K naught. Now, cancelling K naught and S plus K naught from this expression we

would get X of s by R of s to be equal to K 1 by S plus K 1.

On the other hand the relationship between the output X and the noise N is still simply be

equal to minus K naught by S plus K naught, where K naught is much less than 1. Now

we see that as the result of incorporating a second controller  as part of our feedback

system, we can get 2 different expressions for the transfer functions that relate the output

to the reference and the output to the noise.

Now, if we want our references to be tracked adequately well, even for relatively fast

changing references all we need to do is choose K 1 to be a very large number. So, if K 1

is made adequately large, then we can track adequately fast changing references using

our system. However, the same control system will still be able to minimize the effect of

measurement noise, because the transfer function relating the measurement noise to the

output is not decided by K 1, but is instead decided by K naught which by design we

have chosen to be a very small number.

So,  this  ability  to  independently  pick  the  transfer  functions  relating  the  noise  to  the

output and the reference to the output, and choosing the transfer function relating the

relating the reference to the output to have a very large bandwidth, while having while

choosing the transfer function that relates the noise to the output to have a very small

bandwidth highlights the advantage of using 2 degree of freedom control to suppress the

effect of noise, while simultaneously being able to track fast changing references. Now

that we have seen, how we can exploit the second controller? In order to accomplish

what was impossible to accomplish using the 1 degree of freedom control architecture,

let us take another example where we show how we can achieve robustness of the overall

closed loop systems response to variation in plant parameters.

So, this essentially addresses the second drawback we pointed out, in connection with

one  degree  of  freedom  control.  Namely  our  inability  to  independently  engineer  our

transmission function and the sensitivity function and a consequence of that was that our

transient response of the close loop system was affected significantly, when our plant



parameters change. Now, let us see how that can also be addressed by using 2 degree of

freedom control, let us do it with the help of a numerical example.

(Refer Slide Time: 24:52)

Suppose we are given a plant P of s given by P of s is equal to 10 by s plus 10. Now the

nominal gain of the plant is 10. However, we assume that there is enormous uncertainty

associated with the gain of the plant. In particular we shall assume that our plant can in

general be written as K by s plus 10 where the nominal value of the gain K is 10 exactly

as we have written out here, but K can assume a value as low as 2 and as high as 50. In

other words the gain can fall by a factor of 5 or can increase by a factor of 5. So, what it

indicates  is  that  here is  a plant  that  is  that  is  extremely uncertain there is  a 25 fold

variation in the minimum and the maximum values of the gain that this plant can assume.

Of course you might ask very legitimately if there are examples of plants which can

whose gains can change by a factor of 25 during their operation or from one plant to

another.  Perhaps  there  is  no  such  plant,  but  the  objective  of  assuming  such a  large

variation in the plant parameters, is to showcase the capability of the control strategy that

we  would  be  discussing  now  in  order  to  handle  even  such  large  variation  in  plant

parameters.

So,  suppose  we have  a  plant  of  this  kind  which  has  a  huge  amount  of  uncertainty

associated with it, let us assume that we want this plant to have 0 steady state error to DC

references. So, we want to design a feedback system for this plant with the following 2



specifications. The first specification is 0 steady state error to DC references, that is one

requirement that this close loop system should have. A second requirement is that the

close loop system should have a dominant pole a single dominant pole, but S is equal to

minus 20. So, the close loop system should have a single dominant pole at S is equal to

minus 20.

So, what we shall do now is, first assume that this problem can be tackled using one

degree of freedom control design and we will see that it is possible to accomplish both

the objectives that we have laid down in this case for this nominal plant P of s is equal to

10 by S plus 10.

However when the plants parameters vary one degree of freedom controller  does not

permit us to control the variation of the closed loop pole, the dominant close loop pole of

our system, and hence when the plants gain varies by a factor of 25, when it drops from

10 to 2 or when it increases from 10 to, from 10 to 50. Then we will see that there is

going to  be corresponding huge variation  in  a  transient  response  of  our  closed  loop

system which  we cannot  do  anything  about  if  one  was  stuck  with  a  one  degree  of

freedom control structure.

So, let us first undertake one degree of freedom control design, to do that let us use root

locus as our design tool of choice. So, the root locus plots the real part of s versus the

imaginary part of s and we know that the plant has a pole at S is equal to minus 10, and

one of the requirements of the close loop system is that it should have 0 steady state error

to DC references, and this in turn implies that we need to include an integrator as part of

our controller.

So, if we have a one degree of freedom controller here, then the controller should include

an integrator as well. So, for the moment we are assuming that we have a one degree of

freedom control structure, just to understand the fact that it is not possible to make sure

that these specifications are met in the presence of plant uncertainty.

So, when we have an uncertain plant or a plant whose gain is not known and can vary

anywhere between the limits of 2 and 50, then these particular specifications cannot be

met. So, for the nominal case however, we have the pole at minus 10, we need to include

an integrator; if we simply include an integrator and have a pole at minus 10, it is clear

that the second specification cannot be met that is because the root locus of for these 2



open loop poles would look something like this, it would go off into the imaginary axis

in between these 2 poles and it will not even pass through the point S is equal to minus

20,  which  is  where we want  our dominant  close loop pole to  light.  So,  how do we

address this issue?

There are multiple ways in which this problem can be approached, I shall  adopt one

technique. The first thing that we need to make sure in order for the dominant close loop

pole to lie at S is equal to minus 20, is to ensure that the root locus passes through the

point S is equal to minus 20. At the moment the root locus is not even passing through

the point S is equal to minus 20 therefore, what I shall do is, I shall first cancel the plants

pole at x is equal to minus 10 with a controller 0. So, I shall place a controller 0 at S is

equal to minus 10. So, our interim structure for the controller C of s is it has an integrator

and it has a 0 S is equal to minus 10. So, it has a term of the kind S plus 10. Now that

will allow the root locus to pass through the point S is equal to minus 20 and I shall place

a 0 slightly to the left of S is equal to minus 20 into which the root locus can sink.

So, this shall be the location where I shall place the 0, I shall place as this is equal to

minus 25. So, our interim control structure would look something like this, it would have

a 0 of S is equal to minus 10, a 0 what S is equal to minus 25. And as a consequence of

this our root locus would start from the open loop pole at S is equal to 0 and go all the

way to the open loop 0 at S is equal to minus 25 and along the way pass through the

point S is equal to minus 20, which is where we want our close loop dominant pole to

like.

Now, if  you look at  this  structure  for  the  controller,  we notice  that  it  is  non causal

because the numerator polynomial has a degree 2 which is greater than the degree of a

denominator polynomial. So, we have to add one more pole in order to make sure that

we have a causal controller. And I shall choose to add that pole to the left of the 0 at S is

equal to minus 25 and in particular I shall choose to add it at S is equal to minus 50. To

we have another open loop pole at S is equal to minus 50. As a consequence of this pole

we would have another  branch of the root locus that will  be going towards s minus

infinity starting from S is equal to minus 40.

Hence we would have 2 poles for the close loop system, one pole would lie on the first

branch which is between S is equal to 0 and S is equal to minus 25 and a second pole



would lie on the second branch which is between S is equal to minus 50 and S is equal to

minus infinity. Somewhere to the left of S is equal to minus 50 and since the close loop

pole in the first branch is closer to the origin compared to the close loop pole on the

second branch, this pole is going to be the dominant pole of our system. Now, if you

want that pole to be exactly at S is equal to minus 20, then we need to choose the gain of

the controller K in such a manner that C of s times P of s is equal to minus 1 at the point

S is equal to minus 20.

Now, if we were to compute that gain, we would get the gain K to be equal to 12. So, if

we choose our controller C of s to be equal to 12 times s plus 10 times s plus 25 divided

by S times s plus 50 then we would have the dominant pole of the close loop system to

lie at the point S is equal to minus 20, the second pole of the close loop system will lie

somewhere to the left of S is equal to minus 50 and therefore, will not be a dominant

pole of our system. Hence both these specifications  can be met  using one degree of

freedom control, but the problem arises when we have to take into account the variation

in the plants model.

What we have done here is perform the design for the nominal plant. When plants gain

changes when it reduces to a value that is up to a factor of 5 from its nominal value or

when it increases by a factor of 5 from its nominal value then the close loop response

with this particular controller can change dramatically.

(Refer Slide Time: 35:18)



And that is precisely what has been plotted in this slide. So, what you see here? As the

blue response is a response of the close loop system, for the nominal plant P which is

equal to 10 by s plus 10. So, this is the close loop response for this particular controller

that we just design for the nominal plant.

If the plants gain were to drop by a factor of 5 in other words if P of s were to become

equal to 2 by s plus 10, then if we were to plot the step response of the close loop system

namely the step response of C times P by 1 plus C times P, then what we would get this

is green curve here. So, this is a curve that we would get when P is equal to 2 by s plus

10. The blue curve as I said is when P is equal to 10 by s plus 10. So, the gain is its

nominal value likewise when the gain of the plant were to increase by a factor of 5 or

when the plant has a transfer function of the kind 50 by s plus 10, then our close loop

response will look as shown by the red trace here. So, this is for the case when P is equal

to 50 by s plus 10.

As you can see from these responses there is a wide variation in the response of the close

loop system, when the plants parameters change. It is only for the nominal gain of the

plant that the response shows its dominant dynamics that S is equal to minus 20. For

other gains of the plant the close loop poles would be would not any longer be at S is

equal to minus 20 and therefore, the dominant dynamics for the other gains of the plant

are significantly different than what it was for the nominal case. Now how do we address

this problem? As we discussed there is nothing much we can do if we were to stick with

one degree of freedom control.

However this problem can be effectively addressed by employing 2 degree of freedom

control. The insight to solve this problem using 2 degree of freedom control design is

comes primarily from root locus based design approach. So, let us come back to the root

locus of our system.
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So, we have an integrator and we have cancelled the pole that we had at S is equal to

minus 10 with a 0. So, that has not been represented in the root locus and then there is a

pole at there is a 0 at S is equal to minus 25 for the moment, I will not indicate exactly

the précised position of the 0 although in the previous design we assumed it to be at S is

equal to minus 25 let us leave it as it is for the moment.

And of course, there is another pole here that S is equal to minus 50 and that contributes

to a branch of the root locus to the left of that pole, and that is anyway going to result in

stable dynamic which is not going to dominate the dynamics of the overall system. So,

let us not talk about that either at the moment.  So, let us now focus on how we can

employ  root  locus  to  minimize  the  variation  in  the  close  loop  pole  position  due  to

variation in the plants gain. So, although nominally we could get the close loop pole to

be located at S is equal to minus 20, when the plants model changed there was nothing at

one degree of freedom control could do, it resulted in a corresponding change in the

close loop pole location and that in turn translated to a variation in the transient response

of the overall close loop system.

Now, how do we minimize a variation of this close loop pole? If you can minimize the

variation of the close loop pole, then we can be sure that even in when the plants gain

were to vary by a factor of 25 namely if it were to fall by a factor of 5 or to increase by a



factor  of  5,  there  is  going  to  be  minimal  effect  of  this  variation  on  the  dominant

dynamics of our close loop system.

So,  let  us  first  try  to  understand  what  trick  what  insight  we  can  adopt  in  order  to

minimize the variation of the close loop pole. To do that what I want to first underscore

is that the root locus starts at an open loop pole and ends in an open loop 0. And the gain

of the root locus of the open loop system near the open loop pole will be 0. So, the gain

near the open loop pole is 0 and as the gain is increased the closed loop pole moves away

from the open loop pole position and towards the open loop 0. So, at the open loop 0 the

gain K is infinity. So, you have this  wide variation in gain from K going from 0 to

infinity, compressed within this finite space in between the open loop pole and open loop

0.

Now, when our plants gain changes, the open loop systems gain also changes by a factor

of 25. Because our plant gain can reduce by a factor of 5 or increase by a factor of 5 and

there is therefore, a 25 fold variation in the plant gain that translates to a corresponding

25 fold variation, in the overall loop gain of our system mainly that of the plant times the

controller. Now, what happens if our close loop pole was located close to the open loop

0?

So, let us say at this position my gain K was 1. If the plants gain were to increase by a

factor of 25, the close loop pole will move to a new position somewhere here. So, this is

the position at which the close loop the gain of the open loop system is 25. And if you

notice if you are close to the open loop pole there is going to be a huge change in the

close loop pole position, when there is a change in the gain by a factor of 25; however, if

you come closer to the 0 the gain would have increased. So, if I am somewhere here for

instance let us say the gain at this location the open loop gain K was 100 at this location

hypothetically. If the gain were to increase by a factor of 25 and become let us say 2500,

the close loop pole position will change from this location, where it is where the gain is

100 to another location where the gain is 2500.

But if you notice the extent by which the closed loop pole changed its position, due to

the same factor change in the gain namely a factor of 25 is now much lesser then what it

was when the gain changed from 1 to 25. So, the variation of the close loop pole when

the gain changed from 1 to 25 actually is larger than the variation of the close loop pole,



when the gain change from 100 to 2500. The factor of change is the same, but the extent

the amount of variation of the close loop pole has reduced because you are now closer to

the open loop 0.

Now, if we are even closer to the open loop 0, in which case we are assuming that the

initial gain is very high let us say our initial gain is 10 power 6 1 million, then if our gain

were to change by a factor of 25 from 1 million to 25 million, our close loop pole will

move from this initial position indicated by this arrow here to another position which is

not going to be far away from its initial position. So, this is going to be the position at

which the gain K will be 25 into 10 power 6. So, what you see therefore, is that if our

open loop gain K is high, then the same factor of 25 variation in the gain will result in

correspondingly smaller variation in the location of the close loop pole.

Hence, if we are very close to the 0 in our words if our gain is extremely large 1 billon or

10 billon or something like that hypothetically, then a variation of that gain by a factor of

25 will result in a practically negligible variation in the location of the close loop pole.

Because  this  scale,  in  this  scale  the  gain  K is  going  from 0  to  infinity.  So,  as  you

approach the open loop 0 the a huge range of gains K get compressed within a very

narrow region of this root locus and hence even fairly large changes in gain K will result

in correspondingly very small variation in the close loop pole position. 

And this therefore, gives us the clue as to what we need to do in order to restrict the

variation of the close loop pole, the answer is straight forward. Based on our analysis

here we have to make sure that our open loop gain is adequately high and our 0 is placed

close to the location where we want our dominant dynamics to lie.

So, therefore, if we choose to place the 0 at the location S is equal to minus 20, because

this is the location where we want the dominant pole to lie then and we increase the open

loop gain of our system to a very large value, then what we are ensuring is that our close

loop pole because the gain is very high is going to be situated very close to the open loop

0. So, it is going to be somewhere here for instance and because this is so, close to the

open loop 0 even a  large  change in  the  gain  by a  factor  of  25,  we will  result  in  a

negligible change in the location of the close loop pole. It will become it will come a

little bit closer to the open loop 0, but not by a significant amount.



Hence the trick for restricting the variation of the close loop pole, because of variation in

the  plants  gain  is  to  simply  add a  0 very close to  the location  where  you want  the

dominant  close  loop  pole  to  lie  number  1  and  ensure  that  the  open  loop  gain  is

adequately high that the close loop pole is located very close to the 0. Now, any variation

in  gain to  result  in  a  negligible  difference  in  the  position  of  this  close loop pole  in

reference to the position of the 0. So, this is the trick that we would be adopting in this

case as well.

Hence in this design we shall choose not to place the 0 at S is equal to minus 25 as we

did in the previous case, but instead we shall choose to position the 0 at the location S is

equal to minus 20; now if we were to do that. So, we would have this open loop 0 at S is

equal to minus 20 our controller transfer function C of s will have the term s plus 20 in

the numerator and you will have the term s plus 50 in the denominator and you have an

integrator.

(Refer Slide Time: 46:49)

So, you have s also and since we have cancelled the plant pole by means of a 0 you will

have  the  term s  plus  10  also  in  the  numerator  and  we  have  to  make  sure  that  the

controller gain K is very high so, that the close loop pole is going to be located very

close to the point S is equal to minus 20, and when the open loop gain of the plant

changes by a factor of 25, it would result in a very small migration of this close loop pole

about the nominal position.



Now, this works very well with the exception that there is a small problem in this control

design.  So,  if  this  is  our  controller  structure  and we have  chosen our  gain  K to  be

adequately high. So, that our close loop pole is located at a very small distance delta

away  from the  open  loop  zeros  position.  So,  let  us  say  the  difference  between  the

position of the open loop 0 and the close loop pole is delta. So, this is the location at

which our close loop pole is situated. Then what we would have as one of the poles of

our close loop system would be a term of the kind S plus 20 minus delta. So, this would

be one of the close loop pole, I shall call it p c l 1 this is a first close loop pole.

Now, since we would have 2 close loop poles because we have 2 branches to the root

locus, the second close loop pole would be located on the second branch which is to the

left of the point S is equal to minus 50. So, it would be located somewhere here. So, let

me call the distance of that close loop pole from the point S is equal to minus 50 as rho,

in which case our second close loop pole will be of the kind p c l 2 is equal to S plus 50

plus  rho.  So,  we  would  have  2  close  loop  poles  for  our  system.  Now  our  overall

transmission function if one were to stick with one degree of freedom control design

would be given by T is equal to C times P divided by 1 plus C times P.

Now, we note that 1 plus C times P is a transfer function, whose 2 zeros are going to be

given by definition by p c l 1 and p c l 2. These are the zeroes of the transfer function 1

plus C times P or equivalently they are the close loop poles of our system. Now the

transmission  function  therefore,  will  look in  this  particular  manner  since  we have C

times P in the numerator of this transmission function, the zeroes of the transmission

function will also be the zeroes of the controller and the plant.

So, we have our controller to be of the form K times S plus 20, times S plus 10 divided

by S plus 50 times S and we have our plant to nominally be of the kind 10 by S plus 10,

and our denominator of the transmission function would be 1 plus the same term 1 plus

K times S plus 20 times S plus 10 times 10 divided by s plus 50 times S times s plus 10.

So,  upon  simplification,  you  see  that  the  term  s  plus  10  gets  cancelled  from  the

numerator  and  the  denominator.  So,  the  overall  transmission  function  would  look

something like this. It would be K times s plus 20 times 10 divided by once again the

denominator you would have the term s plus 10 getting cancelled you would have S

times s plus 50 plus K times 10 times s plus 20. So, you would have a second degree



polynomial  as  the  denominator  polynomial  of  our  close  loop  system  and  this

denominator polynomial would have p c l 1 and p c l 2 as the 2 terms as the 2 as its 2

factors. So, we can therefore, write our transmission function T as K times S plus 20

times ten. So, I shall bring the 10 onto the left hand side. So, 10 K times s plus 20 would

be a numerator polynomial of a transmission function and the denominator polynomial

would essentially be s plus 20 minus delta times s plus 50 plus rho.

So, because we know that our close loop poles are going to be located at these particular

locations on the 2 branches of the root locus, I have directly written down the factors of

the denominator polynomial of the transmission function and in this particular manner.

Now, this expression here reveals an important problem.

If  you notice  the  numerator  of  the  transmission  function  you have  s  plus  20 in  the

numerator that is because the 0 of an open loop system will also be the 0 of the closed

loop system. And then you have that term s plus 20 minus delta in the denominator

where by design by choosing our open loop gain to be very high, we have made sure that

this term delta is much less than 1. So, it is located very close now close loop pole is

going to be located very close to the open loop 0, and hence its (Refer Time: 52:56) not

vary too much. We have therefore, guarantee that the dominant pole which is the pole at

in the vicinity of S is equal to minus 20 does not vary too much, but then this particular

expression reveals a serious problem it reveals the problem that the numerator of this

transmission  function,  almost  exactly  cancels  the  denominator  of  the  transmission

function.

In the numerator you have the term s plus 20, in the denominator you have the term s

plus 20 minus delta where,  delta  is  a very small  number. So,  these 2 almost exactly

cancel one another. With the consequence that although we have made sure that the close

loop pole at the point S is equal to minus 20 does not vary too much by locating the open

loop 0 near this pole, the consequence a tragic consequence of this cancellation is that

the overall dynamics is going to be determined by the pole that is far away at the location

S is equal to minus of 50 plus rho.

So, we have therefore, despite our effort in restricting the variation of our close loop pole

one degree of freedom control system does not allow us to get that to be the dominant

dynamics and does not allow us to restrict the variation of the dominant dynamics. So,



what is the way forward? Of course, this problem cannot be solved using one degree of

freedom control design, if you look at this expression you see that the real villain in this

story is this 0, yes s plus 20 that appears in the numerator of the transmission function. It

is this 0 that cancels the dominant dynamics that we have designed, very carefully and

ensure that the dominant pole does not vary too much. And if the 0 were not there, then

we would have the term S is equal  to minus 20 plus delta  to be the location of the

dominant pole of our close loop system and this by design would not change too much

when our plants gain were to change by a factor of 25.

So, how do we do that? To do that we add a pre filter to our feedback system. So, instead

of providing the reference directly to the feedback system, we provide the reference as an

input to the pre filter F. And this pre filter is chosen precisely to address the problem that

is been contributed by this 0. If the 0 were not there then this problem of suppression of

dominant dynamics will go away, hence we choose the pre filter to cancel this 0, in other

words we choose the pre filter to have the form 1 by S plus 20. So, that the overall

transmission function from the reference all the way to the output is going to be given by

X by R is equal to F times CP divided by 1 plus CP. Now F we have chosen it to have a

form 1 by S plus 20, but unfortunately the term 1 by S plus 20 has a DC gain of 1 by 20,

and we want our close loop system to have a DC gain close to unity.

Hence in order to make sure that this term has a DC gain of unity, we use we replace the

one in the numerator by 20. So, that when omega is close to 0 the DC gain of the pre

filter is 1; the DC gain of the feedback controller will also be 1 because you have an

integrator  as part  of our feedback control  system and therefore,  our DC gain for the

overall  system  is  going  to  be  close  to  1.  So,  if  you  were  to  now  multiply  F  and

transmission function. So, this is the if we have a 2 degree of freedom control system

they  should  be  the  transmission  function  for  only  the  feedback  part  and  actually

therefore,  represented  as  T  F.  So,  this  is  going  to  be  equal  to  T  this  is  a  overall

transmission function and that is going to be equal to F times the transmission function

for the feedback part which is T F.

And if you were to substitute the expressions look at this to be 20 by S plus 20 times 10

K times S plus 20 divided by S plus 20 minus delta times S plus 50 plus rho. Now, we

see that in this overall transmission function we would have the 0 of T F being cancelled



by the pole of the pre filter F. So, that the overall transmission function would be 200

times K divided by s plus 20 minus delta times s plus 50 plus rho.

Now, we have 2 just 2 poles for the close loop system one is at minus 20 plus delta and

the other is at minus 50 minus rho, and between the 2 since the first pole is closer to the

origin that will be the dominant pole and since this pole has been placed very close to the

open loop 0 this is equal to minus 20, when the open loop gain of the plant changes by a

factor of 25, this change in delta will be exceedingly small. So, this is the trick that we

can employ in order to restrict the variation in the dominant dynamics of the close loop

system by using 2 degree of freedom control architecture.

So, we place a 0 at the location close to where we want our dominant pole to be located,

and we ensure that the open loop system with adequately high gain that our close loop

pole will be located exactly in the vicinity of the 0, and when this is done variations in

the gain of the plant will result in negligible variation in the location of the close loop

pole, and hence location of hence of dominant dynamics.

The problem; however, as we discussed is that with a one degree of freedom control

structure this dominant pole will be cancelled almost exactly by the open loop 0 that we

have placed and therefore, it will sees to be the dominant dynamics of the system. To

address this problem we use the pre filter in order to cancel the 0 that we have placed and

that allows us to retain the dominant dynamics of our overall system exactly where we

wanted it to be.

Now, this has been implemented so, the same. So, this control system has now been

changed to a 2 degree of freedom control system. So, we have chosen the pre filter to be

of the chi F of s is equal to 20 by s plus 20, and our feedback controller as we discussed

is gonna have a 0 at s plus 20 at of the term of the kind s plus 20, we have the term s plus

10 which cancels the plants pole, we have the integrator which is intended to achieve 0

steady state error for tracking DC references, and then we have the term S plus 50 in

order for us to have a causal control system.

Now, I have chosen an adequately high gain K 1 for this controller in this case I have

chosen K 1 to be 200 and when you choose such a high gain for the controller we see

that when the plants gain varies by a factor of 25 in particular, when the plants gain falls

from its nominal value of 10 to 2 the close loop response changes from this blue trace



which is given here to the red the green trace which is given there. So, you might want to

compare the variation that you have in the close loop transient response in case of one

degree of freedom control, its a huge variation as I have pointed out here.

In contrast the variation that you have between the close loop response with the nominal

plant and the close loop response with the plant of reduced gain is exceedingly small.

The results are even more impressive for the case when the gain increases by a factor of

5 and goes to 50. So, for the one degree of freedom control case even here there is a huge

variation in the transient response, the red trace in the first graph is very different from

the blue trace.

On the  other  hand by  using  2  degree  of  freedom control  you  can  see  that  there  is

practically negligible variation in the transient response of the close loop system, when

the gain has increased by a factor of 5 from its nominal value. That is because the red

trace that you see in this curve, and the blue trace that you see these 2 are sitting almost

exactly one on top of another.

Now, we can expect to do even better if we have higher gain, anyway we have a system

with only 2 close loop poles and the root locus analysis indicates that the system can

never  be  destabilized  and therefore,  if  we were  to  pick  at  even higher  gain  for  our

controller. In this case I have chosen a gain of 2000 you can see that all the 3 responses

the response of the close loop system when the plants gain is 10, when the plants gain is

2 and when the plants gain is 50 all exactly overlapped.

So, it is as though the close loop system does not recognize the fact that, there is such

huge variation of uncertainty associated with the plants dynamics. So, what this example

illustrates is that, even though you could have very large variation in the plants dynamics

in this particular case we have considered the gain of the plant, by adopting this 2 degree

of freedom based control strategy, it is possible for the close loop system to be robust to

not be sensitive to a variation in the close loop, in the parameters of the open loop system

in particular the uncertainty associated with the gain of the plant.

Thank you.


