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Limitations of 1-degreeof freedom control

Hello.  In  all  the  previous  clips  where  we discussed  control  system design  we  have

focused on design of 1 degree of freedom control systems, or control systems where we

have only one controller available for us to tune.

Now, we have discussed a variety of the shelf controllers that will do the job for us given

disturbance rejection, specifications, robustness, requirements, and so on. We have also

looked at some special controller such as the internal model controller  which we can

exploit when we know something particular, such as a frequency of a disturbance or the

reference we want to track and so on and so forth.

But, at the end of the day 1 degree of freedom control systems are not without their

limitations, and what we shall do in this clip is to take a look at a couple of important

limitations of 1 degree of freedom control systems, which would subsequently set the

stage for us to discuss slightly more sophisticated control systems; namely 2 degree of

freedom control systems, where we would have 2 controllers available to us for tuning.

Now, the  most  obvious  and  important  drawback  of  a  1  degree  of  freedom  control

configuration is the fact that, it is sensitive to measurement noise. This is something that

we looked at fairly early on in this course. And to make that point again I have drawn

this block diagram of a control system, where we have a single controller C and the plant

P.
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The output of the plant is of course, measured by a certain measurement system and is

fed back and compared with the reference  R. But invariably  when we are making a

measurement we cannot avoid some measurement noise n keeping in and affecting the

actual measurement.

So, what are essentially therefore, feeding back is not the exact measurement x, but we

are feeding back x plus n. Now if we were to write down the transfer function that relates

the output X to the reference R and the noise N what we see is that, the transfer function

for both of them is exactly the same namely CP by 1 plus CP with the exception that

there is a negative sign, that multiplies this transfer function when we are looking at the

relationship between the output and the noise.

But  magnitude  wise  they  are  both  the  same  and  what  is  the  disadvantage  of  this

particular fact? It is that as control engineers we want our loop gain to be high within the

frequency range there we want references to be tracked. In other words our CP has to be

CP of j omega has to be much greater than 1 within the frequency range where we want

to track references and reject disturbances and so on and so forth.

But in our effort to track references and reject disturbances, we also end up letting in

noise within the same frequency range. And as you can see there is nothing you can do

about a independently suppressing the effect of noise in comparison to the reference, in

this 1 degree of freedom control architecture. So, over the entire frequency range where



we are interested in tracking references we are also going to be letting in measurement

noise. And that is going to affect our output and that is something that we do not desire

and we do not wish for it to happen, but there is nothing we can do about it as far as 1

degree of freedom control structure is concerned.

The second drawback has to do with the sensitivity of the transient response of this ho

closed loop system, to variation in plant parameters. So, to remind you the relationship

between the overall transmission function T, and the open loop transfer function C times

P is given by T is equal to CP by 1 plus CP. And in the previous clips I have introduced

the term CP the product of the controller transfer function and the plant transfer function

as what we call as L or in other words a loop gain. And the term T of course, we have

introduced as the transmission function.

Now, an important question that one might ask is whether this transmission function will

remain the same, when we have an uncertain plant on our hands. So, when the plant P is

uncertain or it has parameters whose exact numerical values we do not know, and are

therefore, different from the nominal values if we might have assumed during design or

they have parameters that may be changing slowly with time. Then it is obvious that our

transmission function will also change when the plant model changes. The question that

we  want  to  answer  is,  how much  relative  change  do  you  have  in  the  transmission

function which I have denoted by that term delta T by T, how is this relative change or

fractional change in the transmission function, how is that related to a small fractional

change in the plant transfer function.

Now, this  will  allow  us  to  identify  one  other  problem associated  with  1  degree  of

freedom control design; namely the sensitivity of the transient response of the closed

loop system to changes in plant parameters. So, let us first try to derive the relationship

between delta T by T, which is a fractional change in the transmission function and delta

P by T, which is a fractional change in the plant transfer function for small changes in the

plant transmission function. Other words when delta P by P is much less than 1 what is

the relationship between delta T by T and delta P by P that is what we are out to do.

So, to do this it is a little bit of algebra. So, we know that T is going to be given by L by

1 plus L. So, what this implies is that dT by dL is going to be equal to 1 by 1 plus L the

whole square or in other words dT is equal to dL by 1 plus L the square. Now we can



replace dT with delta P for small changes in the transmission function T, and write the

delta T is approximately equal to delta L by 1 plus L the whole square for corresponding

small changes in the loop gain L.

Now, therefore, delta T by T which is the fractional change in the transmission function

is going to be equal to delta L by 1 plus L the whole square times T, and in place of T I

shall write L by 1 plus L, because that is a definition for T. And what that gives us is that

delta T by T is going to be equal to 1 by 1 plus L times delta L by L.

Now, let us focus on this term delta L by L, I shall write this separately on the left hand

side delta L by L is going to be equal to delta of CP divided by CP. And this in turn is

going to be equal to C times delta of P plus P times delta of C divided by CP or in other

words it is going to be equal to delta P by P plus delta C by C. Now if focus on these 2

terms, we note that since a controller is a system that we have designed as engineers,

there is really no uncertainty associated with the controller structure. Hence we would

have that in all cases delta C by C would be equal to 0.
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With  the  consequence  therefore  that  the  relationship  between  the  uncertainty  in  the

transmission function delta T by T and the uncertainty in the plant delta P by P is given

by delta T by T is equal to 1 by 1 plus L times delta P by P. So, delta P by P represents

the  fractional  uncertainty  in  the  plants  model,  and  delta  T  by  T  represents  the



corresponding fractional uncertainty in the transmission function. And the two are related

by that term 1 by 1 plus L.

So,  the  term 1  by  1  plus  L has  a  special  name,  because  of  the  relationship  that  it

establishes  between the variation in the plants model  or the uncertainty in the plants

model and the uncertainty in the transmission function. So it is therefore, called as a

sensitivity  function.  The reason it  is  called a sensitivity  function is  evident  from the

equation that I have written here, it is the sensitivity of the overall transmission function

to variation in plant parameters.

Now, we note that given the expression for a sensitivity function, which incidentally also

happens to be the same transfer function that relates the output of our closed loop system

to output disturbances. We note that the actual transmission function which is P which is

given by L by 1 plus L and the transmission function S which is given by 1 by L plus L

have a special relationship namely that P plus S is always going to be equal to 1 no

matter what.

So, if we design the transmission function, then the sensitivity function automatically

gets fixed and vice versa. Now how does the sensitivity function yes look as function of

frequency, we note that in the low frequency and the mid frequency range of our open

loop system, our loop gain L is generally going to be very high, because we would have

some performance specification to satisfy in these frequency ranges, either in the form of

disturbance rejection or in in terms of robust tracking or some such specification.

Hence in these frequency ranges the loop gain L is going to be very large,  with the

consequence that a sensitivity function S which is 1 by 1 plus L is going to be a very

small number in this frequency range. And if we take the logarithm of the sensitivity

function,  because  if  one were  to  try  to  try  to  draw the  Bode plot  of  the  sensitivity

function. Then we would note that in this frequency range in the frequency range where

we are where we are expecting control performance.  The logarithm of the sensitivity

function is going to be a large negative number, because the sensitivity function itself is

going to be a number that is going to be very close to 0.

However,  there  will  be  a  frequency  at  which  the  loop  gain  will  start  to  reduce  in

magnitude and at the gain crossover frequency; the loop gains magnitude will be exactly

equal to 1. So, in the neighborhood of the gain crossover frequency the loop gain will



change its magnitude from some value greater than 0dB to some value less than 0 dB,

and what about the phase in the vicinity of the gain crossover frequency? In the vicinity

of the gain crossover frequency the phase lag of the open loop system is going to be

close to 180 degrees of course, it will not be exactly equal to 180 degrees because there

will be a certain phase margin for our open loop system, but it is going to be close to 180

degrees.

So, what will the magnitude of 1 plus L be; therefore, at frequencies that are close to the

gain crossover frequency. To answer this question let us draw the Nyquist plot for the

loop gain. So, the x axis has of course, a real part of L, and the y axis is the imaginary

part of L and the critical point minus 1 is located here. So, when we are near the gain

crossover frequency, our loop gain will be located somewhere here, because the phase

lag associated with the loop gain will be some negative angle which is going to be still be

greater than minus 180 degrees and the magnitude will be close to 1. So, it will be the

radius vector for the loop gain L of j omega would have a magnitude close to that of

unity.

So, if this is the unit circle, then the loop gain L of j omega will lie somewhere close to

the circumference of this unit circle. So, given the location of L of j omega in the nyquist

plot, for frequencies omega close to the gain crossover frequency what can we say about

the magnitude of 1 plus L? We note that if this is L, then this complex number which

starts at the point minus 1 comma 0 and ends at the loop gain is the complex number 1

plus L. And we note that if the angle of L of j omega is close to 180 degrees and its

magnitude is close to 1, then the magnitude of 1 plus L will also be close to 0 and what

does  that  imply?  It  implies  then  that  the  sensitivity  function  the  magnitude  of  the

sensitivity function, near the gain crossover frequency which is going to be equal to 1 by

the  magnitude  of  1  plus  L is  going to  be  a  number  greater  than  one  near  the  gain

crossover frequency.

And  what  does  that  imply  given  the  definition  of  a  sensitivity  function?  What  that

implies then is that, our closed loop system is actually more sensitive to variation in plant

parameters in this frequency range; in the frequency range where the magnitude of 1 plus

L is less than unity, than the actual plant itself. Because delta T by T is going to be equal

to 1 by 1 plus L delta P by P which in turn implies that the magnitude of delta T by T is

going to be equal to the magnitude of 1 by 1 plus L times the magnitude of delta P by P



and if the magnitude of 1 by 1 plus L is greater than 1, then we would have that the

magnitude of delta T by T would be greater than the magnitude of delta P by P.

So, in this frequency range we are actually doing the opposite of what we as control

engineers wish to do. In other words, we would end up with a closed loop system, whose

response is more sensitive to plant parameter variations in this frequency range than that

of the open loop uncertain plant itself indeed.
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I have in the next slide plotted a sensitivity function for the overall closed loop system

that we had, when we when we undertook the design using Bode plots. So, to remind you

we had the plant P to be equal to 10 by S by 10 plus 1 times S by 50 plus 1 times S by

300 plus 1 this was the plant transfer function.

And the controller transfer function which was the P I D controller that we ended up

designing towards the end of the clip was C was equal to 6 times S plus 1 by S times S

by 170 plus 1 divided by S by 1700 plus 1.

Now, for L is equal to C times P, I have plotted the sensitivity function S is equal to 1 by

1 plus  L and the  magnitude  of  S as  function  of  frequency and the  phase of  S with

function of frequency is shown here. What is important is the magnitude of S, because

that is what is going to determine our control performance, and as you can see it is a very

small number in the frequency range where were interested in performance or when it



expressed in decibels it is a large negative value minus 60 dB minus 80 dB and so on and

so, forth.

A frequency increases the sensitivity also increases, and there is a particular frequency

namely  140 hertz  at  which the sensitivity  becomes  greater  than  0 dB.  Now what  is

implies when we go back to the expression delta T by T is equal to magnitude of delta T

by T is equal to magnitude of 1 by 1 plus L times magnitude of delta P by P. What is

implies. Therefore is that, for frequencies beyond 140 hertz the fractional change of the

overall  transmission  function  is  more  than  the  fractional  change  of  the  plant  itself.

Therefore,  the overall  closed loop system is  more sensitive to variations  in the plant

parameters than the case when we did not have a feedback at all in place.

Now, this might be provided the frequency 140 hertz happens to be well outside the

closed loop bandwidth of our transmit of our closed loop system or in other words. If 140

hertz is a frequency it is significantly to the right of the overall bandwidth of T of S then

we would  not  have  any  problems,  because  even  if  our  closed  loop  system is  more

sensitive to variation in parameters in that frequency range we are anyway not interested

in  tracking  performance  or  disturbance  reduction  in  the  frequency  range.  So,  that

sensitivity will not affect our system in any particular manner, but unfortunately that is

not the case.

If we were to plot the transmission function T, that has been shown by the curve here we

see that its bandwidth is 315 hertz. So, from 140 hertz all the way to 315 hertz, we have a

sensitivity  that  is  greater  than  0  dB or  our  closed  loop system is  more  sensitive  to

variation in the plant parameters, than an open loop system without feedback would be.

And there is nothing we can do about this because T plus S is equal to 1. So, we cannot

independently engineer our transmission function to have a much smaller bandwidth than

140 hertz  or  equivalently  we cannot  engineer  a sensitivity  function,  to  have a  much

higher frequency at which it reaches 0 dB than 315 hertz. Because of this identity namely

T plus S is equal to 1 and there is nothing we can do about it if we are stuck with 1

degree of freedom control architecture.

Hence,  the  inability  to  independently  design  the  sensitivity  function  yes  and  a

transmission function T happens to be an important drawback of 1 degree of freedom

control architecture. And the consequence of that is that we are going to have significant



sensitivity of the overall closed loop system in the frequency range beyond 140 hertz to

changes in the plant parameters. And that in turn manifests itself as large variation in the

transient response of our closed tube system when our planned parameters change. So for

example: in this case the blue curve here plots the overall closed loop systems transient

response step response, for the kind of plant that we have picked and filed for the kind of

controller that we have chosen here, this is a nominal plant and this is the controller.

Now, if the plants gain were to increase by 20 percent, then there is a huge change in the

step response. So, the green curve here shows the step response of the closed loop system

when the plants gain has increased by 20 percent. Likewise, if the plants gain were to

drop by 20 percent then the overall transient response of the closed loop system follows

the  red  curve  that  is  shown here.  So  you see  therefore,  that  when the  plants  model

changes a little bit. In this case its gain as either increase by 20 percent or decrease by 20

percent the transient response of the closed loop system changes dramatically, it  goes

from the nominal response which is shown by the blue curve to the green curve when the

gain increases or to the red curve when the gain decreases and there is a dramatic change

in the response.

The question now is, how can we minimize the variation in the transient response of our

closed loop system when we have changes in the plant parameters or in other words how

can we achieve robustness in the overall response of our closed loop system to variation

in  plant  parameters.  It  turns  out  that  it  is  not  something  that  we  can  effectively

accomplish by using 1 degree of freedom control architecture, and in its place therefore,

we would have to employ 2 degree of freedom control architecture,  where we would

have 2 transfer functions available for tuning.

So,  both  these  examples  that.  I  just  talked  about  the  sensitivity  of  the  1  degree  of

freedom control architecture to noise and our inability to suppress noise in the frequency

range where we want to track a certain reference number 1. And number 2 the inability to

independently design the transmission function and a sensitivity function, which leads us

to this excessive sensitivity of our closed loop systems transient response to variations in

plant parameters, turns out to be two important drawbacks of the 1 degree of freedom

control architecture. What we will see now is how we can address this issue by having

one more controller available for us to tune.



Thank you.


