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Hello. In the previous clip we saw that if we knew something about the disturbance that

is affecting our plant we can actually do better than a regular controller in rejecting the

disturbance. Or, in a similar manner, if you know something about the reference that we

are intending to track and we can do something; we can do much better than what a

conventional controller does.

And the tool that allowed us to do it was what we called as a internal model principle.

And the central aspect of internal model principle is to include the denominat polynomial

of either the disturbance or the reference, that we want to reject or track respectively as

per of the denominator polynomial of the controller itself.

Now, just as we could do a little bit better. In fact, we could reject disturbances perfectly

in steady state or track reference is perfectly in steady state, if you happen to know their

frequency, one would therefore, expect that we should be in a position to do better if we

happen to know something more about the plant as well. So for instance, if we have no

uncertainty associated with the plant, in other words the plant model is known very well

and it is also known not to change significantly with time, then what benefits  would

accrue as far as control design is concerned.

One straightforward benefit is; that instead of going from closed loop frequency domain,

to open loop frequency domain, and performing control design using bode plots or root

locus or any of the other techniques and then coming back to the closed loop frequency

domain and then looking at the response in the time domain, one can directly synthesize

the closed loop transfer function of the overall control system.
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So, for instance if we happen to know the plant model P naught of s very well, then we

do not really need to go to the open loop frequency domain, but instead directly obtain

that controller C of s which gives us the desired transmission function T; T equal to C

times P naught by 1 plus C times P naught. So, what is therefore allow to do; is if we

happen to know the plant model P naught very well and we also know that this plant

model is not changing with time. So, it is not having one set of parameters now another

set of parameters some time from now and so on. Then we can directly synthesize the

transmission  function  T and  find  that  controller  C  which  gives  us  this  transmission

function T.

Now, if we rearrange this equation we would have T times 1 plus C times P naught to be

equal to C times P naught or in other words P is equal to C times P naught times 1 minus

T. And this implies therefore, that the feedback controller C of s which gives us this

transmission function P of s is given by C of s is equal to P naught inverse times T by 1

minus T.

So, this simple strategy of synthesizing the feedback controller, by assuming that we

know what transmission function T of s we already want is called direct design. And

what is quite unsurprising here is to note that our controller transfer function C of s has P

naught inverse, has one of the terms and that multiplies T by 1 minus T. So, in effect

therefore,  we are cancelling the plant dynamics  from the overall  feedback loop. And

replacing it with whatever dynamics we want in the open loop system so, that the closed

loop system has the desired transmission function T. Because our open loop gain is going



to be given by L is equal to C times P naught, and if I were to substitute for C from this

equation above it would be equal to P naught inverse times P by 1 minus T times P

naught and that essentially equal to P by 1 minus T.

So, in the forward path therefore, we have cancelled the plan dynamics altogether and

replaced it with whatever dynamics, we want to give us the desired transmission function

T for the closed loop system. Now as simple as this technique looks, there are if you

cover ups. So, for one thing we want our controller C of s to be physically realizable, and

if  we choose  a  transmission  function  whose  relative  degree  is  less  than  the  relative

degree  of  the  plant,  then  we  will  end  up  with  a  controller  which  is  not  physically

realizable.

To see this all we need to look all we need to do is look at this equation here. From this

equation we see that if n T is the degree of the denominator polynomial and m T is the de

nom degree of the numerator polynomial then the relative degree of the transmission

function T is given by n T minus m T. And we see that the degree of the numerator

polynomial of T is essentially the sum of the degrees of the numerator polynomial of C

and the degree of the numerator polynomial of P naught. Likewise, the degree of the

denominator  polynomial  of  T is  going  to  be  equal  to  the  sum of  the  degree  of  the

denominator polynomial of C and the degree of the denominator polynomial of P naught.

So therefore, n T minus m T is therefore, going to be equal to n p plus n c where n p and

n  c  are  the  degrees  of  the  denominator  polynomials  of  the  plant  and  the  controller

respectively minus m p plus m c where m p and m c are the degrees of the numerator

polynomials of the plant and the controller respectively.

Now, we know that each of these physical each of these systems need to be physically

realizable. So, n T minus m p is equal tont minus m p plus n c minus m c. Now since

each of these systems have to be physically realizable we want the relative degree of the

controller  namely n c  minus m c to  be greater  than or  equal  to  0 and what  implies

therefore, is that n T minus m T which is the relative degree of the overall closed loop

system, should be greater than or equal to n p minus m p which is a relative degree of the

plant.

Our closed loop transmission function T has to be chosen to be at least a third order

transfer function. Likewise if our plant is a second order system or it has its relative



degree is 2 then we have to chose choose our transmission function to at least have a

relative  degree  of  2,  in  order  for  the  controller  to  be  a  physically  realizable  causal

controller.

Now,  given  this  necessary  condition  for  determination  of  T;  we  are  still  left  with

considerable flexibility and freedom as far as the exact structure of T is concerned. So,

how might one want to choose the transmission function T?
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Now, generally as control engineers we want a transmission function to be as close to

unity over as wide a frequency range as possible. So, if I were to plot the magnitude of T

as function of frequency omega, we want the transmission function to be as close to 1

and as flat as possible or as wide a frequency range is possible. That will ensure that

within the bandwidth of this frequency response, we would have x of T to be equal to r

of T or we would be achieving the ideal of control to the extent that we possibly can.

Now, of course, we cannot get magnitude of T to be equal to 1 for all frequencies, there

will  have  to  be  a  corner  frequency  omega  C  at  which  we  should  allow  for  this

transmission function to roll off why is that so? That is so, because if you remember our

controller transfer function C was given by C is equal to P naught inverse times T by 1

minus T. Now how do we obtain P naught? P naught is the plant transfer function and

that  has  to  be  obtained  from  experimental  results.  And  then  those  experimental

experimentally obtain plant transfer function has to be inverted.



Now, when we experimentally obtain the plant transfer function, you can imagine that

when  the  frequency  of  excitation  to  the  plant  becomes  larger  and  larger,  then  the

response of the plant to excitation of those frequencies correspondingly becomes very

small.  Therefore,  at  very  large  frequencies  our  plants  response  will  be  buried  in

measurement noise. Therefore, the uncertainty associated with our plant model will be

larger at higher frequencies. There is only a certain frequency up to which we know the

plant model very well, beyond which we are not very sure about the exact structure of

the  plant.  Therefore,  we will  not  be  able  to  precisely  invert  the  plant  dynamics  for

frequencies beyond that frequency at which our measurement noise starts to dominate

over the response of our plant.

Hence,  there  has  to  be a frequency omega C, beyond which we will  not  be able  to

properly invert the plant. And therefore, we will not be able to exactly get a transmission

function that we want.

There is one other reason why we need to limit the transmission functions magnitude to

unity up to only a certain frequency omega C that is, because as the frequency increases

the plants gain generally tends to drop. So, P naught of j omega is generally a decreasing

function of omega beyond the bandwidth of the plant what this implies is that if P naught

of j omega is a very small number then P naught inverse will be a very large number. So,

therefore, the output of our controller will be a very large magnitude for frequencies that

are  well  beyond  the  corner  frequencies  of  the  plant.  And what  that  in  turn  implies.

Therefore, is that the output of the controller is going to be very large and that is going to

leak that is likely going to saturate our electronics.

Hence, for all these reasons we cannot choose arbitrarily large bandwidths for the overall

transmission  transmission  function.  As  a  rule  of  thumb  the  upper  limit  could  be

approximately one order of magnitude beyond the bandwidth of the plant itself. So, that

is  the  best  possible  bandwidth  for  the  overall  transmission function  T. That  one can

accomplish probably we are able to characterize the model of the plant very well up to

one decade beyond the corner frequency the bandwidth of the plant.

So, ideally we want our transmission function to be 1, but we now realize that it cannot

be one practically for all frequencies. So, we have chosen to expect our response to be

close to one up to some frequency omega C.



Now, the question is  what  should the specific  functional  form for T of j  omega the

overall transmission function? Which is going to be equal to C times P by 1 plus C times

P of j omega be between the frequencies 0 and omega C what should T of j omega look

like?

So, since we want T of j omega to be as close to one as possible, a good choice for T

would be a maximally flat filter or in other words a Butterworth filter. If we choose the

transmission function T to be a Butterworth filter, then we would have a maximally flat

magnitude response within the pass band of this filter and that will allow our filter to

have a gain that is as close to one as is possible within its pass band. If you look at the

transfer function of a Butterworth filter  you will notice that, the magnitude of T of j

omega the square if T of j omega were to have a Butterworth filters characteristics would

be given by magnitude of T the square is equal to 1 by 1 plus omega by omega C to the

power 2 n where n is the order of that filter.

So,  by  choosing  an  appropriately  high  order  filter,  you  can  get  very  flat  pass  band

transmission function and a fairly  steep roll  off as per the frequency omega C. This

brings us to the end of one degree of freedom control design.

Thank you.


