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Hello in the previous clips we have taken a look at Control System Design using root

locus and before that using bode plots and when we get a design, we did not make any

particular assumption about the specific nature of the disturbance that was affecting our

system or the specific kind of plant that we are dealing with.

So, therefore, we had to rely upon generic controllers; such as the ones are now available

of the shelf, namely the proportional time proportional integral or PID or lead lag or

one of these controllers, or you might we have to synthesize controllers of a structure

different from all of these which satisfy our particular requirements. Since we did not

make any assumption about our knowledge of the plant or its environment, there was

only so much that we could accomplish as far as control engineering was concerned

So, the ideal of getting x of p to b equal to r of t of course, had to be compromised. It had

to be compromised a little bit, but nevertheless compromised, on account of the fact that

we did not have any precise information about the plant or its environment

So, one can therefore, expect, but if one knew something about the plant or one knew

something about the reference that we are interested to talk or disturbance that we are

interested to reject, we should be able to do a little bit better than what we could do with

the generic controllers that we have seen so far

So, this lecture, this clip therefore, would focus on discussion of controllers, for systems

where  something  more  is  known  about,  either  the  plant  or  its  environment  or  the

reference that we use to track and the hope is that is extra knowledge will allow us to do

better as control engineers and perhaps even accomplish the ideal of perfectly rejecting a

disturbance or perfectly tracking a certain reference.

So, what we will see in this clip, is that if we happen to know the precise frequency at

which the disturbance might be affecting us, or the precise frequency of reference that

we are expected to track or precise set of frequencies of references that we are expected



to  track,  then  we  can  exploit  this  information  do  much  better  then  what  a  generic

controllers  that  we  discussed  in  the  previous  clips  allow us  to  do.  To illustrate  the

capability of this, let us first revisit the problem that we have taken up when we are

doing control design using bode plots

So,  in  that  problem  we  were  interested  to  reject  disturbances  and  track  a  certain

reference..

(Refer Slide Time: 03:12)

Specifically to refresh your memory we had a plant which was given by P of s is equal to

10 by s by 10 plus 1 times s by 50 plus 1 times s by 300 plus 1, so this was the plant that

we had considered.  And we were interested  to  reject  a  disturbance or  frequency 0.2

radian  per  second,  and  track  a  reference  of  frequency  0.1  gradient  per  second.

Subsequently,  we  also  expressed  our  desire  to  design  a  controller  which  rejected

disturbance at around 10 radiance per second, so at this particular frequency. And we

wanted  it  also  to  be  rejected  by  99  percent.  So,  we  wanted  only  10  percent  of  a

disturbance to affect our output

Now, let us say we were not interested even in that 1 percent of the disturbance affecting

our  output;  we wanted  perfect  rejection  of  this  disturbance,  is  that  possible?  Well  a

general if you are told that is disturbance has a certain frequency spectrum, it is not all

the energy is not concentrated at a single frequency, but rather it is distributed over a

certain set of frequencies and this distribution is not known ahead of time, then there is



not much more that you can do then what was done by the PID controller that we design.

So,  this  PID  controller  allowed  us  to  achieve  a  sufficiently  high  loop  gain  in  the

frequency range of 10 radian per second and that allowed us to reject a disturbance by

the required amount of about 99 percent

But suppose you are told, but this disturbance is actually a sinusoidal disturbance. So,

there is  only one frequency in this  disturbance,  and that  is  10 radian per second. Of

course, this still does not mean it you know everything about a disturbance. For instance

we do not know its amplitude, we do not know its phase, but we do happen to know that

its frequencies exactly 10 radians per second. The question is can we employ this extra

piece of information to do much better then what this particular, the PID controller did.

So, even that 1 percent of leakage of disturbance, it is happening into the output can that

be plugged, can that be avoided by employing this extra knowledge; that is disturbance e

at a single frequency namely 10 radian per second and we want to reject this perfectly.

Now, it is not unreasonable to expect this kind of a scenario to arise in practice, because

generally if you think of. For example, the problem of vibration isolation, where you

have a sensitive set up, that you want to isolate from the rest of the environment, then

generally the vibrations that this set up would feel, would be due to some moto that is

running nearby or some footsteps of people and so on and so forth. Footsteps of course,

do not have a specific frequency spectrum, so we cannot employ this technique, but if

this disturbance, if the set up is being shaken by a motor, then the speed of that motor is

generally fixed and therefore, we know precisely the frequency content of a disturbance

that is affecting our system, it will be a periodic signal of period equal to the rotation

speed of that motor or its higher harmonics

So, therefore, there are occasions in practice where we can be, you might be fortunate

enough to find that disturbance has a particular fixed time period or even better, it might

be a sinusoidal disturbance of a particular fixed frequency and that is the sper specific

problem that we are considering here. So, suppose we know that this disturbance is at 10

radian per second, can we do something to reject it perfectly.

Now, to understand if we can reject this perfectly or not, let us first take a step back and

see why this particular controller is not able to reject it perfectly.
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To do that what I would do is first write down the transfer function that relates the output

X of s to the disturbance D of s and that as you know is given by 1 by 1 plus C of s times

P of s. Therefore, our X of s would be equal to D of s divided by 1 plus C of s P of s.

Now our controller transfer function is already been written out in the previous slide, it is

given by C of s is equal to 6 times s plus 1 by s times s by 170 plus 1 times s by 1700

plus 1, P of s is the plant, which is given by 10 by s by 10 plus 1 times s by 50 plus 1

times s by 300 plus 1.

Now, X of p; of course, will  be the Laplace inverse of X of s, it  is going to be the

Laplace inverse of this term here on the right, namely D of s by 1 plus C of s times P of

s. 

Now, if we know that our disturbance D of s is a sinusoidal signal of frequency 10 radian

per  second  or  some  particular  frequency  omega,  then  we  know  that  the  Laplace

transform of this disturbance would be of the form a 1 s plus a 2 divided by s square plus

omega square; that omega is that particular frequency of oscillation of this disturbance.

In our particular case it happens to be 10 radian per second

One is constants a 1 and a 2 are unknown, because we do not know the magnitude and

the phase of the disturbance, we just happen to its frequency omega namely 10 radian per

second. But we can exploit that and write x of t as Laplace inverse of a 1 s plus a 2

divided by 1 plus C of s times P of s times s square plus omega square. So, I have just



substituted D of s with the term a 1 s plus a 2 divided by s square plus omega square to

get this term.

Now, to obtain the Laplace inverse, we can use the method of partial fractions which we

talked about in a few clips back. So, essentially I can write this as Laplace inverse of

some constant b 1 by s plus P 1 plus b 2 by s plus P 2 and so on and so forth plus b n by s

plus P n, where P 1 2 P n are the n poles of the closed loop system or in other words the

zeroes of the term 1 plus C of s times P of s. So, zeroes of 1 plus c times P are given by P

1 to P n. So, I can use partial fractions to write out the entire term within the bracket of

this Laplace inverse as this plus a constant, let us we call it c 1 divided by s plus j omega,

because the term s square plus omega square can be factorized as s plus j omega times

plus minus j omega.

So, when I write it out as a partial fraction, it would be of the form c 1 plus s plus j

omega, c 1 by s plus j omega plus c 1 bar by s minus j omega. So, this is going to be the

general, partial fractions expansion of the term within the bracket.

Now, if we take the Laplace inverse the first term you would get b 1 e power minus t 1 t

and the second term would be b 2 e power minus P to t and so on and so forth up to b n e

power minus P nt and we would have c 1 e power minus j omega t plus c 1 bar e power j

omega t, so this is going to be the expansion.

To remind you the reason we are undertaking this analysis was to determine why we are

having non zero error, why we are unable to get the disturbance to be rejected perfectly

by the controller that we have designed early, will be the PID controller. And if we look

at the time domain response we see that all these terms b 1 e power minus P 1 t etcetera

etcetera are all decaying functions of style why is that so? That is because as control

engineers  we  have  designed  our  closed  loop  system  to  be  stable,  which  means  by

definition that the zeros of 1 plus C of s times P of s will always be by design on the left

half of the complex plane.

So, the all have decaying exponential terms therefore, what this indicates is that if I wait

wrong enough then all the terms that are related to response due to the plants poles will

all decay down to 0. So, if I wait long enough in the limit at time t tends to infinity, every

single term b 1 e power minus P 1 t etcetera etcetera all the way up to b n e power minus



P and t will all die down and go to 0, what will remain and persist for all time; however,

is this term here, the term that is because of the sinusoidal portion.

The question now then, is can we choose a controller structure that we will make this

term go away.
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Now  to  answer  that  question  let  us  come  back  to  the  expression  for  X  of  s.  The

expression for X of s is that X of s is equal to a 1 s plus a 2 divided by 1 plus C of s times

P of s times s square plus omega square. Now we discover in the previous slide that the

real  culprit,  the  one  that  is  responsible  for  having  that  1  percent  leakage  of  the

disturbance at the output was this term s square plus omega square. The response due to

the other  poles  die  down, because  our close loop system as we design to  be stable.

Therefore, if at all we can find a way to make this term disappear in the transfer function

that relates the input to the disturbance then they are home free.

There is a possibility for us to get the disturbance to be rejected perfectly. So, how do we

do that? Let us for instance pick the controller structure C of s to be of the form C 1 of s

divided by s square plus omega square plus C 1 of s is a controller that we still need to

design, but it would be designed in such a manner that our close loop system would be

stable.  So, in other words what we have made sure with this  choice is that we have

ensure that we have that term s square plus omega square in the denominator polynomial

of our controller transfer function C of s.



Now, suppose we choose a controller of this form then X of s can be written as X of s is

equal to a 1 s plus a 2 divided by 1 plus C 1 of s times P of s divided by s square plus

omega square times s  square plus omega square,  and this  upon simplification would

become a 1 s plus a 2 divided by s square plus omega square plus C 1 of s times P of s

divided by s square plus omega square times s square plus omega square. Now what we

note  here is  that  we can  cancel  out  the  2 s  square  plus  omega square  terms in  this

expression and therefore, get X of s to be equal to a 1 s plus a 2 divided by s square plus

omega square plus C 1 of s times t of s. 

Now, what have we achieved in the process? We have managed to get rid of the term a

square plus omega square and the denominator polynomial of X of s. Now what we have

as a denominator polynomial instead is this term s square plus omega square plus C 1 of

s times P of s, and all we need to do is to design C 1 of s in such a manner that the zeroes

of this denominator transfer function s square plus omega square plus C 1 times P are all

on the left half of the complex plane. Now if we do that then what can be done is write X

of t as Laplace inverse of b 1 by s plus P 1 as b 2 by s plus P 2 and so on and so, forth

plus b n by s plus t n.

There will be. Now we will not have the two terms related to s plus j omega and s minus

j  omega,  because  that  has  been  removed  from  the  denominator  polynomial  by  our

specific choice of our controller structure

Now, when we take the Laplace inverse of this you would get this to be equal to b 1 e

power minus P 1 t plus b 2 e power minus P 2 t and so on and so forth plus b n e power

minus P n t. Now in the limit that t tends to infinity you would have X of p to be equal to

0, and that is because all of this are decaying functions of Pi. So, is it made long enough

all of them will died out and our ultimate x of p will be equal to 0. So, what this indicates

is that although we cannot perfectly reject this disturbance from the time t equal to 0. So,

instantaneous rejection of disturbance is not possible, if we wait long enough then we

will be able to eventually completely get rid of this disturbance. When I say long enough

I mean that  we have to  wait  for  a  time scale  that  is  determined by the  closed loop

bandwidth of our control system.

So, if  we wait  for that length of time then we would be able to perfectly  reject  this

disturbance,  which  is  the  most  attractive  feature  of  this  particular  strategy. And  the



central feature of the strategy was to choose a form for the controller as given here C of s

is equal to C 1 of s divided by s square plus omega square in other words the included

the denominator polynomial of the disturbance as part of the denominator polynomial of

the controller.

Now, let us try to implement this technique for the particular control system that we were

talking about. So, in our control system I have already shown you the structure of the

plant  and  the  controller.  So,  our  plant  has  this  particular  transfer  function  and  our

controller  has  that  particular  transfer  function.  Suppose  we  want  to  implement  this

technique for this controller.

(Refer Slide Time: 19:04)

So, what I use to do, is to have a controller C of s to be of the form C 1 of s divided by s

square plus 10 square, why did we choose 10, that is because that is the frequency of the

disturbance that we want to reject in this particular case

So, can I uncritically choose this as our controller structure, the C 1 is the controller we

have already designed. So, we have already designed a PID controller to take care of our

disturbance  rejection  at  0.2  radiance  per  second reference  tracking at  0.1  radian  per

second and all of that.

Now, can I simply cascade that controller with the term 1 by s square plus 10 square and

hope that our close loop system would be able to reject perfectly this disturbance at 10



radian per second. Actually if you think for little, but you will discover that you will run

into problems if you directly implement it in this manner why is that so such because of

the kind of effect that this term one by s square plus 10 square will have on the (Refer

Time:20:01) face characteristics of the overall bode plot

So, let me briefly plot the bode plot of the term 1 by s square plus 10 square. So, if we

have s square plus 1 by s square plus 10 square as our transfer function to plot, the bode

plot I have to substitute s is equal to j omega, in which case I will get this to be 1 by

minus omega square plus 10 square. If I were to draw the bode plot of this  transfer

function, so our x axis will be log of omega, the y axis will be log of magnitude of 1 by

minus omega square plus 10 square, and the phase the second plot would be the phase of

1 by minus omega square plus 10 square and log of omega. Then I will have that for the

low frequencies the omega is much less than 10 gradient per second, I would have the

gain of this controller to be just 1 by 10 square within 1 by 100. So, which is minus for P

d B.

So, its going to be come back here, and as I approach the frequency omega equal to 10

radian per second my magnitude plot will start to increase. And at exactly omega equal

to 10 radian per second the gain of this transfer function 1 by minus omega square plus

10 square will be infinity. So, this will blow up at 10 radian per second. Then again it

will drop for frequencies beyond that and for very large frequencies omega, it will go

down the magnitude will go down as one over omega square. 

So, it will go down at the rate of minus 40 decibels per decade. How about the phase

characteristics? You see from by instruction that then omega is less than ten radian per

second, we would have this transfer function 1 by 10 square minus omega square to

always be a positive number positive real number, which means that its phase will be

zero degrees

And the omega is greater than 10 radian per second, we would have its phase to be a

negative real number, it means that the phase will be 180 degrees minus 180 degrees.

Therefore, the phase response will start at 0 degrees and stay at 0 degrees up to 10 radian

per second and at 10 radian per second it will abruptly jump from 0 radiance to minus

180 degrees or equivalently minus pi radiance.



So this is the phase characteristics examining the magnitude and a phase characteristics

then  immediately  reveal  to  you the  problem with  this  controller.  Since  the  phase  is

changing by 180 degrees at 10 radian per second, if our controller C 1 of s has even a

small phase lag then it would cost the overall phase to change from that particular value

of phase lag to minus 180 degrees plus that particular value of phase lag, which means

that you will have the phase cross over necessarily happening at 10 radian per second,

because of addition of its term, and the gain of the controller at 10 radian per second

would be multiplied by infinity. 

Because a gain of this term 1 by 10 square minus omega square at 10 radian per second

is infinity, which means that at the phase cross over frequency which will now be 10

radian per second you will have a very large open loop gain, which means that your close

loop system is going to be unstable

So, how do we avoid this problem? We avoid this problem by choosing a controller C of

the kind, C 1 of s which is the PID controller we have already designed times s by 10

plus 1, the whole square divided by s square by 100 plus 1. So, I have written 1 by s

square plus 10 square in this  particular  manner and there is  no loss of generality  in

writing it in this particular manner. What is the advantage of choosing this particular

structure? We discover that in the numerator we now have the term s by 10 plus 1 and

this term will add a phase lead of plus 45 degrees when omega is equal to 10 radian per

second and since we have two such terms in the numerator in or in other words we have

s by 10 plus 1 the whole square, to get a plus 90 degrees phase lead that is contributed by

these two terms

So, therefore, if I want to plot the bode plot of just this part alone, namely s by 10 plus 1

the square divided by s square by 100 plus 1 I would discover that the magnitude plot log

frequency the magnitude plot has very low frequencies omega will have a gain of 0 d B,

because in the numerator as well as in the denominator I can ignore the terms related to

omega and I would have 0 d B and as I approach omega equal to 10 radian per second

my  gain  will  increase  and  it  will  be  infinity  as  before,  and  it  will  come  back  for

frequencies beyond 10 radian per second. 

But it will not decade at minus 40 d B per decade as it happened in the previous case,

because when for omega much greater than 10 radian per second, we would have this



term to be approximately equal to omega square j omega the whole square by 10 square

divided by j omega the whole square divided by 100, this once again going to be equal to

1

Which means that these controllers  magnitude characteristics will  come back to zero

degree beyond 10 radian per second. As far as the phase is concerned, the initial phase

will be close to 0 degrees as before, and there will be an increase in phase contributed by

the term s by 10 plus 1 as we approach the frequency 10 radian per second. So, there will

be increase in phase, and an abrupt change in phase of minus 180 degrees introduced by

the term s square by 100 plus 1 at the frequency 10 radian per second, where is that

observe abrupt change in phase and then subsequently there will be an increase in phase.

So, this term s by 10 plus 1 will eventually approach plus 180 degrees phasely so, that

will cancel out the minus 180 degrees phase lag contributed by the term s square by 100

plus 1

So, eventually the phase will asymptotically approach zero degrees once again. So, this

is the angle of this particular transfer function as function of frequency. So, what we see

is that this term here s by 10 plus 1 the whole square divided by s square plus 1 s square

by hundred plus 1, modifies the controllers bode plot only in the neighborhood of 10

radian per second.  It  increases  the gain.  In fact,  at  10 radian per second it  makes it

infinity and it modifies the phase also in the vicinity of that frequency alone and leaves

the rest of the frequency range untouch, and that is precisely what we designed, because

we have already designed our PID controller C 1 of s to give us the required stability and

performance specifications in the other frequency ranges.

So, with this modification to our controller structure let us see how we are able to fair.
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.

First I have plotted here the bode plot of this overall system. So, what you see in the red

dash line here, is the bode plot of our open loop system, namely the plant times the PID

controller or in other words the controller that has only these three terms here and that is

given by the red line and this was something that we design a few clips back, when we

were discussing design using bode plots. Now what we have done is, we have cascaded

the term s by 10 plus 1 the whole square divided by s square by 100 plus 1 to this

controller, and as we discussed that  modifies  the bode plot  of the overall  open loop

system only in the vicinity of 10 radian per second.

And in particular at 10 radian per second, the gain has now become infinite infinitely

large. The phase response also is lines that we discussed in the previous slide. So, the

phase starts to increase in relation to the original phase characteristics, because of the

term s by 10 plus 1 under a sudden change in phase by minus 180 degrees introduced by

the  term  s  square  by  100  plus  1  and  then  the  phase  will  continue  to  increase  and

asymptotically approach the original phase response of the overall open loop system. 

So, this is how it looks and from this we can understand why we can expect perfect

rejection of disturbance, because of these controller nuts the cost at 10 radian per second

and having a loop gain of infinite d B. An infinite loop gain is the key for us to get

perfect control performance, either perfect tracking of references or perfect rejection of

the start answers.
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In this case I have carried out a simulation where we have compared the performance of

the  close  loop  system in  the  absence  of  this  controller.  So,  this  is  the  original  PID

controller that we had designed a few clips back, and we discussed that you are able to

bring down suppress a disturbance by 99 percent, exact 98 percent, exactly as we had

desired it to be although it was not completely suppressed.

However now with the new controller where we are, we have included the new term 1 by

s  square  plus  omega  square  in  the  denominator  of  the  controller  and  we  have  also

modified  the  numerator  of  the  controller,  so  that  this  new term does  not  affect  the

frequency characteristics at frequencies other than 10 radian per second. If I were to plot

the close loop response of the system to same disturbance at 10 radian per second what

you see is here. So, we see that there is an initial transience, a small transience, but after

the transience is passed the system does not at all respond to this disturbance

So, in other words we have succeeded in perfectly rejecting disturbance at 10 radian per

second by using this controller. If you look at the close loop transient responses of the

system from a first  case we had a certain  transient  response this  was something we

discussed a few lectures back, I am just reproducing it here for the sake of continuity and

with the present controller, you get a similar transient response with a slightly higher

overshoot, because a phase margin has dropped a little bit as a result of this controller,

but we can always add a leap compensator to improve the phase margin as we have



discussed a few clips back and therefore, the slight in increase overshoot is not too much

of a problem for us

So, at the heart of what we accomplished, now was our choice of this control structure

we chose our controller to be of the form C of s is equal to C 1 of s divided by s square

plus 10 square or more generally, if this a disturbance at a particular frequency omega

then we choose the controller to be of the form C 1 of s divided by s square plus omega

square. So, with this choice you are able to reject this disturbance perfectly and this very

neat elegant trick has a name, its called internal model principle.

(Refer Slide Time: 31:54)

So, the principle states that A signal r of t or a disturbance d of t can be rejected perfectly

in steady state, if the denominator polynomial of R of s which is a Laplace transform of

R of p or D of s is included as part of the denominator polynomial of the controller C of

s.  So,  if  we  include  the  denominator  polynomial  of  r  of  t  of  d  of  t  as  part  of  the

denominator  polynomial  of  our  controller  C,  then  we  can  in  steady  state  reject  the

disturbance perfectly, but track that reference perfectly.

So,  this  is  called  the internal  model  principle  and this  is  widely used in  industry in

scenarios, where you either know the disturbance very well, if its a period disturbance, so

that we know that its frequency spectrum is characterized by discrete energy content in

discrete  set  of frequencies,  then we can employ internal  model principle  to perfectly

reject a disturbance in steady state. 



Similarly, reference  starting  of  sinusoidal  inputs  or  other  periodic inputs  can also be

accomplished  with  zero  steady  state  error  by  using  internal  model  principle.  Now

suppose we wanted to apply internal model principle, so another case namely the case of

reference tracking, and suppose we had a reference at around 50 radiance per second that

we wanted to track. So, 50 radiance per second would be somewhere here, we see that

the  loop  gain  is  not  high  enough  in  this  frequency  range,  because  this  is  the  mid

frequency range of our system and therefore, without this internal model controller we

will not be able to track this reference perfectly. 

So, what I have done therefore is to incorporate this internal model term in as part of the

controller.

(Refer Slide Time: 34:50)
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So, this is the tracking performance of the controller without the internal model term, so I

do not have a term of the kind 1 by s square by 50 square plus 1 as part the denominator

polynomial of my C of s, and without it you see that there is a noticeable error between

the reference that you have provided at this frequency, namely 50 radian per second and

the response at a frequency

However suppose we were to modify the controller to include this term. So, now, we

have the term s square by 50 square plus 1 has part of the denominator polynomial and in

this case, I have not chosen to add the 0 exactly 50 radian per second, but I have chosen

to be added a slightly lesser frequency, around 35 radians per second with the hope of



getting a slightly extra  phase lead at  50 radian per second for the overall  open loop

system. So, with this controller we see that there is an initial transient. So, initially of

course, the two are not matching perfectly or another words the reference is not tracked

perfectly

But after the transients has dried down, you see that the reference and the output sit

almost exactly one on top of another, it indicates that this controller is able to perfectly

track this reference to zero steady state error. Now suppose we have let us say a reference

R of s which can be written as a numerator polynomial N R of s divided by denominator

polynomial D R of s, and suppose we have a disturbance D of s which can be written as

the ratio of a numerator polynomial N D of s and a denominator polynomial D D of s. If

you want to track this reference perfectly and reject that disturbance perfectly at the same

time, then what we need to do is choose a controller C of the form C of s is equal to C 1

of s divided by the Least Common Multiple, another words L C M of D R of s and D D

of s.

So, with this choice of a controller structure, the C 1 is designed to ensure that our close

loop system is stable and it meets other performance specifications at other frequencies

for disturbance rejection and so on. We can make sure that this  reference is specific

reference R of s and this particular specific disturbance P of s can be tracked perfectly

and rejected perfectly respectively by using the internal model principle.


