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Before we answer this question, let us first ask ourselves how many controllers are there

that allow us to get a gain of 5 at 0.1 radian per second, and gain of 5 also at 0.2 radian

per second. Well for one thing, I can have a controller with has a constant magnitude

characteristic, and that will give me a gain of 5 at both these frequencies. I can have a

controller  with  a  decreasing  magnitude  characteristic  such  that  at  the  frequency  0.2

radian per second, the magnitude is 5; and at lesser frequencies the magnitude is even

greater. And therefore,  our performance specification at  0.1 radian per second is met

even better than what was specified to us. So, this is one possible trend.

I can have a variety of trends, I can even have a trend, where it was higher there, it

comes down, it goes up again, and then it comes down back and so on and so forth. It

can even be lower than 5 at other frequencies just come up to 5 at this frequency, and

then come down below 5 at intermediate frequencies, come back up to 5 at 0.2 radian per

second and then do something else after that.



So, as you can see,  there are infinitely many you know controller  structures that are

possible, because their performance has been specified at only two frequencies. So, as

long as all these controllers have gain of at least 5 at 0.1 and 0.2 radian per second, they

are allow to have any gain they might wish to have at other frequency. And there is no

constraint on what gain they can have at these other frequencies. Therefore, in principle,

we have infinitely  many controllers  as candidates  that  satisfy these two performance

requirements.  And that  puts  us  in  a  spot  of  bother,  because we need to  now pick a

suitable controller from these infinitely many controllers.

How  do  we  choose  a  suitable  one  among  the  ones  that  satisfy  these  performance

requirements?  To  choose  a  suitable  one,  we  use  a  principle  that  is  routinely  and

repeatedly used in all of engineering, namely we choose one, which allows very simple

implementation or its mathematical structure is very simple. So, simplicity will become

the guide for us to pick a suitable controller among the infinitely many that satisfy the

two performance requirements one at 0.1 and the other at 0.2 radian per second. 

Now, if  we  focus  on  the  specific  frequencies  at  which  were  interested  performance

namely  0.1 and 0.2,  we see that  these frequencies  are  much smaller  than  the corner

frequencies of the plant, which are at 10 radian per second, 50 radian per second and 300

radian per second. Even the gain crossover frequency is around 50 or 60 radians per

second, and that two is much greater than the two frequencies at which we are interested

in performance. 

So, what is essentially tells us that the two frequencies 0.1 and 0.2 fall within the low

frequency range of our open loop system. And what we are expecting therefore is good

performance in the low frequency range, low frequency regime. And we know from our

previous discussions that there is one of the self controllers, which readily gives us good

performance in the low frequency regime, and that is the integral controller. 
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So, one possible candidate for the controller structure would be the integral controller C

of s equal to 1 by s. We note that at 0.2 radian per second C of j omega will be equal to

the magnitude of C of j omega will be equal to magnitude of 1 by j times 0.2 and that is

going to be equal to 5. Therefore, we are getting the requisite amount of gain simply by

using an integrator as our controller at 0.2 radian per second.

At 0.1 radian per second C of j omega at omega equal to 0.1, here it is omega was equal

to 0.2, but omega equal to 0.1 is going to be equal to magnitude of 1 by j times 0.1 that is

going to be equal to 10. So, the gain at 0.1 radian per second is even better than what we

were looking out for. What is means is that while we wanted 98 percent accuracy in

tracking a signal at 0.1 radian per second. We can actually do better than that by using

this integral controller as the one to satisfy the performance requirements. 

The Bode plot of the integral controller is shown here, its magnitude characteristics has a

typical minus 20 dB per decade role off. And a phase characteristic is a constant at minus

90 degrees. If we were to cascade the controller with the plant, what we see is that the

Bode plot of the open loop system looks as shown by the blue curve here.

We see that the gain in the frequency range of 10 power minus 1, and two times 10

power minus 1 or 0.1 and 0.2 radiance per second has increased somewhat compared to

that of the original plant. So, the original plants gain characteristics have been indicated

by the red dotted dashed curve here. And blue curve is higher than the red dashed curve



at  these two frequencies.  And it  is  higher by the desired extent  for us to be able  to

rejected  disturbance  at  0.2,  and  track  the  reference  at  0.1  by  the  desired  levels  of

accuracy. 

Now, because we have chosen to go with an integral controller, we see that our gain

crossover frequency omega g c, which was earlier somewhere near 50 radians per second

has  now  become  much  smaller,  it  has  moved  to  the  left.  The  new  gain  crossover

frequency is given by omega g c prime, which is actually less than 10 radian per second.

And  what  this  means  is  that  our  closed  loop  transient  response  is  going  to  be

significantly slowed down as a consequence of the limited bandwidth of our closed loop

system. 

However,  as  far  as  this  particular  problem is  concerned,  we have  no problems with

having  a  small  closed  loop  bandwidth,  because  we  were  asked  only  to  track  that

particular  reference  namely  at  0.1  radian  per  second,  and  reject  that  particular

disturbance at 0.2 radian per second, and this controller does a good job of satisfying

both those specifications.

As  for  as  the  phase  margin  requirement,  which  is  which  is  essential  for  stability  is

concerned, we see that we do not have to do any special work in order to achieve the

desired phase margin that is because, when we cascade the controller with the plant the

phase response drops by minus 90 degrees, because we are adding minus 90 degrees to

the phase response of  the plant.  And the new phase response has  results  in a  phase

margin of about 41 degrees at the gain new gain crossover frequency. And this is greater

than the phase margin that we had set for ourselves namely 40 degrees.

And  therefore,  our  performance  specifications  have  been  met,  and  our  stability

specifications  have  also  been  met  without  having  to  do  anything  special,  and  this

therefore completes the design.  Now, that  we have completed the design using Bode

plots, and come up with a controller structure namely C of s is equal to 1 over s. It is

only prudent for us to check whether the closed loop system satisfies the specifications

correctly, this is because as we discussed there are approximations that one makes in

going from time domain, to closed loop frequency domain, and from closed frequency

domain,  to open loop frequency domain.  So, in order to be sure that the actual  time



domain specifications are being met by the controller that we have design, it is prudent to

look at that time domain specifications. 
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First, I have plotted in this slide, the response of the closed loop system to step inputs.

And we see that the overshoot here is exactly what one would expect. If you have a

phase margin of about 40 degrees, and overshoot here is about 30 percent perhaps a little

bit less than 30 percent. And this is typically, what one would see if the phase margin

was 40 degrees or equivalently the closed loop damping was 0.4, but what we are really

paid for is not to look at the response of the system to step inputs, what we are paid for is

to see to it that the closed loop system rejects disturbances at 0.2, and tracks a reference

at 0.1 with adequate accuracy. 

As far as reference tracking is concerned, I have plotted in this graph on the right the

input in blue and the output in red. And you see that the two are sitting very nearly on top

of one another. This indicates that the error between the two is extremely small. If one

were  to  zoom in,  and  look  at  the  maximum  error  between  these  two  time  domain

waveforms, one would discover that this error is within 2 percent. Actually it is better

than 2 percent, because the controllers gain at 0.1 radian per second was more than what

was required in order for us to satisfy the specifications. 

The second specification was disturbance rejection. So, here I have provided an output

disturbance at 0.2 radian per second of amplitude 1 and phase equal to 0, just for the sake



of simulation. And the red curve here plots the response of the closed loop system to this

disturbance. And what one sees is that there is a huge attenuation of the disturbance at

the output as a consequence of employing feedback control.

Once again if one were to zoom in, and find the peak to peak value of the response in on

account of this disturbance, one would find that this response has been suppressed by a

factor of 50 exactly as what was desire or in other words there 98 percent attenuation in

the of the disturbance of the output disturbance signal at the output of the plant.

So, in principal therefore we have completed our design, but I wanted to make a couple

of points in connection with the controller structure that we have come up with. We have

come up with an integrator, so the Bode plot of the integrator as we saw in the previous

slide  had  this  characteristic,  where  the  magnitude  of  the  integrator  increases  with

decreased frequency. And at 0.2 radian per second, the gain was 5; and at 0.1 radian per

second, the gain was 10.

Now, we entered up meeting the requirements at both these frequencies, but is it really

necessary  for  us  to  continue  this  integrator  characteristics  at  frequency  is  below 0.1

radian  per  second  as  well.  A movement  start  would  reveal  that  it  is  actually  not

necessary, because there are no specifications on performance at any frequency other

than 0.1  and 0.2.  So,  we are  needlessly  ensuring  that  our  controller  gain  is  high  at

frequency is below 0.1 radian per second also. Why is this a problem, this is a problem,

because if you have an integrator, you would have to deal with the issues of integrator

wind up.

So,  one  could  therefore  alternately  choose  not  to  continue  to  have  this  increasing

characteristic  with  reduced  frequency  for  frequency  is  below 0.1  radian  per  second.

Indeed even at 0.1 radian per second, it is the gain of the controller is already much more

than  what  is  desired,  because  the  gain  that  was  desired  was  five  units  or  in  the

logarithmic scale 20 log 5 units. The x axis is log of omega.

And at 0.1 radian per second, it is already the gain is already double of this particular

value. So, what we can do in order to avoid the problems of integrator wind up is to

choose to add a pole at 0.1 radian per second. Instead of employing an integrator one can

employ a first order system, whose pole is at 0.1 radian per second. And the Bode plot of

such a system would look as shown by this dotted curve here.



In other words the gain of this controller would level of at 0.1 radian per second, because

at would be the corner frequency of our controller. In other words, we could choose to

have a controller  C of s equal  to 1 by s plus 0.1.  Now, if you want to go with this

controller instead of the controller C of s equal to 1 by s, then for frequencies omega less

than 0.1 radian per second, the gain of the controller C of j omega would be equal to 1 by

0.1 for omega much less than 0.1 radian per second, and that is equal to 10.

Now, at the corner frequency of 0.1 radian per second, this would have a this will start to

reduce. But, it will at 0.2 radian per second, you can this compute and find that the gain

is pretty  close to 5 units.  So,  our controller  1 by s plus 0.1 behaves like an integral

controller  in  the  frequency  range  of  0.1  and  0.2  radian  per  second.  And  therefore,

satisfies the performance requirements that are already being satisfied by the integrator

that  we designed  just  a  few minutes.  But,  but  for  frequencies  below 0.1  radian  per

second, the gain is not allowed to monotonically increased, but rather we are leveling it

off by choosing this as a structure 1 by s plus 0.1 as a structure for the controller instead

of  1 by  s.  So,  we have  chosen to  level  it  off  in  the  with  the  intention  of  avoiding

problems associated with integrator wind up. 

(Refer Slide Time: 14:44)

So, if one were to look at the Bode plot of this transfer function, as we discussed its

corner frequency will be 0.1 radian per second, it is the corner frequency. And its gain at

frequency is below its corner frequency is 20 dB, which corresponds to a linear gain of a



factor of 10. And beyond 0.1 radian per second, it drops down just as an integrators

characteristic drops down. The phase response starts at a value close to zero unlike in

case  of  the  integrator,  we  have  phase  a  constant  equal  to  minus  90  degrees  at  all

frequencies.  And  it  monotonically  reduces  and  approaches  minus  90  degrees  at

frequencies much beyond it is corner frequency.

So, the further away we go from the corner frequency of 0.1 radian per second, we find

this controller to resemble an integrator more and more. So, if we look at the overall

Bode plot of the open loop system namely that of the plant and the controller, what I

have plotted with the red dashed here is the Bode plot of the plant alone plant. The blue

curve is the Bode plot of the new controller times the plant. The black dashed curve here

is the plant plus integrator. So, this is plant plus integrator. And the blue curve here is the

plant plus the new controller C of s, where C of s is given by this particular transfer

function. 

So, what you see by comparing the Bode plots of the plant plus integrator and the plant

plus C of s is that for frequencies beyond 0.1 radian per second. These two Bode plots

overlap as one would expect, because the magnitude characteristics would resemble that

of an integrator beyond the corner frequency of this controller namely 0.1 radian per

second, but at frequencies less than 0.1 radian per second.

The gain characteristic of the overall system levels off at a participating values, so it is

constant. Unlike in case of the plant plus integrator, where the integrator results in the

magnitude  characteristic  continuing  to  increase  as  the  frequency  is  reduced.  And

therefore, with this controller 1 by s plus 0.1 we have manage to avoid the problems of

integrator  wind  up  while  simultaneously  being  able  to  meet  our  performance

specifications at both 0.1 and 0.2 radian per second as well as having the same phase

margin of 41 degrees that our original controller had. 

Now, I want to make two points in connection with this new controller structure C of s is

equal to 1 by s plus 0.1. The first point I want to make is that there is no unique solution

to the problem of design of a control system, we saw that C of s is equal to 1 over s was a

reasonably  good  design.  And  we  were  motivated  to  choose  that  as  our  controller

structure,  because of the mathematical  simplicity  of our controller  structure.  It was a

simple integrator, and that was why we choose to go with that structure. But, then we had



this after thought that it an integrator though simple in it is mathematical appearance still

has this practical problem of integrator wind up.

And to avoid integrator wind up, we decided not to have the integrated at frequencies

below those atom of interest was and namely 0.1 radian per second. So, we replaced the

integrator with C of s is equal 1 by s plus 0.1. And both these controllers 1 by s and 1 by

s plus 0.1 give us very similar performances as far as disturbance rejection and tracking

of references are concerned at the two frequencies of interest. And give as very similar

stability specifications as well. But, they happen to be different in structure. And one has

happens to have lesser practical problems compared to the other one. So, the first point is

I  wanted to  make therefore  is  a  non- uniqueness  of a  solution to  the control  design

problem. 

The second point, I want to make is the fact that this controller structure C of s is equal

to 1 by s plus 0.1 is not any does not match any of the off the shelf controller structures

that we introduced in the previous clips. So, we talked about for instance the proportional

controller,  the  integral  controller  the  PI,  the  PID,  the  lead  compensator,  the  lag

compensator none of them actually have this particular structure 1 by s plus 0.1.

And what this indicates to us is that there is nothing really sacrosanct about any of those

standard controller structures, it is greater there it is greater, we understand what they do,

but if our particular control problem, demands a controller structure that is different from

them, then so be it. One does not need to stick mandatorily to one of those of the shelf

readily available control structures for us to realize our controller.

Just  by looking at  the Bode plot  of the controller  and the kind of problems and the

problems  specifications  that  have  been given  to  us,  we might  be  able  to  synthesize

controllers that have a structured different from the commonly used, commonly available

controller  structures,  and there is  nothing wrong with it.  As long as  these controller

structures meet our particular requirements in terms of robust tracking, and disturbance

rejection  we are  good.  And indeed  if  one looks at  robust  tracking  at  0.1  radian  per

second, one notices that the controller that we have designed does exactly as well as an

integral controller as far as tracking is concerned. It is equally well as far as disturbance

rejection is concerned as well. 



However, let us say in addition to this disturbance at 0.1 radian per at 0.2 radian per

second, which for which we have designed a controller already. There was an additional

disturbance close to 10 radian per second. So, in  other  words,  there is  an additional

disturbance at this particular frequency. And we want reject this disturbance as well by a

factor of 50 or in other words by 98 percent. Is it possible for the same controller that we

have already designed namely 1 by s plus 0.1 to reject this disturbance by 98 percent

Well if one were to look at the gain characteristics of the open loop system, it is not very

promising, because the gain of the open loop system close to the frequency, where we are

interested to reject the disturbance is closed to 0 dB or in other words the gain is very

low.

And we know that the mantra feedback control is to achieve high gains, and thereby

ensure the disturbances are rejected, and references are tracked. So, we think, therefore

that  this  disturbance  may  not  be  rejected  quite  well.  And  when  we  actually  do  the

simulation, to see the extent by which we are variable to reject this disturbance at 10

radian per second by using this particular controller, we are in for a rude shock. What I

have plotted in this graph is output disturbance in blue color, and the response of the

closed loop system to the output disturbance, and that is in red color. 

Now, what  we  see  from the  response  is  that  the  output  has  increased  the  effect  of

disturbance. So, the response is therefore larger than the disturbance itself. And this is a

huge  shock,  because  we were  out  to  suppress  this  disturbance  by  a  factor  of  50  or

suppress it by 98 percent instead of doing that we have actually ended up amplifying this

disturbance, amplifying the effect of this disturbance.

Now, why did that happen? The transfer function that relates the output disturbance to

the output transfer namely X by D is given by 1 by 1 plus C times P. Therefore, the

magnitude of X by D would be given by the magnitude of 1 by 1 plus C times P of j

omega, and that is going to be equal to the magnitude of 1 by 1 plus C P of j omega. 

Now, what we notice is that in the vicinity  of 10 radian per second. In other words,

omega  is  close  to  10  radian  per  second,  our  magnitude  of  C  P  is  close  to  1  is

approximately equal to 1. So, you we can see that at around 10 radian per second the

magnitude is 0 dB, and 0 dB corresponds to a gain of 1, and therefore a magnitude of C P



is close to 1, while the angle of C P is close to minus 140 degrees, in fact it is minus 139

degrees.

Therefore, if one were to compute 1 plus C P, one would notice that the magnitude of 1

plus C P would actually be less than 1. When the magnitude of C P is equal to 1, and the

angle of C P is close to minus 180 degrees, in this case it is around minus 139 degrees.

And what this means is that we would have 1 by magnitude of 1 plus C P to be greater

than 1 or in other words the output by the disturbance at this particular frequency would

have a gain greater than 1. And that is what explains the amplification that one sees of

the disturbance at the output of the closed loop system.

So, our first goal as control engineers is to make sure that this disturbances at least not

amplified. If even if you are not able to suppress it by the desired extent certainly, we

should not  allow it  to get  amplified.  So,  how does one accomplish  this? In order to

accomplish this  one has  to  come back to  this  particular  controller  structure.  So,  this

structure 1 by s plus 0.1 has an integrating characteristic at frequencies beyond 0.1 radian

per second as evident here. The slope is minus 20 dB per decade and a phases close to

minus 90 degrees. 

And as we discussed in our previous clip, an integrator tends to limit the bandwidth and

it  tends  or  in  other  words  it  reduces  the  gain  crossover  frequency of  the  open loop

system. And it is because our gain crossover frequency has reduced, but we are now

having a gain crossover close to 10 radian per second, whereas earlier it was closed to 50

radian per second. And therefore, the gain at this gain crossover frequency has become

small, and that was what has resulted in amplification of the disturbance. 

Therefore, if one were to curve this integrating characteristic, at frequencies beyond the

frequency at which the gain of the integrator falls below 0 dB, in this case we see that it

happens at 1 radian per second. So, at 1 radian per second the magnitude of C of s is

close  to  0 dB.  And beyond 1 radian  per  second,  the magnitude  of  C of  s  comes  to

negative decibel values on other words the gain becomes less than 0 dB. And it is this

attenuation of gain that has resulted in reduction of the gain crossover frequency. And

has resulted in a poor gain at the frequency that we are interested in namely at 10 radian

per second. 



So,  to  avoid  this  problem of  amplification  of  disturbance,  what  one  could  do  is  to

somehow  curve  this  attenuating  characteristic  of  an  integrator  beyond  1  radian  per

second. And one can do that by introducing a 0 at 1 radian per second or in other word

choosing a controller C of s, which has s plus 1 in the numerator, and the denominator

would be exactly as it was before namely s plus 0.1. Now, this controller has the exact

same Bode plot  as that  of the original  controllers  C of s  is  equal  to  s  plus  0.1.  So,

frequencies up to 1 radian per second. So, in other word it will be flat with a gain of 20

dB for frequencies less than 0.1 radian per second. And between 0.1 and 1 radian per

second, it will reduce at minus 20 dB per decade exactly as before.

However,  at  1  radian  per  second  since,  we  have  introduced  this  0;  the  magnitude

characteristic will level off. It will not continue to decay, as it happened in case of the

original controller. And it will level of at 0 dB or in other words, the gain the linear been

will be 1. And what does means is that the overall loop gain namely the gain of the plant

and the controller beyond 1 radian per second would simply be equal to the gain of the

plant itself, because the controller gain is simply going to be close to 1.

And therefore, the Bode plot of the open loop system beyond 1 radian per second, we

will  simply  resemble  the  body plot  of  the  plant  itself.  Although below 1 radian  per

second, the Bode plot will be significantly modified on account of the increased gain that

results  per  using  this  controller. Therefore,  if  one were  to  plot  the Bode plot  of  the

controller C of s is equal to s plus 1 by s plus 0.1, then one would notice, but the Bode

plot would resemble that of s plus 1 by s plus 0.1 of frequency is below 0.1 radian per

second or in other words it will look similar to this. And for frequencies above 0.1 radian

per second, it will be flat.

As far  as  the  phase  characteristics  are  concerned,  it  will  resemble  that  of  the  phase

characteristics of the original controller 1 by s plus 0.1 for frequencies below 1 radian

per second. And instead of the phase going to minus 90 degrees as it happened in the

previous case, the phase will now gradually go back to 0 degrees. Now, one could either

choose to use this as a controller and if one notices here, we have the location of 0 at 1,

and location of the pole at 0.1. And therefore, this is this structure resembles a structure

of a lag compensator. 
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So, indeed this is a lag compensator. One could alternately go with a PI controller as

well. So, instead of having 1 by s plus 0.1 as the controller that we would modify, we

could choose to have C of s equal to 1 by s as the controller that we would modified. On

other  words we would include a  0 introduce a 0 at  1 radian per  second, so that  the

integrator here does not attenuate the gain of an open loop system for frequencies beyond

1 radian per second. So, this structure is that of a PI controller, because it can be written

as 1 plus 1 by s, a proportional term plus an integral term. 

(Refer Slide Time: 30:55)



If one were to plot the Bode plot of this controller C of s is equal to s plus 1 by s, then it

looks as  shown on the graph on the left.  So,  it  has  the integrating  characteristic  for

frequencies less than 1 radian per second and it roles of at minus 20 decibels per decade.

And at frequencies for frequencies beyond 1 radian per second, it flatten soft and the

gain is going to be equal to 0 dB or in another words it does nothing to the magnitude

characteristics of the plant. So, this will going to be 0 dB. 

As far as the phase is concerned, we see that the phase at frequencies well below the

corner frequency of the zero namely 1 radian per second is close to minus 90 degrees,

which is what one would expect, because we have an integrator there. And then the term

s plus 1 introduces a phase lead of plus 90 degrees as omega is monotonically increased

from 0 to infinity. And therefore, these phases lead of plus 90 degrees cancels the phase

lag of minus 90 degrees that is added by the integrator. And at high frequencies, therefore

the net phase of this controller would be close to zero. 

So, if we were plot the Bode plot of the overall open loop system namely that of the plant

and the new controller the PI controller, it has been done on this graph on the right. What

I have shown in this red dashed curve is the Bode plot of just an integrator cascaded with

the plant. What is shown by the blue curve here is the Bode plot of the new controller

namely the PI controller  cascaded with that of the plant. What we say is that at low

frequencies these two Bode plots coincide, because at low frequencies this term s plus 1

does not modify the gain in any particular manner.

But, for frequencies beyond 10 power 0 or equivalently 1 radian per second, we see that

the integrated continues to attenuate the gain of the open loop system. Whereas, the PI

controller flattens of the gain, and for frequencies beyond 1 radian per second, the gain

of open loop system will simply be the gain of the plant. And we see that the gain plant is

reasonably high it is 10. And therefore, at 10 in radian per second, which is the frequency

at which we are interested in performance,  we would get 10 open loop magnitude of

magnitude that is supplied by the plant itself, and that is going to be close to 10. 

So, since the open loop gain is now greater than now significantly greater than 0 dB, we

will be able to attend our disturbance, though we may not be able to do it by the extent

that we desired to do so. As far as the stability specification is concerned at the new gain

crossover frequency, which is close to 50 radians per second. It is close to 50 radians per



second, because the Bode plot of the overall system looks similar to that of the plant for

frequencies beyond the corner frequency of this controller beyond 1 radian per second.

So, the gain crossover frequency will be very similar to the gain crossover frequency of

the plant itself, which was which we saw was close to 50 radians per second. And at that

frequency the phase will be also similar to the phase of the plant itself, because the phase

added by the controller will be close to 0. Therefore, the phase margin we discover is

about 36 degrees.

We are set for ourselves a phase margin of 40 degrees. And with this two controller, we

have got a phase margin of 36 degrees. It is a little bit lesser than what we had set for

ourselves, but the small difference is not very significant. So, we shall not introduced any

additional complexity to this controller structure to correct for this small difference in

phase margin, we shall stop the design at this point. 

Before,  we  look  at  the  time  domain  disturbance  rejection  performance,  I  have  also

plotted here. The Bode plot of the original plant and the Bode plot of the new controller

so, this is the Bode plot of the new controller, and this red dashed curve is the bode flat

the original plant. I plotted this explicitly to show that this two controller modifies the

magnitude characteristic of the plant only at frequencies below 1 radian per second. It is

only  in  this  frequency  range  that  the  overall  Bode  plot  differs  from  the  plant.  At

frequencies beyond 1 radian per second, these two are very nearly coincident in this

frequency range the two are very nearly coincident or in other words the controller has a

gain close to 1 and a phase close to 0.

And that is also revealed by the phase characteristic at very low frequencies this behaves

like an integrator, because the term 1 over s is going to dominate over the response of s

plus 1. And a frequency increases; the overall phase of the controller goes to 0. So, the

net phase of the open loop system, which is the sum of the phases of the plant, and the

controller tends to the phase of the plant itself. So, for frequencies somewhat to the right

of 1 radian per second, the phase characteristics of the plant, and a phase characteristics

of the controller plus the plant are very nearly identical. 

So, having established that this controller helps to restore the gain of the plant in the mid

frequency region or in the frequency region around 10 radian per second, where we

begin to see the plants dynamics (Refer Time: 36:22). We shall now see how your time



domain response of our closed loop system would be to this particular disturbance, the

disturbance at 10 radian per second. 

(Refer Slide Time: 36:34)

If one were to look at that, one would see that the disturbance now has been attenuated,

which is great news, because in the previous because with the previous controller we

actually had an amplification of disturbance, which is the exact opposite of what we as

control engineers wish to do. And that is not a problem in this case. So, the disturbance

has been attenuated.  And the disturbance amplitude is  now merely 13 percent  of the

amplitude of the output disturbance, which in the simulation has been assume to be 1

unit. 

The step response of our closed loop system is shown here. And what I have done here is

to superpose the step response of the closed loop system, when we had C of s as a simple

integrator with the step response that we have with the PI controller. So, for in this case

C of  s  is  equal  to  s  plus  1 by  s.  Now, we see  that  our  settling  time has  improved

significantly,  and  that  is  because  our  gain  crossover  frequency  now  has  increase

substantially  in  comparison with the  gain crossover  frequency, you have  pick would

accomplish for the overall system, when we had an integrator as our controller.

Our  overall  system  had  a  lesser  gain  crossover  frequency  with  an  integrator,  and

therefore lesser bandwidth, and therefore associated with it was higher settling time in

response to step inputs. So, the settling time was reduced dramatically, but what we also



see is this long slope tail. So, our closed loop response very quickly comes to a value

close to its steady state value, but it takes quite a bit of time. Before, this small remaining

error between the steady state value, and the value at this time gets reduced, and comes

close to 0. Now, example why we have this long tail is somewhat of a mystery, because it

is not evident to us from the Bode plot that we drew for the open loop system. We shall

return to this mystery towards the end of this discussion. 

So,  if  we look at  the  disturbance  rejection  performance,  we see  that  it  has  reduced

disturbance, but not by the amount that we desired. What we desired was 98 percent

rejection in disturbance or the disturbance had to be merely 2 percent of the actual value.

Now if one were to look at the transfer function that relates the output to the output

disturbance, it would be X by D equal to 1 by 1 plus C P. Therefore, the magnitude of the

ratio would be equal to 1 by the magnitude of 1 plus C P. 

Now, in the limit that the magnitude of C P is much greater than 1, the magnitude of 1 by

1 plus C P would simply be approximately equal to the magnitude of 1 by C P. Therefore,

if we want to improve the disturbance rejection performance at 10 radian per second

from 13 attenuation to 10 percent attenuation, we have to increase the gain of the open

loop system namely C times P by a factor of 13 by 2, which is 6.5. So, if we were to

increase  the gain of C P by a  factor  of  6.5,  then we would be able  to  suppress  the

disturbance not to 13 percent of its actual value, but actually it would to just 2 percent of

its value. 

Now, for the purpose of calculations I have assumed that it is adequate for us to increase

the gain by a factor of 6. So, if we were want to choose a controller C of s to be equal to

6 times the controller that we had earlier namely s plus 1 by s. Then the gain of this new

controller will be 6 times larger, at every frequency compared to the gain of the original

controller namely s plus 1 by s. And that ensures that at 10 radian per second, we will be

able to attenuate a disturbance by a factor of 6 or in other words by 13 percent divided by

6, which will be a little bit more than 2 percent. But, since it is just a little bit more, we

shall assume that it is adequate for our particular application. 



(Refer Slide Time: 41:15)

Now, suppose we were to adopt this as our control structure, and were to plot the Bode

plot of the overall system namely C of s times P of s. The Bode plot of the overall system

looks as shown in this graph. What I have plotted with the red dashed curve is the Bode

plot overall system namely C times P when we had C of s to be equal to s plus 1 by s or

in other word we just a PI controller. But, we notice that the PI controller cannot reject

the disturbance by the specified amount, so we increased its gain by a factor of 6. And

the blue curve is what you would get with C of s equal to 6 times s plus 1 by s. 

Now, this controller  enables us to achieve all  our performance specifications  near 10

radian per second, we would have a gain of about of over 50. And therefore, we can

reject the disturbance in this frequency range by the desired amount at 0.1 radian per

second and at 0.2 radian per second, the gain is much higher than what we want it to be.

In fact, at 0.2 radian per second earlier the gain was exactly 5 with the controller s plus 1

by s, now the gain is now 5 times 6 or 30.

So, we will be able to suppress the disturbance at 0.2 radian per second much better than

what was specified for us. And our input tracking performance will also be significantly

better as a result of this controller. So, all our performance specifications have been met.

However, there is one small, but actually a fatal problem with this control structure.

So,  if  one  were  to  look at  the  gain  crossover  frequency, when one  adopts  this  new

controller, we see that the gain crossover frequency has shifted to the right. And the gain



crossover  frequency  is  around  158  radian  per  second.  Now, what  is  gain  crossover

frequency? If you look at the phase margin of our closed loop system, we see that the

phase  margin  is  negative.  There  is  no  meaning  to  saying  that  the  phase  margin  is

negative.  Accept  to  point  out  that  our  closed loop system would be unstable,  if  our

overall phase lag is greater than minus 180 degrees at the gain crossover frequency. 

So, therefore if one more to adopt this controller, we will be meeting our performance

requirements,  but  we have an unstable  closed loop system on our hands.  So,  on the

whole,  we will  not  be able  to implement  a  stable  closed loop system.  And this  is  a

problem that requires immediate attention. Now, as we discussed the key problem that

one has to address here is the problem of this poor phase lag near the gain crossover

frequency. If you can address not this one problem alone, then we are done, because our

performance  specifications  have  already  been met.  And it  is  in  this  context  that  we

introduced the zero in the previous discussions. So, if you going to add a 0 here, slightly

to the right of this gain crossover frequency of 158 radian per second. 

Then or another word when I say add a 0, I mean multiply the existing transfer function

C of s by a term of the kind s by beta plus 1, where beta is of the order of 158 radians per

second.  Then  in  the  vicinity  of  the  gain  crossover  frequency  this  term  does  not

significantly modify the magnitude characteristics, because if beta is slightly higher than

158 radian per second. The amplification that occur because of this term at frequencies

below beta will be rather small. So, the amplification will be so the gain will be of the of

this term will be close to one.

However, the phase contributed by this term s by beta plus 1 would be plus 45 degrees.

So, this phase response of this term essentially pulls up the overall phase response of the

open loop system without significantly modifying the magnitude characteristics below

the gain crossover frequency. 



(Refer Slide Time: 45:31)

So, what I have done, therefore is I have chosen to add the 0 not at 158, but slightly to

the right of it namely at  170 radians per second. But, since we would need a causal

implementation of this controller, I have chosen to add a pole very far away about 10

times further away. This number 1700 is arbitrary I could have chosen to add it even

further away or a little bit closer. It is there only to ensure that the numerator polynomial

and  a  denominator  polynomial  or  either  of  similar  degrees  or  the  denominator

polynomial is slightly of higher degree. In this case, I have chosen it to be of identical

degrees both of them are second degree polynomials. 

The term that we are interested in though is this term s by 170 plus 1. And this term and

supplying plus 40 degrees phase close to 45 degrees phase around the gain crossover

frequency namely 148 158 radians per second. And since it does not affect the magnitude

characteristics below 170 radian per second that is because the Bode plot of this term

would look something like this  at the frequency omega equal to beta.  So, this  is log

omega let us say.

So, what omega equal to beta, the frequency log omega will be equal to log beta. The

asymptotic Bode plot would have a gain of close to 0 dB, and it is only beyond beta will

there be a plus 20 dB per decade rise. So, it does not affect the magnetic characteristics,

and therefore also does not affect the gain crossover frequencies significantly.



The phase characteristics however, we will supply result in plus 45 degrees phase at beta.

So, since beta is very close to omega g c, we would have close to plus 45 degrees phase

lead brought about by this controller. So, when the cascade the, this term s plus 170 s by

170 plus 1 by s by 1700 plus 1 with the existing controller namely 6 times s plus 1 by s.

(Refer Slide Time: 47:42)

The overall Bode plot of our open loop system would look as shown here. Here the red

dashed curve represents the Bode plot for C of s equal to 6 times s plus 1 n by s. This

satisfies all our performance requirements of input and disturbance input tracking and

disturbance rejection, but it has the problem of a negative phase margin or an unstable un

stable closed loop system.

So,  by  cascading  it  with  this  term,  we  note  that  this  term  is  essentially  a  lead

compensator, because the location of the 0 is less than the location of the pole. It adds up

it results in adding a certain positive phase in the vicinity of 170 radians per second.

Therefore,  the  overall  phase  response  of  this  open  loop  system  has  improved

significantly in the neighborhood of this frequency 170 radian per second. 

So, the blue phase response here. And the blue magnitude response together or for the

controller C of s is equal to 6 times s plus 1 by s times, this lead compensator namely s

by 170 plus 1 divided by s by 1700 plus 1. Now, what we see here is that we have

managed to get the phase margin to now be 30 degrees. Of course, this is still a little bit

smaller, then what we wished it to be namely 40 degrees. We shall see a little while later



how this problem can be fixed, but what is worth celebrating at this point is at our closed

loop system is now stable, because the phase margin is positive. 

And  the  magnitude  characteristics  are  such  that  our  disturbance  and  input  tracking

specifications either met or often exceeded. In case of the disturbance at 10 radian per

second, it is exactly met. In case of the disturbance at 0.2 radian per second, and the

input at 0.1 radian per second the loop gains are much higher, then what one would wish

for them to be. And therefore, the performance is better than what we expected it to be. 

So, if one were to plot the response of this closed loop system to an output disturbance of

unit  amplitude  and frequency 10 radian  per  second,  we notice  that  the  response has

actually ended up attenuating the disturbance to close to 2 percent of its initial amplitude.

Having if you were, if we had chosen slightly `higher gain instead of this being 6 is if

you are closer it to be 6.5, then we would have exactly two person attenuation, but that

design modification is a trivial one.

So,  in  this  clip,  I  shall  not  discuss  that  modification.  This  concludes  the  design  of

controllers  in  response  to  certain  specifications  for  tracking  as  well  as  disturbance

rejection. These examples for taken in order to highlight the different steps involved in

the design by means of a numerical examples. 

(Refer Slide Time: 50:54)



So, if one were to look at the step response of the present system, which has the new

controller namely C of s is equal to 6 times s plus 1 by s times s by seventy 170 plus 1 n

divided by s by 1700 plus 1, the step response would be something like this.

Now, we note that this is essentially an PID controller, because the terms that out of

interest to us. As far as control performance is concerned are these terms 6 times s plus 1

by s times a s by 170 plus 1. This term has been added only for causality set, and it does

not affect either the magnitude characteristic or the phase characteristic in the frequency

ranges it  is of interest  to us, namely in the frequency range up to the gain crossover

frequency of the open loop system. And if we note this term 6 times s plus 1 divided by s

times s by 170 plus 1,  and expand it,  we can write  it  as a proportional  term plus a

derivative term plus an integral term, on other words this would be a PID controller.

We note that the gain crossover frequency of this PID controller is close to 160 radians

per second. And whereas, the gain crossover frequency of the PI controller was much

lesser, it was close to 50 radians per second. And the gain crossover frequency of the

high controller even lesser, it was close to 10 radians per second. Therefore, we expect

that the transient response of the PID controller would be much faster than that of the PI

controller, and transient response of the PI controller will correspondingly be much faster

than that of the integral controller, and that is revealed by the step response of the three

controllers.

(Refer Slide Time: 52:44)



So, this is the step response of the closed loop system can be employed an integrator.

This is the step response of the closed loop system, when we employed a PI controller.

And  the  fastest  one  here  is  the  step  response  of  the  close  loop  system,  when  we

employed a PID controller. On account of increased gain crossover frequency and the

increased corresponding closed loop bandwidth as on progresses from integral control to

PID control. 

Now, in the previous slide, we discuss that our phase was slightly less than what we

desired it to be. And this can be addressed by adding another 0. For example, instead of

adding a just a single 0 near the gain crossover frequency, which gave us a phase lead of

plus 45 degrees near the gain crossover frequency. If we add another 0, on other words

we were to multiply this term with another term of the kind just by 170 plus 1. We would

note that these two together will give us even higher phase lead. So, each term gives us

plus 45 degrees phase lead. So, the two put together give us plus 90 degrees phase lead. 

And if one were to do that you would get much better  phase margin,  then what was

accomplished  with  just  a  single  term.  In  this  case,  the  phase  margin  is  close  to  68

degrees. We know that the gain crossover frequency here still not change much, because

neither  of  these  terms  affect  the  magnitude  characteristic  at  frequencies  below their

corner frequency. And since the gain crossover frequency is 158 radian per second and is

much is less than these two numbers, these two terms do not affect the gain crossover

frequency much, but the phase margin has been input improved dramatically as a result

of using two of these terms.

And the consequence of this improved phase margin is the fact that the transient response

now for a controller of the kind 6 C of s is equal to 6 times s plus 1 by s times s by 170

plus 1 the whole square divided by s by 1700 plus 1 the whole square. The transient

response is much better than that of the original PID controller, whose transient response

we looked at here. 

Now, I want to make a comment connection with this particular controller structure. If

we look at  this  controller,  once  again  you recognize  that  this  structure  is  not  really

recognizable  as  any of  the  standard  of  the  shelf  readily, widely employed controller

structures, we introduced in the previous clip. So, it is neither a PI controller nor a PID

controller nor an integrator nor a proportional controller. So, this once again reinforces



the point that I made earlier in this clip, but there is nothing really sacrosanct about the

off the shelf controller structures that we talked about. If there if the work for you that is

well and good, we can easily adopt them, but we can also choose controller structures

that are different from the structures at we looked at in the previous clip. 

If  anything this  controller  might  resemble  a  PIDD controller,  because  you have two

differential terms, you have 1 0 that has been added, and a second 0 that has been added

take together result  in improved phase margin.  Also what I want to point out is that

despite the factor this is not a standard structure, the reason for choosing this structure

was very obvious to us as control designers.

We know, why each of these terms were chosen the way that they were. We know, why

we had to have a gain of 6. We know, why we had to have a 0 at s plus at s is equal to

minus 1. We know, why we introduce a 0 at 170 radian per second, we also know we

introduce second 0 at the same frequency 170 radian per second. So, what does reveals

therefore  is  that  if  one  were  to  look  at  the  specifications,  and look  at  the  resulting

performance in terms of tracking disturbance rejection, and instability.

One can organically develop controller structures that satisfy these requirements without

taking records to simply trying to borrow an already existing structure such as a PID or a

PI or a or a lag compensator. And try to work with it. And try to get it to fit our particular

requirements. This organic growth of the controller structure is very useful, because this

structure is intended to satisfy the particular requirements that we have. 
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So, before I conclude this clip, I want to revisit the problem that we associated with the

transient response of the PI controller. I have now come back to the slide, where we

looked at the transient response of the PI controller. And we noted this fairly long tail in

the  response.  So,  although  the  gain  crossover  frequency  was  better  than  that  of  the

integrator  and  therefore,  our  settling  time  was  actually  better.  We  had  this  long

undesirable tail in the response of our closed loop system to step inputs. Now, exactly

why we have this tail is not evident by looking at the Bode plot of the open loop system

with the PI controller, because nothing in the Bode plot that will give us a hint us to why

this tail has to exist. And this is one of the problems of Bode plot based design.

As  transparent  and  advantages  as  it  is  from  the  point  of  view  of  engineering  for

performance that is because we are able to see the magnitudes at different frequencies

clearly, and see whether our open loop transfer functions have the desired magnitudes in

order to meet  the performance specifications,  it  still  has one important  problem. The

problem is that the Bode plots do not tell us, where all the closed loop poles are. This

long tail clearly in the closed loop response of our system has to do with the presence of

a slow pole in our closed loop transfer function.

But, why do we have this slope pole, where did it  come from, is it,  and how do we

address the problems associated with it are not revealed by the Bode plot. The Bode plot

at best can give us an approximate idea us together dominant poles are located, but not



all  the poles of our closed loop system. And it  is  this  lack of information  about the

location of the other poles that is preventing us from coming up with a good explanation

for the presence of this long tail. 

So, what we shall do in the next clip is to take a look at another design tool which allows

us to look at where all the closed loop poles are located, and this design tool is the root

locus. 

Thank you.


