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Hello. In this video clip we will introduce Linear System Theory.
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So, I shall write the title of this clip here. Now, let us start with the assumption that none

of us know anything about linear systems. So, what does one mean, when one talks about

a linear system. If you were to ask a person, who is uninitiated in linear system theory, he

might look at the name you see the word linear in the name, so probably there is going to

be a straight line somewhere. And you have system also in the name. And therefore one

would expect that there would be an input and an output. So, perhaps this uninitiated

person would think that if there is a straight line relationship between the input and the

output of the system, then one could call that system a linear system.

In other words, if one were to graph the input-output relationship, this uninitiated person

might assume that then the input u to a system is changed, the output x of the system

changes according to a straight line.  Perhaps if he is to uninitiated,  he might draw a

straight line that passes exactly through the origin. Of course this is not adequate as a



useful definition for linear systems, but let us start with this as our initial assumption of

what a linear system might look like.

So, if the slope of this line is 1 by k, then I can write the input-output relationship for

such a system as k x equal to u. Now, before we want to label a system with such a

straight line relationship between the input and the output as a linear system, we want to

ask ourselves  is  there  any use to  labeling  such a  system as a linear  system.  And as

engineers  it  would  be  useful  for  us,  if  there  are  enough examples  in  our  respective

disciplines that have this particular input-output relationship.

So, what examples can we think of, where the input and the output is related by a simple

proportionality constant k. One possible example is ohms law. So, if I have a resistive

element, and there is a voltage V across it then the current i is given by V by R. So, there

is a proportionality relationship between the current and the voltage. Likewise, if I take a

capacitor and I have some potential difference V across the capacitor, and a charge Q on

the plates of the capacitor. Then I have a relationship between the charge and the voltage

as Q equal to C V.

Likewise, in the mechanical domain one could think of a spring, where the relationship

between the force applied by the spring and its extension is once again a proportionality

constant, which is equal to the spring constant. So yes, there are examples of physical

systems where the input and output are related by a simple proportionality constant. But,

the set of examples is quite small.

For instance, if you take the two examples that I have considered here namely a resistor

and a capacitor, and you were to connect them in series. So, I have a resistor in series

with a capacitor, and I apply some voltage V across them. Then, and I assume that the

current through this series combination is what would be the output then I can show that

the input, output relationship would look something like V is equal to d Q by d t times R

plus Q by C or equivalently d V by d t is equal to d i by d t times R plus I by C. So, this

would  be  the  kind  of  relationship  between  input  and  the  output  even  for  a  simple

combination of a capacitor and the resistor.

And clearly you can see from this equation that one cannot cast this equation to have a

linear  relationship  between  the  input  and  the  output  a  straight  line  proportionality

relationship between the input and the output. So, this simplistic definition of a linear



system is not going to help us too much, because we do not have too many physical

systems that obey such an equation, but we can still use these equations for inspiration.

For instance, if we revisit this equation k x is equal to u, and assume that k is some kind

of an operator. Of course, we know that it is simply a proportionality constant, which

scales the input to give me the output. But if you assume that it is an operator a scaling

operator if you will, then what are the properties of this operator. One thing you notice is

that if the input to the system gets scaled by a factor alpha. So, if I apply alpha u as the

input to my system, then the output would be of course, alpha times k x, which I can

write as k times alpha x. Or in other words what this equation reveals is that, when the

input is scaled by a factor alpha, the output also gets scaled by the same factor. So, this

property  of  this  proportionality  operator  we  shall  call  it  the  scaling  property  or

homogeneity  property.  This  is  one  property  that  is  that  the  proportionality  operator

possesses.

There is one other property that it possesses. Suppose, I were to apply u 1 as an input to

my system the output will be let us say x 1. So, the input and the output are related by

that equation there k x 1 is equal to u 1. And if the input is u 2, then the output would be

x 2 let us say. Then if I apply an input of u 1 plus u 2 then I know that the output would

be k times x 1 plus x 2, which I can rewrite as k times x 1 plus k times x 2. And what this

equation reveals is that when I apply two inputs to a system, the response of the system

is a summation of the responses to the individual inputs. And this property, we shall call

as the additivity property or the superposition property superposition property.

Now, let us go out and search for other operators, which obey these properties namely

that of scaling, and superposition. The properties which we have now discovered in case

of the proportionality operator k, do they also exist in other operators that is the question,

we are trying to answer.
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Now, let us take the example of differentiation. So, let us say we differentiate a signal x

of t with respect to time, in other words for evaluating d x by d t. Now, one can view this

differentiation as an operator in that the differential operator d by d t acts on the signal x

of  t.  Now, is  it  possible  that  the  differential  operator  is  also  is  also  one  that  obeys

superposition and scaling, we can verify that by inspection.

So, let us say I were to multiply x of t with some constant alpha, so that I get alpha of x

of t. Then we know that the derivative of alpha of x of t with respect to time is alpha

times  the  derivative  of  x  of  t  with  respect  to  time.  Similarly,  the  derivative  of  two

different signals x 1 plus x 2 sum of two different signals is equal to the sum of the

derivatives of the individual signals d x 1 by d t plus d x 2 by d t. So, indeed we see

therefore that the differential operator is one that also satisfies superposition and scaling.

How about second derivative t square by d t square second derivative with respect to

time? Once again one can verify that d square by d t square of alpha times x is alpha

times d square by d t square of x, and d square by d t square of x 1 plus x 2 is equal to d

square by d t square of x 1 plus d square by d t square of x 2. So, the first one shows that

it obeys homogeneity; the second one shows that it obeys superposition or additivity. So,

we  have  found  two  other  operators  namely  a  differential  operator,  and  a  second

derivative operator both of which satisfy additivity and homogeneity.



How about a linear combination of these operators, so for example, some constant C 1

times  the second derivative  operator  plus another  constant  C 2 times  the differential

operator plus some proportionality  gain k is this  something that obeys additivity and

homogeneity. Indeed, if you simply plug in and inspect you will discover that, if this

operator acts on some signal x of t, and I were to call this operator as L. Then just by

substitution, I can verify that L of alpha times x is equal to alpha times L of x, and L of x

1 plus x 2 is equal to L of x 1 plus L of x 2.

Now, having  come  across  a  range  of  different  operators  that  satisfy  additivity  and

homogeneity,  let  us  now  define  all  these  operators  that  satisfy  additivity  and

homogeneity as linear operators. An operator L is said to be a linear operator, if L of

alpha times x is equal to alpha times L of x for some constant alpha, and L of x 1 plus x 2

is equal to L of x 1 plus L of x 2. We are now in a position to revisit our definition of a

linear system. And this time, we shall define a linear system by employing this definition

of a linear operator.

(Refer Slide Time: 13:32)

I shall write out the definition of a linear system here, linear system. If L 1 and L 2 are

two linear operators, then a system whose input bracket u, output bracket x relationship

is of the form L 1 of x is equal to L 2 of u is called a linear system.

Notice though that this new definition of a linear system, which is based on operators L 1

and L 2 satisfying additivity and homogeneity is not necessarily the same as our initial



guess of what might constitute in a, a suitable definition for a linear system. I want to

give  you two counterintuitive  examples  to  illustrate  the  fact  that  this  definition  is  a

slightly more abstract one, but nevertheless a vastly more useful one to us as engineers.

So, in the first example, let us say the input-output relationship is given by the equation x

is equal to u plus 2, where u is the input and x is the output. The input-output relationship

can be graphed, and you can quickly see that it would be a straight line with a y intercept

of two units.

Now, in this case, you see that the input-output relationship is a straight line, but if you

were to strictly apply the definition of a linear system to verify whether this input-output

relationship constitutes one of a linear system or not, you would conclude that it does not

constitute a linear system, because it does not satisfy either additivity or homogeneity.

Likewise, if you want to take another example, let us say I have a system of the kind d x

by d t plus x is equal to u, and I start with 0 initial condition. And I provide a ramp input

to my system.

If I were to plot the input versus, output relationship a few instants after applying the

input, the input-output relationship would look something like this. In other words, it

would show a pronounced non-linearity in the input-output relationship near the origin.

However, if you were to apply the definition of a linear system namely as one whose

input-output relationship is governed by an equation of the kind L 1 of x is equal to L 2

of u, you will quickly notice that this particular system d x by d t plus x equal to u is

actually a linear system.

So,  here  are  therefore  two  counterintuitive  examples  one  where  the  input,  output

relationship is a straight line, but because it does not have a zero intercept either with the

x-axis or with the y-axis, it is actually not a linear system. And in the other case, where

the input-output relationship is not a straight line it is a non-linear curve, but when you

look at a differential equation relating the input to the output it satisfies superposition and

scaling, and therefore, the system can be considered as a linear system.

Now, why did we choose to  define systems that  satisfy superposition and scaling as

linear systems. As I said that is because, there is a large number of engineers engineering

systems that fall under the ambit of linear systems, if we choose to define linear systems

in this particular manner. So, let me know give, let me know validate this claim by giving



examples  of  various  physical  systems  that  obey  such  relationships  input-output

relationships.

(Refer Slide Time: 18:32)

Let us first take the example of a car. Of course, all of us know, but the mass of a car is

distributed over its entire body as also is its stiffness and damping coefficient and so on.

But for purposes of analyzing how a car might respond to vibrations that it might receive

from the ground as it is traveling. So, when one looks at the model of vertical vibrations

of a car. For all the practical purposes, one can model, the entire body of the car as one

single mass and this mass can be modeled to have been suspended by a combination of

springs and dampers.
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In this particular case, the dumping coefficient, and the spring constant are determined

by the shock absorbers, and the tires and so, on. And the mass the value of, the mass m is

determined by the overall  weight of the car. So, one can therefore come up with an

approximate model,  which captures the important  dynamics of a car moving down a

bumpy road. By using a simple model, where the mass has been lumped at the center of

gravity of the car; and the stiffness, and the damping coefficients have been lumped at

the locations of the shock absorbers, and the tires and so on; such a model is called a

lumped parameter model.

(Refer Slide Time: 20:06)



It is an approximate model, but the degree of approximation can be improved by using

more  springs  and  dampers  connected  in  some  particular  fashion  in  order  to  better

represent, the dynamics of the system. Likewise, in the electrical domain, one can think

of lumped elements of resistors inductors and capacitors to model an electrical circuit, all

of these can represent a wide variety of physical systems. So, in the mechanical domain,

in addition to the car whose example I just took this network of springs, dampers and

masses can be used to model for example, civil structures such as bridges and buildings

and so on. It can be used to model aircraft wings entire aircraft itself and all and so on

and so forth.

So, one can come up with good approximate models by stringing together these springs

and masses and all of that. And such models, where these masses and springs, and other

elements are lumped at specific locations are called lumped parameter models. And for

small deformations of the object about its mean position, the differential equation that

relates the output of the model to its input would have the form of the kind that is shown

in this slide.

Here, x superscript bracket n represents the nth derivative of x with respect to time. So,

the general dynamic model would be nth derivative of x plus a 1 times the n minus 1

derivative of x plus so on and so forth, plus a n times x is equal to u. And this you can

easily verify represents a linear input-output relationship. Here u is the input, and x is the

output. And just by applying blindly the rules necessary to validate superposition and

scaling one can verify that it is a linear system.

So, here is an example of a dynamic model, which represents a wide variety of physical

systems both  in  the  mechanical  domain  as  well  as  in  electrical  domain  that  will  be

modeled by using linear time invariant ordinary differential equations and can therefore,

be modeled as linear systems. Of course, one need not have to model a system such as a

car with distributed mass, and distributed compliance and so on. As a lumped parameter

system; one can also consider that the inertia and the stiffness are distributed over the

entire volume of this object. In such a case, one has to employ distributed parameter

systems, which are essentially systems that are governed by partial differential equations.

So, if we take the example of a thermal system, for instance this room, we would note

that one corner of the room would probably be hotter than the other corner. For instance,



the top of the room might be hotter in summer than the bottom of the room, and there

might be temperature variation along the length of the room as well. And certainly the

temperature of the room will also depend on time. So, every part of the room would be

colder at the middle of the night than for example during midday.

So therefore, there is a spatial variation of temperature as well as a temporal variation of

temperature, and this is captured by what is known as the heat equation. And you can

verify that this equation is again one that represents a linear system here f of x comma t

represents the input, this input can vary both with time as well as with space, and u here

represents the output. Likewise if one considers an aircraft wing that is flexing under the

effect of wind load and so on. The deformation of the wing is dependent on the distance

of the point, where you are measuring from the base of the wing. And if this wing is

vibrating in the breeze, then it also depends on the time at, which you are measuring the

vibration.

Therefore, there is once again a temporal dependence of the deformation as well as a

spatial  dependence of the deformation,  and both these together  are dependent on the

input force which could itself be dependent on space as well as time. And this once again

by applying the rules for determining a linear whether it is a linear system or not can be

verified  to  represent  a  linear  system,  here  f  represents  the  input  and  u  once  again

represents the output.

Likewise the famous wave equation is also one that represents a linear system. So, we

have therefore,  lumped parameter systems which are approximate models of physical

systems of various kinds we have distributed systems, which once again model physical

systems of various kinds all of which fall under the category of what we define as linear

systems. In this two sets of examples I have considered, the coefficients of the of the

derivatives of x maybe the partial derivatives or the regular derivatives are all assumed to

be constant, but that is not really necessary.

So, for example, if you have a differential equation of the kind that is shown here, x

double dot plus b x dot plus k times 1 plus cos 2 omega t times x is equal to u you see

that the coefficient of x has a time varying component. Now, one can easily show that

even this represents a linear system even though there is a variation in time it represents

a linear system and that is so because, it satisfies homogeneity and additivity.



Now, this kind of an equation is obeyed for instance by a child swinging himself  or

herself on a swing. So, the child sits down. When the swing reaches its extreme position

and stands up, when the child, when the swing is at the bottom position, and that way it

is able to pump himself or herself, and overcome the losses in the oscillation amplitude

due  to  friction  effects.  More  from  a  more  practical  perspective  a  an  input-output

relationship  of  this  kind  is  also  seen  in  the  case  of  ion  traps,  where  time  varying

electromagnetic fields are used to trap ions within a certain volume. And the dynamic

equation of the ions is given by an equation of that looks something like this.

So therefore,  the first  important  reason why our definition  of a  linear  system in the

manner that we adopted a couple of minutes back namely L 1 of x is equal to L 2 of u is

useful is because, it encompasses a wide variety of physical systems. Now, how does a

non-linear system look like it is worthwhile to build our intuition to be able to identify

nonlinearities in the dynamics of a physical system. So, here are a couple of examples

that are that represent systems that are non-linear.

So, in the first example we have d x by d t plus x square is equal to u. And just by

inspection you see that you have a term x square here and therefore, you would one you

would suspect that the system is non-linear and it indeed it turns out to be so. Likewise,

any other second order differential equation with the damping term or the stiffness term

that is non-linear. Or in other words dependent on the variable x or x dot or x double dot

can be easily shown to be a non-linear system, because it does not satisfy superposition

and scaling. So, the first reason: why our definition is useful because of the ubiquity of

such models in nature. The second is the mathematical facility with which one can both

analyze as well as design such systems. So, let me give two examples to illustrate the

mathematical ease with which one can handle linear systems.
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Therefore, in this example, I have considered two systems. On the left hand side, I am

looking at a linear system x double dot plus x dot plus x is equal to u. And on the right

hand side, a non-linear system x double dot plus x dot plus x times one minus x square is

equal to u. In the example that I would consider in this slide, I have set the input u to be

equal to 0, but the initial condition x of 0 is assumed to be nonzero some value x naught

while the velocity x dot of 0 is also set to 0.

Now, suppose I were to simulate how the, how the state x would change with time if it is

released from its initial condition x naught, we see that if it is released from x naught is

equal to 0.5, it decays down to 0 after some time, if I were to not change the value of x

naught and make it 1. It once again decays down to 0, but with a very similar looking,

profile time domain waveform. And if x naught were to be made equal to 2, it once again

decays  down  to  0  in  exactly,  the  same  manner  as  it  did  for  the  other  two  initial

conditions.

On the other hand, let us say we were to repeat the same experiment in case of the non-

linear system, when we x naught equal to 0.5; in other words, the same initial condition

as for the linear system, we see that the way that the system decays to 0 is very similar to

that of a linear system. However, if I were to bring the initial condition close to 1, I have

not made it exactly 1; I have made it x naught equal to 0.999 very close to 1. We see that



already  there  is  some  difference  the  shape  of  the  curve  as  it  decays  down  to  0

qualitatively looks different from how it appeared when x naught was equal to 0.5.

Now, let us increase the initial condition just a little bit from 0.999 to 1.001. And what

we see, what we see is that the solution explodes x of t tends to infinity. And this is one

unsettling fact about the behavior of non-linear systems in that the nature of response is

dependent on the magnitude of initial conditions. When I say the nature of response I am

talking  about  the  kind  the  appearance  of  the  solution  for  scaled  values  of  initial

conditions, whereas in case of the linear systems, the nature of response is independent

of the magnitude of initial conditions. Likewise, in the next slide we shall consider what

would happen if we were to force our linear and non-linear systems by using different

inputs.

(Refer Slide Time: 30:42)

So, on the left hand side, once again I am forcing my linear system with a sinusoidal

input. And what I see is that the response is also sinusoidal. It is shifted in phase of

course, and also modified a little bit in magnitude, but in the sinusoidal in steady state.

What I can conclude qualitatively by looking at this graph is that if I provide a bounded

input maybe a sinusoidal input, I get a bounded output a sinusoidal output ok. Likewise,

if I provide a step input I get a response that looks something like this once again a step

input is one that has whose final magnitude is bounded and the response therefore is also

bounded.



On the other hand, let us consider the response of a non-linear system or the same non-

linear system that, we considered in the previous slide. So, for a same sinusoidal input,

the output looks qualitatively very similar to what was obtained from a linear system, it

is, it looks sinusoidal in steady state. However, if I were to apply a step input what I see

is that my solution once again explodes. So, here is another unsettling fact about non-

linear systems; in that the response for one input is not necessarily related to the response

to a different input. On the basis of the response to a sinusoidal input, I might have been

led to assume that if I were to apply a step input I once again have a finite response, but

that is not really the case.

On the other hand, in contrast, if you look at a linear systems the response to any one

input can be used to predict the response to a different input. And this prediction is not

just a qualitative prediction of the kind that we did in this slide, but actually we can show

that quantitatively if you have the response to any one input you can actually predict,

how it might look for a different input.

So, with these two huge advantages in favor of defining our linear systems in the manner

that we did namely the ubiquity of physical systems, which obey linear dynamics as well

as  the  ease  with,  which  one  can  analyze  differential  equations  that  are  linear  time

invariant and so on. We shall stick with this as a definition of a linear system. However,

from the  examples  that,  we  considered  a  couple  of  slides  back,  we  saw that  linear

systems,  encompass  lumped  parameter  systems,  distributed  parameter  systems  and

systems whose parameters are varying with time. Now, in this course however, we shall

restrict ourselves to only lumped parameter systems, whose coefficients are not changing

with time.
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In other words, I shall write down the equation of that connects input and output for all

the systems that would be considered in the course of this these lectures. In general, the

input-output relationship would look something like this n-th derivative of x with respect

to time d n x by d t up d t to the power n plus a 1 d n minus 1 x by d t for n minus 1 and

so on and so forth plus a n x is equal to b 1 d m u by d t power m, m-th derivative of u

with respect to time plus b 2 d m minus 1 of u by d t power n minus 1 and so on and so

forth plus d m times u.

This we will restrict ourselves in this course to systems whose input u and output x are

related by differential equations of this kind. Of course, when we as control engineers,

we are interested to know how these physical  systems behave in response to certain

inputs u and that is what we will be looking at in the next video clip. But before we get to

that I want to point out that it is not sufficient to simply state, the differential equation

that relates the input and output one also has to specify the initial conditions to be able to

derive mathematically, how the output would look like for a given input

So, we shall specify n initial conditions because, on the right hand, on the left hand side,

we have an nth order differential equation. So, n initial conditions are x of 0 x dot of 0

which is the time derivative of x at the time p equal to 0, x double dot of 0 and so on and

so forth up to x n minus 1 of 0. So, we have this differential equation with these initial



conditions. We shall now start out by looking at how one can obtain the response x of t

for the specified set of initial conditions and the specified input u.

Thank you.


