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Steps for performing control design (Part 2/2)

Hello. In the previous clip we had started on doing control design and we had laid out the

steps involved in doing control design. So, the first step was to convert time domain

specifications  on  performance  into  close  loop  frequency  domain  specifications,  and

subsequently  to  convert  close  loop  frequency  domain  specifications  into  open  loop

frequency  domain  specifications  and  execute  the  design  so  that  these  open  loop

specifications are met. And finally, go back to the close loop system and check whether

the  close  loop specifications  are  met.  And finally, check if  the  desired  time  domain

specifications are met. So, these are the steps in control design.

So, we have to check both for close loop specifications and for time domain response,

because there are approximations that are made in going from time domain to frequency

domain  and from close  loop to  open loop.  We also discussed that  in  the  interest  of

appealing to a broad audience, we cannot focus on any one kind of input that might be of

interest to one specific community and we have to decide on a particular standard input.
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So, which shows the step input as the one as a reference input. And the response to a step

input in the step response would be the one that we would be looking at to evaluate the

performance and stability of our close loop system.

So, we assumed it as typical step response of a close loop system might look something

like this, and we attach a few characteristics to the close loop response and 1 was the rise

time which was the time it took for the response to rise from 10 percent of its steady state

value to 90 percent of its steady state value. Then there was the peak overshoot and then

finally, the steady state error. And then we were confronted with a dilemma about how to

translate this time domain specifications into close loop frequency domain specifications,

particularly because you are not yet designed the controller

Indeed the control is the one that has to give us the specifications. So, our transmission

function T which is equal to C P by 1 plus CP is as at un designed, but yet we have to

somehow come up with performance specifications in the closed loop frequency domain

that give us these particular closed loop time domain specifications. To undertake this

exercise before even having designed c, we invoked the advantages that would accrue

from the motion of dominant close loop poles. So, we assume that our close loop system

would have a pair of dominant close loop poles.

Regardless of whatever controller structure we might end up having at the end of the day,

and with that assumption we could approximate our close loop system to be a second

order system. So, this is only an approximate relationship in order to allow us to translate

the  time  domain  specifications  into  corresponding  close  loop  frequency  domain

specifications subsequently. Now that we have assumed that our close loop system would

look somewhat like a second order system though it might definitely not be a second

order system in practice. We could then use standard relationships for the rise time the

peak  overshoot  and  steady  state  error  for  a  second  order  system,  and  translate  the

corresponding time  domain  specifications  to  correct  the  parameter  of  our  close  loop

system.

Namely the constant k which is given which is obtained from the specification of steady

state error ESS the damping zeta which can be obtained from the peak overshoot using

this equation. And finally, the constant omega n which can be obtained from the rise time

specification and this rise time specification relates the rise time to the bandwidth of the



closed  loop  system,  and  the  bandwidth  is  related  to  the  natural  frequency  omega  n

according to this particular equation. So, by using two together one can estimate omega n

and fix all the parameters of its approximate model.

Since, we have decided to undertake design using bode plot we have to translate the

close specifications into corresponding open loop specification. So, in other words we

should  come up with  the  correct  performance  requirements  on  the  loop  gain  or  the

product of the controller and the plant transfer functions that give us this approximate

close loop transfer function. So, the easiest to do is to come up with the value of the loop

gain or the value of the controller transfer function times the plant transfer function at

steady state for dc references. And, that is given by c of g of j 2 times p of j 2 we know

that our transfer function is given by C of j 2 times p of j 2 divided by 1 plus C of j 2

time p of j 0.

Therefore if we have specified the steady state error, then we know what value of k we

should have and we can show the therefore, should be equal to 1 minus ESS. So, t t of 2

should be equal t of j 2 should be equal to k which in turn should be equal to 1 minus

ESS from this particular equation and from this we can work out that our the product of

the controller transfer function namely C of j 2 evaluated at 2 frequency, times the plant

transfer function evaluated at 2 frequency should be equal to 1 by ESS minus 1. So,

converting  the  close  loop  specification  at  2  frequency,  to  corresponding  open  loop

specification on C of j 2 times p of j 2 was quite straight forward and this is what e test

Next we have to also translate the other specifications namely that of omega n and that of

zeta, to corresponding open loop specifications. Now here once again we shall make an

approximation  we  shall  assume  that  in  our  a  effort  to  translate  the  close  loop

specifications to open loop specifications our d c gain k is very close to 1. So, that may

be a small difference between the actual value of a dc gain and one, but we shall assume

that  for  all  practical  purposes  it  is  equal  to  1.  And  this  is  not  an  unreasonable

approximation because generally we desire that at least for d c references most control

systems show as close to 2 steady state error as it is possible.

So, if you make this approximation, then our transmission function approximately would

look like omega n square divided by s square plus 2 zeta omega n s plus omega n square.

Now if I go to write this as c of s times p of s divided by 1 plus c of s times p of s then I



can undertake the algebra namely that 1 plus C times P times omega n square is equal to

s  square  plus  2 zeta  omega n  s  plus  omega  N square  times  CP by simplifying  this

expression, I would get C times P to be equal to omega n square divided by s times s plus

2 zeta omega n. So, the open loop transfer function which gives us this approximate

close loop transfer function is given by this expression here.

Now, we can use this expression to sketch the approximate bode plot for our open loop

system and use that to determine the gain cross over frequency and the corresponding

phase margin.

(Refer Slide Time: 08:22)

So, to remind you from the previous slide, we have the open loop approximate transfer

function this is not the exact transfer function, because we have not yet designed the

controller c. In order for us to get the approximate closed loop transfer function that we

wrote out in the previous slide, the approximate open loop transfer function look should

look something like this omega n square by s times s plus 2 zeta omega n.

So, to draw its bode plot we have to substitute s is equal to j omega, in which case we

have we would have CP of j omega to be equal to omega n square divided by j omega

times j  omega plus 2 zeta omega n. We notice that  there is one corner frequency at

omega equal to 2 zeta omega n for this particular open loop system. So, this is the corner

frequency and we have an integrator also as part of our open loop dynamics. So, our



bode plot would therefore, have decaying characteristic and slope would be minus 20

decibels per decade up to the corner frequency minus 2 zeta omega n.

After which you would have the slope increase in its magnitude further, and it would

reduce at minus 40 decibels per decade, because you would have another 20 decibels per

decade contribution from this pole of the approximate open loop system. And this would

get the magnitude characteristic to crossover at some particular frequency omega g c.

How will the phase response look like approximate phase response, I want a emphasize

that we have not design the controller.

So, we are not yet determine the exact transfer function c times p, all we are doing is

coming up with an approximate transfer function that allow us to get the approximate

closed loop transfer function, which in turn was useful in transferring the time domain

closed loop specifications to frequency domain close loop specifications. So, the phase

response for this transfer function c times p, we will start at minus 90 degrees because

we have a integrator here. So, it will start at minus pi by 2 radians and then it will reduce

and it asymptotically approach minus pi and it never crosses minus pi.

So, this is going to be the phase response and at the gain cross over frequency, we can

evaluate the phase of this transfer function and the difference between minus phi and this

phase is by definition the phase margin. Now what we are trying to see is whether we can

relate the phase margin and the gain crossover frequency to the parameters omega n and

zeta of our closed loop system.

So, to determine the gain crossover frequency by definition we have to set magnitude of

CP of j omega g c where omega g c is the gain crossover frequency by definition there

should be equal to 1. If this is equal to 1 then of course, 20 log of magnitude of this

would be equal to 2 dB. And then would we have a gain crossing over the frequency axis

in the bode plot. So, if this has to be true then substituting it in the expression for C times

P we would have omega n square by j omega g c times j omega g c plus 2 zeta omega n

magnitude should be equal to 1. So, you can solve this particular algebraic equation for

omega g c and you would get omega g c to be equal to omega n square root of 1 minus 2

zeta square.

So, we see that if we have identified omega n and this can be obtained from the rise time

specification in the time domain step response of our closed loop system. And if you



have determined zeta which can be obtained from the peak overshoot specification, we

can determine therefore, the gain crossover frequency of our open loop system to be

equal to approximately omega n times square root of 1 minus 2 zeta square. We can now

that we have identified the exact gain crossover frequency. You can also estimate the

phase margin because the phase of this open loop system approximate open loop system

would be given by the phase of the integrator.

And a phase lag of integrator is a constant at all frequencies and that is equal to minus pi

by 2. And the phase lag ordered by the other pole at s is equal to minus 2 zeta omega n,

and that phase lag will be equal to minus tan inverse omega by 2 zeta omega n where

omega is a frequency at which we are evaluating the phase of that transfer function. Now

we know that we have to evaluated at omega g c in order for us to extract the phase

margin. So, the phase of C times P is given by this expression and the phase of C times P

at omega g c is give. Therefore, given by minus pi by 2 minus tan inverse omega g c by 2

zeta omega n and that in turn is equal to minus pi by 2 minus tan inverse square root of 1

minus 2 zeta square divided by 2 zeta.

I get this expression by plugging in the expression for omega g c from here. So, the angle

of C times P at j omega g c is equal to minus pi by 2 minus tan inverse of square root of

1 minus 2 zeta square divided by 2 zeta. And I use the identity that tan inverse of square

root of 1 minus 2 zeta square by 2 zeta is nothing but pi by 2 minus tan inverse of 2 zeta

by square root of 1 minus 2 zeta square. So, the standard identity from trigonometry that,

I  am employing  and  if  I  want  to  do  that  and  plug  this  identity  into  this  particular

equation.

I would have angle of CP at j omega g c to be equal to minus pi by 2 minus pi by 2

minus tan inverse 2 zeta by square root of 1 minus 2 zeta square. And that is equal to

minus pi plus tan inverse 2 zeta by square root of 1 minus 2 zeta square.
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From the previous slide we have angle of CP at the gain crossover frequency to be equal

to minus pi plus tan inverse 2 zeta by square root of 1 minus 2 zeta square and by

definition of phase margin. We know that the angle of CP at j omega c omega g c is by

definition equal to minus pi plus p m, where p m is the phase margin of our open loop

system.

So, comp by comparing these 2 equations, we note that the phase margin is given by tan

inverse 2 zeta by square root of 1 minus 2 zeta square. Therefore, we note that if you

have to specify the damping coefficient for our closed loop systems zeta, which we in

turn extract from the desired peak overshoot m p we are effectively specifying the phase

margin of our system. And a couple of clips back we discussed that the phase margin is a

measure of stability of our closed loop system it is. And it is the maximum permissible

phase lag that our controller can potentially add before destabilizing the system.

So therefore,  specifying  the  closed loop damping or  in  other  words  equivalently  the

maximum overshoot in the time domain is equivalent to specifying a desired stability

margin for your close loop system. Now we can simplify the expression for the phase

margin further by noting that if the damping coefficient zeta is much less than 1, then in

the denominator of this function tan inverse 2 zeta by square root of 1 minus 2 zeta

square the term 2 zeta square would be much less than 1. And what that would mean is



that square root of 1 minus 2 zeta square would approximately be equal to 1 so, that the

phase margin would be approximately equal to tan inverse 2 zeta.

And if zeta is much less than 1, we know that tan inverse of theta approximately equal to

theta in the limit theta is close to 2. Therefore, we can make a additional approximation

that  the  phase  margin  is  approximately  equal  to  just  2  zeta.  So,  this  fairly  simple

expression allows us to very quickly compute the phase margin of our close loop system

in radian, if we have specified the closed loop damping coefficient zeta. Now what is

often done when we do control design is to represent the angles not in radians, but rather

in degrees.

So, if 1 more to represent this in degrees, then 1 would have the phase margin to be equal

to 2 zeta times 180 by pi this is in degrees. And we note that 2 times 180 is 360 and the

value of pi is 3.141. And therefore, the phase margin is going to be equal to 360 by 3.141

times zeta. This can be simplified a little bit further to make it easy for us to remember

quickly what the relationship between the phase margin and zeta is going to be, by noting

that 360 by three 0.141 is approximately equal to 100.

So, therefore, the phase margin is approximately equal to 100 time zeta, when the phase

margin is represented in degrees. So therefore, we have now managed to successfully

convert  the close loop frequency domain specifications into corresponding open loop

frequency domain specifications.
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In particular I have sketched here the bode plot of our open loop system. We note that

our  omega g c  can  be obtained if  we have specified  the  rise  time and the  damping

coefficient as omega g c equal to omega n square root of 1 minus 2 zeta square, and the

phase margin which is the difference between minus pi. And the phase of the plant to be

related to zeta as phase margin is equal to zeta times 100, when the phase margin is

represented in degrees or is approximately equal to 2 times zeta, when the phase margin

is represented in radians.

And finally, our steady state error specification ESS helps us to determine the necessary

gain for our open loop system in the vicinity of omega equal to 2 and that gain has to be

equal to 1 by ESS minus 1 this is in linear scale to represented in the bode plot it has to

be 20 log of magnitude of 1 by ESS minus 1. So, we have now successfully transferred

the closed loop frequency domain specifications into corresponding open loop frequency

domain specifications, and if you notice here we have made approximation on a log from

time domain to closed loop frequency domain and from closed loop frequency domain to

open loop frequency domain conversions.

Therefore when we do the design using bode plots, it is imperative for us to convert the

design open loop transfer function into the corresponding close loop transfer function, to

see if our close loop frequency domain specs have been met correctly. And subsequently

to plot the step response of our close loop system, and see whether the time domain

specifications have been met by the design closed loop transfer function.

We shall, in the next clip take a look at a few standard controllers that will allow us to

design our open loop system to meet the specifications of the kind that we have outlined

in this clip.

Thank you.


