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Hello, in the previous clip we took a look at Nyquist stability theory and how it enables

to determine the stability of our closed loop system. And subsequently identified some of

the drawbacks of the Nyquist plot despite its central importance in frequency domain

based control design because, Nyquist plots or the final courts of appeal as for stability

of the closed loop system is concerned. We discovered that Nyquist plots are not intuitive

and therefore, we cannot easily anticipate how the Nyquist plot of controller times the

plant would look, if you are given the Nyquist plots of either the controller or that of the

plant.

And that became the motivation for us to search for a better canvas upon which to do our

design. And the such candidate was the Bode plot where we saw that we plot the log of

magnitude  of  the  transfer  function  versus  the  log  of  frequency.  And  this  allows

transforming  the  product  operation  which  is  what  is  used  when one  has  to  plot  the

Nyquist plot into a summation operation firstly.

And secondly, we have the asymptotic multitude Bode plots to be essentially a bunch of

straight lines whose slope change near the corner frequencies of the open loop system.

Therefore, it becomes intuitively very easy for us not only to visualize the Bode plot of a

plant or a controller, but also anticipate what the Bode plot of plant times the controller

would look like because, it could be simply the sum of the Bode plots of that of that of

the plant and of that controller.



(Refer Slide Time: 02:02)

So, I have shown here the typical Bode plot that I drew towards the end of the previous

clip for the plant times the controller. What is very convenient about this design tool is

that it allows us to keep track of the magnitude of the open loop transfer function namely

C times P. And, this magnitude allows us to determine whether we are able to meet our

performance specifications or not.

So, if C times P is not large enough then we need to ensure that our controller gain is

increased further. So, it becomes large enough and ensures that for example, the error in

tracking which is given by 1 by 1 plus C times P of j omega is adequately small within

the frequency range where this tracking needs to be performed within in other words

within  the  frequency  range  of  the  reference  signal.  Likewise,  if  there  is  an  output

disturbance  that  needs  to  be rejected  then the  extend by which  we reject  the  output

disturbance is once again given by the same term 1 by 1 plus C times P.

So, by making so that C times P of j omega is adequately high in the frequency range

where the disturbance output disturbance effects our system, we can make sure that our

we are able to reject the disturbance by the desired amount. But all along the good thing

about the Bode plot is that every time we make a change to the open loop gain or the

phase of the controller. It will change the Bode plot and we can keep track of the new

gain  crossover  frequency  and  the  new  phase  margin  and  likewise  a  new  crossover

frequency and the new gain margin. And always make sure that both the gain margin and



the phase margin are adequately large for us to have an adequately stable closed loop

system on our hands.

So,  the Bode plot  therefore,  is  a  nice  tool  that  allows  us  to  design for  performance

because the gains at the frequencies of interest to us are directly evident in the plot, at the

same time keep track also of the stability because the phase margin and the gain margin

is evident in the plot. So, our designs therefore, would be performed using the Bode plot.

However, there is there are two issues that one needs to address one adopts the Bode plot

as the tool for doing control design.

The first issue is that we note that this is the Bode plot of the open loop system whereas,

the typical specifications that would have would be for the closed loop system. So, how

to translate the closed loop specifications into open loop specifications, so what is one

constraint that is one extra step that has to be undertaken. The second issue that needs to

be addressed is that this is a frequency domain based design tool whereas, most of the

specifications that are given to us as a engineers would be in the time domain. So, we

would expect our transient response to vanish within certain duration of time to would

expect our overshoots and ringing to be less than a certain percentage or we may have to

have a steady state error less than a certain amount.

So, many of these are time domain specifications and therefore, one has to convert the

time domain specifications into frequency domain specifications and then do the design.

So, if one wants to adopt Bode plots as the chosen tool for doing control design one has

to  adopt  the  following  steps.  In  the  first  step  one  has  to  convert  the  time  domain

specifications,  which  is  what  is  assign  to  a  control  engineer  into  the  corresponding

frequency domain specifications on the closed loop system.
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So,  the  first  step  1:  Step  1  is  to  convert  closed  loop  time  domain  specifications,

specifications into closed loop frequency domain specifications; so this is the first step.

Now, that  we  have  a  closed  loop  frequency  domain  specifications  we  have  to  next

perform this transformation of the closed loop specifications into its corresponding open

loop specifications because, we are ultimately doing our control design in using Bode

plots where we plot the open loop transfer functions. So, we have to have a conversion of

closed  loop  frequency  domain  specifications  into  open  loop  frequency  domain

specifications  convert  closed loop frequency domain  specs  into open loop frequency

domain specs.

Now, that we have the specifications in for the open loop system we can mark them out

on our Bode plot and design our controller such that the open loop system namely the

controller times the plant achieves these specifications, either in terms of performance

requirements  or  in  terms of stability  requirements.  Now, once our  open loop system

design  is  done  in  a  such  a  manner  that  it  satisfies  our  closed  loop  open  loop

specifications. Then we have to then work out the final closed loop transfer function and

check whether the closed loop specifications are also met check whether the closed loop

specifications in the frequency domain are met.

Now, there is one final step that one has to adopt in going from closed loop time domain

specifications  to  closed  loop  frequency  domain  specifications  we  make  some



assumptions  and approximations.  And therefore,  our assumptions  and approximations

might  result  in  error  between  the  actual  specifications  and  the  once  that  we  might

eventually achieve. Therefore, after completing the design in the frequency domain one

has  to  look  at  the  response  of  the  system in  the  time  domain  to  ascertain  that  the

specifications in the time domain have all been adequately met.

So, the last step therefore, is to check the response in the time domain and ensure that

they are adequately met. So, if not then one has to change the control structure little bit to

ensure that they are met, so we have 4 steps in the first step we convert the closed loop

time domain specs to closed loop frequency domain specs. In step two we convert closed

loop frequency domain specs to open loop frequency domain specs and then we design

the controller to achieve these specs.

In  the  third  step  having  design  the  controller  and  having  known  the  plant  transfer

function we can now obtain the closed loop transfer function of the system. And we

should check whether the frequency domain specifications on the closed loop transfer

function have also been met, by our controller structure and that is once again because

we have  approximations  in  going from closed  loop  frequency  domain  to  open  loop

frequency domain. So, having designed everything in the open loop frequency domain

we go back to the closed loop frequency domain to check whether all the specifications

have been met and if and if our approximations were reasonable.

But even after all of this there is there are approximations involved in going from closed

loop time domain to close closed loop frequency domain. So, even if the closed loop

frequency domain specifications  are met there is no guarantee that the corresponding

time  domain  specifications  are  met  exactly. They  will  be  met  to  a  large  extent,  but

perhaps there is want to be a scope for some difference between what was specified and

what was achieved. So, one has to therefore, mandatorily check the response in the time

domain  and ensure  that  the specifications  either  in  terms  of  disturbance  rejection  or

reference tracking or stability are adequate met.
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If they are all met then step four would mark the end of our design process and we can

stop over control design. So, this is the flow for control design using Bode plots. So, let

us  now  examine  the  different  criteria  and  the  techniques  that  one  would  adopt  in

following these different steps. As control engineers we are generally told to either track

a certain reference or a certain set of references or reject a certain set of disturbances.

So, we will be specified the kind of time domain waveform that these references would

have  and  the  approximate  waveforms  of  the  disturbance  also,  based  on the  kind  of

disturbances that affect the plant that we are trying to control or the kind of references

that  our plant  has to track.  The first  step since most of our design is  being bone in

frequency domain the first step is to be able to examine the frequency content of the

either the references or the disturbances that we need to track.
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So, for instance I have ported here the magnitude of R of j omega as function of omega

and let us say that this is a curve that look something like this. So, your reference has

frequency content  only up to a  frequency omega capital  R. It  might  have frequency

content  beyond  omega  R,  but  that  might  be  so,  low that  we  can  ignore  it  without

seriously affecting the performance for tracking our desired references. So, this might be

the kind of frequency content for the reference.

And likewise in case of disturbance we may not be able to specify the exact waveform of

the disturbance, but we may still be able to pass some judgment on the frequency range

of this disturbance. So, we may once again be able to identify the frequency content and

in  particular  we will  be  able  to  identify  the  frequency omega D,  beyond which  the

frequency content or the spectrum of the disturbance would be vanishingly small.

So, what we need to do as control engineers is to make sure that up to omega R the

transfer function that relates the output to the reference or which is given by CP by 1 plus

CP should be close to 1 and if that is done. So, this should be true for the frequencies

going from 0 all the way to omega R, if this is a ensured then we would be able to track

the reference with adequate amount of accuracy.

Similarly, as control engineers if the frequency content of our disturbance is significant

only up to frequency omega D, we need to make sure that the transfer function that

relates the disturbance to the output namely X by D which is going to be equal to 1 by 1



plus CP should be close to 0. It need not be exactly 0, but it should be adequately small

for us to reject the disturbances adequately well. So, this is what we need to do, now if

you are given a system that is afflicted by both a disturbance as well as it has to track

preferences, then P note which of these two numbers omega R or omega D is larger. And

make sure that our transfer function CP by 1 plus CP is closed to 1 up to that particular

frequency, because let us assume that omega D is the larger of the two in other words if

omega D greater than omega R.

If CP by 1 plus CP is close to 1 up to omega D in other words for omega up to omega D

then we would see that 1 by 2 plus CP which is simply given by 1 minus CP by 1 plus

CP would be close to 0 up to frequencies omega D. Therefore, in our attempt to get CP

by 1 plus CP to be equal to 1 all the way up to omega D, we are also ensuring that we are

able to reject disturbances adequately well up to that frequency. So, we pick the greater

of the two frequencies and try to make sure that our transfer function CP by 1 plus CP is

close to 1 up to that frequency. Hence fourth let us coin a particular name for this transfer

functions CP by 1 plus CP, we shall call it the transmission function T.

There is a good reason why T is called the transmission function because if one were to

look at the feedback block diagram where you would have C and P and the output X and

the  reference  R.  That  we  would  see  that  the  extend  by  which  the  reference  R  is

transmitted through the closed loop system is given by this transfer function CP by 1 plus

CP and hence the name transmission function. Likewise there is a special name for the

transfer function 1 by 1 plus CP and it is called the sensitivity function yes. So, we want

the sensitivity function to be adequately low in the frequency range where we want to

reject disturbances adequately well and we want the transmissions function to be as close

to unity as is necessary.

In order to make sure that we track the references up to the desired frequency range

omega R. Now, the exact spectrum of the reference for the disturbance is application

specific however, this course is intended for a broad audience which could be people

from  electrical  engineering  backgrounds  or  mechanical  engineering  backgrounds  or

chemical engineering backgrounds and so on and so forth. And we cannot graph the

exact spectrum of the references that are of interest all of these and we cannot decide on

only one particular application that might be of interest to one community of engineers.



So, rather than deciding on tracking some general reference whose frequency content is

shown in this slide we should decide on a standard reference that we would track, and

examine the performance of the closed loop system in its ability to track this standard

reference. So, what would be a good candidate for such a standard reference, we have

impulse inputs we have step inputs we have triangular inputs we have sinusoidal inputs

or some of the commonly used standard inputs. And a movement start would reveal that

among these candidates the step input is a good candidate for being a standard input for

us to look at the response of our closed loop system.

(Refer Slide Time: 19:11)

And that is because it reveals clearly the transient response of our closed loop system.

Since, the input does not change after its initial step change from 0 to 1; we can clearly

see the transient response of our system. This on the other hand is more difficult to do

with sinusoidal inputs or triangular inputs or other inputs the changed with time because

the transient response gets added on to the variation of the signal itself in time, and that

makes it difficult for us to clearly visualize the transient part of the response from the

signal itself.

So, a step signal is a good candidate for looking at a transient response, but also it is a

good candidate for looking at the steady state behavior. If my closed loop system has a

certain steady state error to constant references that would be revealed by a step input.



This in contrast is not revealed for instance by a an impulse input which once again does

not change after it is, after it is initially applied around T equal to 0.

But, then the an impulse response does not reveal information about the steady state error

of the closed loop system to constant references. Therefore, it is of used for us to adopt

the  steps  input  as  the  common  reference  input  against  which  we  would  check  the

performance of our closed loop system. Now, as  control  engineers  we might  have a

certain specifications in terms of the step response of the close loop system that need to

be satisfied. If we look at the typical step response which might look as I have done in

the figure here, we can mark out some of these specifications one would be the time that

it would take for the response to rise up close to its steady state value and this is called

the rise time.

So, formally the rise time is defined as the time it takes for the closed loop system to rise

from 10 percent of it steady state value let us say its steady state values is K if its steady

state value is K the time it takes for the response. So, rise from 10 percent of K to 90

percent of K 0.9 of K this time is called the rise time and depending on how fast we want

our response to be we would want to choose this rise time to be adequately low.

Another characteristic of the step response that would be of interest to us is the error that

exists after a steady input has been provided and that is captured by the steady state error

ess. And it is evident that T if the steady state value of our response to a step input is K

and the steady state error ess is given by 1 minus K. And as control engineers we want

the  steady  state  error  typically  to  be  quite  small,  especially  if  you are  interested  in

tracking slow varying references the frequency is close to 0.

A third characteristic of the step response that would be of interest to us is the amount of

ringing that we have here and the extend by which the response overshoots beyond its

steady state value. In fact, these two are related the more is the number of the more is the

extent  of  overshoot  beyond  its  steady  state  value  the  larger  will  be  the  number  of

oscillations before its settles down.

So,  we  need  not  have  to  separately  specified  the  number  of  oscillations  and  the

percentage of the overshoot we can simply specify the percentage overshoot which we

call as MP. And make sure that our closed loop system has this percentage overshoot to

be neither too small nor too large.



So, there are other characteristics that you can identify for example, you can look at the

settling time of the closed loop system which would be the time that it would take for the

response to be within a certain band in the neighborhood of a steady state response. So,

other such characteristics can also be um identified for the closed loop response, but for

now we shall limit ourselves to three characteristics as a desirable characteristics for our

closed loop response, namely the rise time the peak overshoot and the steady state error.

Now that we have these three time domain specifications on performance we now have

to design a closed loop system which allows us to achieve these particular specifications.

To do that as we said if we have to do it using Bode plots we have to first transform these

time domain specifications into corresponding frequency domain specifications. These

frequency domain specifications have to be for the closed loop system and here is where

we meet our first road block.

The closed loop system transfer function is given by T is equal to C times P by 1 plus C

times P. Now we have to design the controller, so that  our closed loop transmission

function has a step response that look similar to what has been given here. But we have

not yet designed our controller and therefore, our transmission function is not yet known

to us given the fact that our transmission function is not yet known to us. We are now at

this strange situation where we want to be able to convert the time domain specifications

to frequency domain close loop specifications, but we do not know the structure of T.

So, how do we resolve this dilemma, here is where we adopt the notion of dominant

poles? Although we might not have designed C and therefore, we do not know the exact

structure of T. We assume that the closed loop transfer function T has a pair of dominant

poles which are the once that predominantly determine the response of the closed loop

system to step inputs. There might be other poles which will coming place on account of

the particular structures that the plant and the controller might have. But regardless of the

comptroller and the plant transfer functions we assume that our transmission function

can  be  approximated  fairly  well  as  a  second  order  system  with  a  pair  of  complex

conjugate poles.

So, in other words we assume that we can write T approximately as K times omega n

square where K is a steady state value of the response of the transfer function to a step

input divided by S square plus 2 zeta omega n S plus omega n square. So, even though



our controller  design has to wait  until  we are done with it  using the Bode plots we

assume that regardless of what the controller structures might finally, turn out to be we

would be able to represent T as predominantly a second order system though for sure

there  will  be  other  terms,  but  those  terms  can  be  neglected  in  the  in  steadying  the

response to the closed loop system.

Now, that we have approximate model for our closed loop system we can use the time

domain specifications to fix the parameters of our closed loop system. So, for instance

we have already identified the dc gain of our transmission function to be equal to K

because at omega equal to 0 we want when we set S is equal to j omega and set omega

equal to 0. So, when we set S is equal to j omega and evaluate it at omega equal to 0 the

we  would  have  T of  0  to  be  equal  to  K.  So,  this  would  be  the  magnitude  of  the

transmission function at omega equal to 0 and therefore, represents the steady state value

of the step response of our closed loop system and that should be equal to the value K

that we have already identified from the time domain response.

So, with at least has we two more parameters namely omega n and zeta that need to be

identified. If we look at the peak overshoot one can obtain the step response of a second

order system which has a transfer function of this particular form and therefore, derive

the dependence of the overshoot MP on the parameters of this second order model. It can

be  shown  that  MP has  this  particular  structure  we  would  have  MP to  be  equal  to

exponential  of n minus zeta times pi divided by square root of 1 minus zeta  square.

Therefore, if in the time domain response we have specified MP then we can obtain zeta

from this  particular  equation  and therefore,  have  a  specification  for  the  approximate

second order closed loop response of our system.

What that lives us with is to the fix the parameter omega n and that we can obtain from

the rise time of our closed loop system. So, if we have specified a certain rise time t r we

can show that this rise time t r is approximately equal to 04 divided by f b. The f b is the

bandwidth of our closed loop system which in turn is equal to 2.5 by omega b where

omega b represents the bandwidth of the closed loop system in angular frequency. Now,

the motion of a bandwidth is based on the value of the frequency at which the magnitude

of T of j omega is equal to 1 by root 2 times its value at omega equal to 0 in other words

magnitude of T of j 0.



Now, it can be shown that for a second order system a system that has a transfer function

that  looks something like this.  The frequency at  which the magnitude of the transfer

function becomes 1 by root 2 times its magnitude at omega equal to 0 which is given by

omega b is approximately equal to omega n times 1.5. Therefore,  from the rise time

specification we can use this equation to obtain omega b and from this equation that

relates omega b and omega n we can obtain the frequency omega n.

Now, we have identified all the parameters of our approximate transmission function. So,

if  we were to  graph the approximate  transmission function T the magnitude  of T as

function of omega would look something like this. At very low frequencies its gain is K

and  as  we  approach  omega  n  the  magnitude  will  increase  and  then  at  the  resonant

frequency  the  magnitude  will  be  at  its  maximum value  and when zeta  is  small  this

resonant frequency as we discussed is approximately equal to omega n and then it will

finally drop off.

The frequency at which the magnitude becomes 1 by root 2 times the steady state value

another words the magnitude becomes K by root 2 is what we define as the bandwidth

omega b.  Now, this  equation  relates  approximately  the bandwidth of a  second order

system with low damping to the natural frequency omega n and this equation relates the

rise time to omega b.

So, if in the time domain we have a certain specification on the rise time or in other

words the speed with which of the quickness with which we want our closed loop system

to track references. Then we can convert that omega b and from that obtain omega n and

from  that  we  are  able  to  obtain  the  approximate  transmission  function  which  can

subsequently be converted to the corresponding open loop specifications this we shall

look at in the next presentation.

Thank you.


