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Nyquist stability theory (Part 3/3)

Hello, in the previous clip we took a look at Nyquist Stability Theory and how it could

be employed to determine the stability of a close loop system. Or more generally how

can it be employed to determine whether the 0’s and poles of a given complex function f

of s is within a certain bounded region, a region bounded by curve c in the complex

plane.

Now,  how  do  we  mathematically  establish  like  Nyquist  stability  theory  to

mathematically establish the theory we need two concepts, one is a notion of analytic

functions and the second is what is known as the Cauchy integral formula. So, let us

briefly  define  what  analytic  functions  are  and then  subsequently  also  state  Cauchy’s

integral formula and then use both to establish Nyquist stability theory.
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If a function f of s is infinitely differentiable within a region omega bounded by the curve

c, then f of s is said to be analytic at all points within omega c. So, if the function f of s is

complex differentiable at all points and we should be able to differentiate it as many

times as you wish, then we call such functions as analytic functions within this region c.



So, what are some examples for analytic functions if you take f of s to be equal to S

minus a. Then we see that f prime of s is equal to 1 f double prime of s equal to 0 and at

equal to all other derivates of s for n greater than or equal to 2. So, we see that this

function is infinitely differentiable and this is infinitely differentiable regardless of which

specific point we are evaluating it at.

On the other hand if you were to look at a function of the chi f of s is equal to 1 by S

minus a.  And if  a  happens to be a  point  that  belongs to  the region omega which is

bounded by the curve c. Then we see that it is not differentiable at the point S equal to a,

because this function blows up at a particular point, but it is differentiable at every other

location.  So, what we can say therefore,  in this case is that f of s is differentiable is

analytic everywhere except at S is equal to a. So, it is a fairly straight forward concept if

a function is  differentiable  then it  is an analytic  function if  it  is not differentiable  at

certain  points  then  it  is  not  an  analytic  function.  We shall  employee  this  motion  of

analytic functions to now state Cauchy’s integral theorem.

The theorem states that in a region omega bounded by the curve c, if f of s is analytic

everywhere meaning that  it  is  differentiable  everywhere.  Then 1 by 2 pi  j  times the

contour integral over the curve c of f of s by S minus a d s is equal to f of a if the point a

belongs to the region bounded by the curve c and is equal to 0 if a does not belong to the

region  bounded  by  the  curve  c.  So,  this  is  Cauchy’s integral  theorem and we  shall

employee this theorem along with the notion of analyticity as we have defined above to

now, prove Nyquist stability theory. 
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To prove Nyquist stability theory let us integrate, let us evaluate the integral 1 by 2 pi j

times the  contour integral of F prime by F d s where F is a function the that we are

interested in namely 1 plus G of s, where G of s is our open loop transfer function. We

want to determine how many of the 0’s of F which are essentially the close loop poles are

on the right half of the complex plane. So, we undertake the contour integral of F prime

by F and since Nyquist stability theory is a general theory that is not applicable only to

determine stability, but more general you determine if the 0’s of F are inside this close

contour C or not C can be any contour in the complex plane. 

Now, we see that we can write this integral as 1 by 2 pi j times contour integral over c d

of log of capital F. Because by definition d of log of capital F is F prime by F times d F c

and we can subsequently further simplify this expression by noting that log of capital F is

equal to log of magnitude of F times e to the power j angle of F. And this in turn is

therefore, equal to log of magnitude of F plus log of e to the power j angle of F, this in

turn is equal to log of magnitude of F plus log of e to the power x is essentially x.

So, therefore, this is going to be equal to j times angle of F therefore, we can rewrite this

integral as 1 by 2 pi j a contour integral over c d log of F as equal to 1 by 2 pi j contour

integral over c d log of magnitude of F plus 1 by 2 pi j contour integral over c j times d

of angle of F. Now, if you notice this integral since our contour integral essentially looks

at d of log of magnitude of F and starting from some particular  location yes on this



contour  and then goes  round that  contour  once,  we see that  the initial  and the final

magnitudes of F are identical. Therefore, d log of magnitude of F integrated over the

contour will be equal to 0, this integral will not be 0 d of angle of F  will be the net

change in angle of F.

And I shall call that delta of angle of F, and I have the two terms j: one in the numerator

other one in the denominator. So, the cancelling though I would get this to be equal to

delta of angle of F divided by 2 pi. Now, we know that 1 by 2 pi j times the contour to

integral of d of log of F can also be written in a slightly different manner by noting that

our F is equal to 1 plus G of s. And by factorizing this we can write this as some constant

times S minus P 1 times S minus P 2 and so on and so forth up to S minus P n, where P 1

to P 1 are the n 0’s of 1 plus G s which are also the close loop poles of our system

divided by S minus P G 1, because these are the poles of G of s times S minus P G 2 and

so on and so forth up to S minus P G n.
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Since, you can write F in this particular manner we know that log of F will be equal to

log of constant times S minus P 1 times S minus P 2 and so on and so forth up to S minus

P n divided by S minus P G 1 times S minus P G 2 and so on and so forth up to S minus

P G n. Which intern can be expanded out as log of k plus log of S minus P 1 etcetera

etcetera up to plus log of S minus P n minus log of S minus P G 1 and so on and so forth

up to minus log of S minus P G n.



Therefore you would have d of log of F to be equal to d of log k plus d of log S minus P

1 and so on and so forth. Plus d of log S minus P n minus d log S minus P G 1 and so on

and so forth minus d log S minus P G n. Now, we note that d log k is going to be equal to

0 because k is a constant. So, if I were to compute the contour integral 1 by 2 pi j over c

d log F, I would get this to be equal to a contour integral over c times 1 by 2 pi j times d

log S minus P i summation i going from 1 to n minus summation i going from 1 to n d

log S minus P G i.

So, both these summations are within the contour integral,  now we note that d log S

minus  P i  for  any index y  is  essentially  going to  be equal  to  d S by  S minus  P i.

Therefore,  we can simplify this  contour integral  us being equal to 1 by 2 pi j  times

contour integral d S by S minus P i sigma i going from 1 to n minus 1 by 2 pi j times

contour integral over c sigma i going from 1 to n d S by S minus P j i.

Now, if you look at any one of these terms contour integral over c d S by S minus P i we

note that it is of the form contour integral f of s by S minus a d S with the particular

function f of s being chosen equal to 1. Therefore, if the point P i is inside the contour c

you would have this term d S by S minus P i to be equal to 1. If P i belongs to omega of c

is on the other hand is P i is not part of the region bounded by the curve c this is going to

be equal to 0. Therefore, I would have 1 by 2 pi j it times contour integral over c sigma d

S by S minus P i to be equal to like 1 from 1 to n to be equal to k.

Where k of the close loop poles  which are the 0’s of f  of s  or inside the contour c

likewise 1 by 2 pi j contour integral over c sigma i going from 1 to n d S by S minus P G

i will be equal to l, where l is a number of poles of the open loop system which are also

the poles of f of s that are inside the contour c. Therefore,  you would have that this

expression 1 by 2 pi j contour integral d of log of F to essentially be equal to k minus l.

So, if you remember from the previous slide we found that this expression 1 by 2 pi j

contour integral d of log of F is also equal to delta of angle of F divided by 2 pi. And this

putting this thing together P are able to establish  Nyquist stability  theory which states

that.
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Delta of angle of F divided by 2 pi is e equal to k minus l, where l is the number of open

loop poles inside omega c and k is a number of zeros of F of s inside omega of c. So,

delta F which is a net delta of angle of F which is a net changing the angle of F divided

by 2 pi is essentially the number of encirclements of the complex number F of the origin

in the F of s plane.

Therefore,  the  number  of  encirclements  of  the  origin  in  the  F  of  s  plane  when the

complex number S is made to go round the contour c. Once is equal to the number of

close loop poles which are essentially the number of zeros of capital F of s minus the

number of open loop poles which are the poles of the open loop system. This in effect

establishes Nyquist stability criterion, although in this particular form it is applicable for

any other contour c as well.

So, this contour need not necessarily be the right half of the complex plane what could be

any  contour  in  the  close  contour in  the  complex  plane.  And,  this  statement  can  be

employed to determine how many of the close loop poles are inside that contour and how

many or outside the contour. What is worth noting once again is that this number of

encirclements does not directly give us the number of close loop poles which are the

zeros F of s that are inside omega c. It only gives the difference between the number of

close loop poles and the number of open loop poles.



Now, how do we then get the number of close loop poles separately? To do that it is

assumed that we know the number of open loop poles that are inside that contour c and

that is assumed to be known because the open loop system is something that we have

design.  So,  either  from  first  principles  or  from  certain  strategically  conducted

experiments it is assumed that we can determine how many of it is poles are inside the

contour c.

With  that  knowledge  we  can  then  look  at  the  number  of  encirclements  and  then

determine how many of the close loop poles are inside the region omega of c. Just one

more point that I want to make regarding the number of encirclements, the encirclements

could either be clockwise or anticlockwise. So, which one do we take to answer this

question one needs to simply note that if we take the variable S in the complex plane. In

the contour clockwise direction then the statement for Nyquist stability theory would be

that the number of contour clockwise encirclements of the origin in the F of s plane

would be equal to the number of close loop poles minus the number of open loop poles.

On the other hand if we choose to take the variable S in the clockwise sense, then the

statements  on  Nyquist  stability  theory  would  be  that  the  number  of  clockwise

encirclements of the origin in the F of s plane for points S on the contour c would be

equal  to  the  number  of  close  loop poles  minus  the  number  of  open loop poles.  So,

depending on the direction along which we take the complex number S around contour

we need to look at the direction in which we are encircling the origin in the F of s plane.

So, as we discussed the real utility of this theory is not from it is able to determine the

location of close loop poles in some specific closed region c omega of c, but rather to

determine the stability of the close loop system.

To determine the stability all that we need to do is to pick the c to encompass the entire

of the right half of the complex plane. So, if I were to write draw the complex plane here

then we distort this curve c to be a very large curve whose one edge is very close to the

imaginary axis, but does not exactly coincide with the imaginary axis. And the other site

is a large d shaped curve and the radius of the semicircular d shaped curve or is tended to

infinity. So, that we are able to cover the entire of the right half of the complex plane and

check whether any of the poles of the surface would be in this plane in this side of the

complex plane or not. Now in this case we choose to take the variable S in the clockwise

sense although in some of my previous demonstrations to took it in the clock anti-clock



wise sense in this case we chose to take it in the clock wise sense. And have been taken S

how long this contour in the clock wise sense we now look at the number of clockwise

encirclements of the origin in the f of s plane.

So, what is F of s? F of s is essentially 1 plus G of s. So, if I were to draw f of s plane

then I would have the real part f of s the imaginary part of f of s here. I know look at the

number of encirclements of the origin in the f of s plane what you available to us from

experiments is G of s.  And we have to undertake this extra  calculation to compute the

complex number 1 plus G of s. In order to avoid this extra computation that we would

have to undertake what is commonly done is to look at the encirclement of not the origin,

but rather the point minus 1 comma 0 not in the f of s plane, but rather in the G of s

plane.

So, if I were to plot the real part of G of s versus the imaginary part of G of s for values S

on this contour c, I would get some curve. And I look at the encirclement of the point

minus 1 comma 0 of this curve, which is exactly identical to looking at the encirclement

of the origin in the F of s plane. So, to minimize this computation of 1 plus G of s given

G of s I simply look at the encirclement of the point minus 1 comma 0 in the G of s plane

rather than looking at the encirclement of the origin in the f of s plane.

So, what we shall have do in order to determine the stability of the close loop system is

to plot G of s for values of S along this d shaped contour. And look at the number of

times it encircles the point minus 1 comma 0 in the G of s plane. Now, what are the kind

of values that S would assume on this contour since this straight edge of the contour is

very close to the imaginary axis along this contour you would have S to the equal to j

omega. Now, along the d shaped contour since it has a radius R in the centered at the

origin of the complex plane you would have S to be a complex number of the form R e

power j phi where phi is this particular angle.

Now, since we are dealing with transfer functions which are generally strictly proper. In

other words the degree of the numerator polynomial is always less than the degree of the

denominator polynomial, we see that G of s for S of the form R e power j phi. Where the

radius R is tended to infinity in the limit R tends to infinity will be essentially equal to 0.

So, therefore, all the points on this d shaped contour will collapse to the origin in the G

of s plane. Simply because my G of s which would be on the form S power m plus b 1 S



power m minus 1 and so on by S power n plus a 1 S power n minus 1 and so on where n

is greater than m will assume a value 0 in the limit R tends to infinity. So, what we are

left with therefore, is to simply compute G of s for values of S on the straight line. Now

for the part of the straight line which starts from the origin and goes all the way to j

infinity our G would be of the form G of j omega. Since, S would be equal to plus j

omega on that straight line on this straight line however, which starts from minus infinity

and comes to the origin we would have S to be equal to minus j omega.

So,  you  would  be  evaluating  G  of  minus  j  omega  however,  there  is  a  further

simplification that is possible by noting that since G represents the transfer function of a

real system. When we write it down as a ratio of two polynomials as we have done here,

we note that all the coefficients a 1 a 2 a 3 b 1 b 2 b 3 and so on are all real numbers and

what that indicates to us is that G of minus j omega would be equal to G of j omega bar.

Where G of j omega bar represents the complex conjugate of G of j omega, in other

words if I were to graph G of j omega for omega going from 0 to infinity then G of

minus j omega we look very similar to this curve with the exception of this curve will be

reflected about the real axis. So, therefore, we do not even need to obtain G of j omega

along the negative imaginary axis, because that curve will be simply a mirror image of

the curve that would obtained for omega going from 0 to infinity.

So, what is therefore, generally done is you would simply compute real part of G versus

the imaginary part of the G for omega going from 0 to infinity a typical curve might look

something like this. It might or might not encircle the point minus 1 comma 0 and it will

collapse to the origin because all the points on this d shaped curve would get mapped to

the origin in the G of s plane. And for points that are on the negative imaginary axis the

curve would simply be a reflection of this curve about the real axis.

So, we can easily complete the entire Nyquist plot if we simply evaluate it for omega

going from 0 to infinity. And this curve G of j omega for omega going from 0 to infinity

is called the Nyquist plot and by looking at the encirclement of the point minus 1 comma

0, we can tell the difference between the number of close loop poles and the number of

open loop poles  that  are  on  the  right  half  of  the  complex  plane.  So,  to  look at  the

practical utility of Nyquist stability theory let us take a few numerical examples.
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Let us say that G of s, were equal to 1 by S plus 1 times S plus 2 times S plus 3. Firstly,

we note that there are no open loop poles on the right half of the complex plane the open

loop poles are at minus 1 minus 2 and minus 3. So, there all on the left half as a complex

plane therefore, this represents a stable open loop system to determine whether 1 plus G

is stable or not we plot G of j omega for omega going from 0 to infinity and look at the

encirclement of the point minus 1 comma 0 in the G of j omega plane.

So, if we have to compute G of j omega we substitute S is equal to j omega and we get

the expression to be 1 by j omega plus 1 times 1 by j omega plus 2 times j omega plus 3

we note that where omega is equal to 0. So, if you were to plot real part of G process the

imaginary part of G we note that when omega is equal to 0, we would have the G of j

omega to be equal to 1 by 1 times 2 times 3 which is 1 by 6. Now, 1 by 6 is a positive

real  number which indicates  that  it  is  a  complex number with phase equal  to  0 and

magnitude equal to 1 by 6.

So, be locate it on the real axis positive real axis of the G of j omega plane and this is the

point 1 by 6. Now as omega goes from 0 to infinity we note that the magnitude of each

of these terms for instance 1 by j omega plus 1 would be square root of 1 plus omega

square. The magnitude of 1 by j omega plus 2 is going to be 1 by square root of 4 plus

omega square the magnitude of 1 by j omega plus three would be 1 by square root of 9

plus omega square 



So, it is a monotonically decreasing function of omega and in the limit omega goes to

infinity this magnitude also tends to 0, what about the phase the phase would be equal to

the phase of the first term would be equal to minus tan inverse omega. The phase of

second term would be equal to minus tan inverse omega by 2 and the third term would be

equal to minus tan inverse omega by 3.

So, when omega is close to 0 all these terms or closed to 0 when omega tends to infinity

each of these terms go to pi by 2 which implies that the net phase of G of j omega as

omega tends to infinity angle of G of j omega in the limit omega goes to infinity will be

equal to minus pi by 2 minus pi by 2 minus pi by 2 which is going to be equal to minus 3

pi by 2. In order to obtain the real axis and imaginary axis crossings we determine the

location at which the imaginary part of G of j omega goes to 0. This is for real axis

crossings  and the  real  part  of  G of  j  omega equal  to  0 will  give us  imaginary  axis

crossings.

In this particular case, if you were to expand out by multiplying the theta. So, would

have G of j omega to be equal to 1 by minus 6 omega square plus 6 plus j times 11

omega minus omega cube.  Therefore,  the real  axis crossing would happen when the

imaginary term is 0 which implies that eleven omega minus omega cube should be equal

to 0 which has a solution omega equal to 0 has one solution the other being omega equal

to square root of 11.

So, if you substitute omega equal to square root of 11 and compute G of j omega you

will be able to determine the location at which the Nyquist plot crosses the real axis once

more. It cross once at omega equal to 0 which we already saw it is going to cross again

when  omega  is  equal  to  square  root  of  11.  Likewise  determine  the  imaginary  axis

crossing we set the real part to be equal to 0 which implies that minus 6 omega square

plus 6 would be equal 2 0, for another words omega would be equal to plus 1 we ignore

the negativity term because we are only looking at omega being positive going from 0 to

infinity.

So, we substitute omega equal to plus 1 and compute the G of j times 1 that will allow us

to locate the point at which it crosses the imaginary axis if we join all these points by a

dotted curve then you would get the final Nyquist plot. The phase goes from 0 to minus 3

pi by 2 and it causes the imaginary axis of omega equal to 1 it causes the real axis at



omega equal to square root of 11, and it so happens that this particular case it avoids the

point minus 1 comma 0.

So, since we have no open loop poles on the right half of the complex plane and the

Nyquist plot is not encircling the point minus 1 comma 0 we conclude that a system 1

plus G of s has all of it is zeroes. So, in other words the close loop poles of the overall

system namely G of s by 1 plus G of s are all on the left half of the complex plane.
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Now let us take one more example G of s is equal to 1 by S times S plus 1. Now this is a

small problem with this particular example namely that the point is S equal to 0 is a pole

of G of s and it happens to also be a point on the contour c. So, we want to make sure

that none of the poles of our open loop system or on the contour c in which case we

cannot evaluate the integral contour integral and apply the Cauchy integral formula for

such a case.  Therefore,  what  we do since we have an open loop pole that  is  on the

contour c we distort the contour a little bit near the origin by choosing a semicircular

path that avoids this point S is equal to 0 and the radius r of that semicircle would be

tended to 0.

So, it is very small, but it just avoids the point is S equal to 0 and ensure that this contour

does not have any poles on it is on itself subsequently the rest of the contour would be

exactly  as it  was in the previous case the d shaped contour  with radius R tended to



infinity would be exactly same as before. And the rest of the contour would be very close

the imaginary axis exactly as before.

So, what we do in this case is that you would evaluate G of s where S is equal to j omega

for this part of the contour. And then for the semicircular part we compute G of s where S

would be of the form S is equal to r e power j phi where if you zoom into this region I

will draw the semicircle in a slightly magnified form our contour c avoids the origin.

And then it goes further up we define this angle phi to be the angle made by some point

S on this small d shape contour of radius R with the real axis.

Now, since we would have once again G of s to be equal to G of minus S to be equal to

G of s bar for all points on the contour we need to consider phi going from 0 and up to pi

by 2. So, we compute G of s for S is equal to R e power j phi for phi going from 0 to pi

by 2 and we likewise compute G of s for S is equal to j omega for omega going from 0 to

infinity, omega will not be exactly 0 omega will start at value r and go to infinity and the

r radius r of course, is tended to 0.

So, if we first compute this term G of s for S is equal to j omega we would have it to be

of the form 1 by j omega times j omega plus 1. The magnitude of G of j omega would be

equal to 1 by omega times square root of omega square plus 1 the angle of G of j omega

would be the angle of 1 by j omega plus the angle of 1 by j omega plus 1. The angle of 1

by j omega is minus pi by 2 it is always a purely imaginary number on the negative

imaginary axis therefore, it is always minus pi by 2 and a angle of j omega plus 1 1 by j

omega plus 1 will be equal to minus tan inverse omega.

Now, if we substitute S is equal to r e power j phi we would have G of s to be equal to 1

by r e power j phi times r e power j phi plus 1. You note that since r is tended to 0 r e

power j phi plus 1 will approximately be equal to 1 therefore, G of s we simply be equal

to 1 by r e power minus j phi. So, G of s would therefore, be a circle of radius 1 by r

which is a very large numbers since r is tended to small r is tended to 0 and the angle will

change from since phi goes from 0 to pi by 2 the angle of G of s will go from 0 to minus

pi by 2.

So, you would discuss the Nyquist plot for this case we would have for the first part G of

j omega omega going from small r to infinity. It when r is very small G of j omega will

of the form 1 by r times square root of r square plus 1 and that is going to be a very large



number and the phase is going to be close to minus pi by 2. So, we start here and then the

final phase as omega tends to infinity will be equal to minus pi by 2 minus another pi by

2 that is our minus pi. So, the Nyquist plot would look something like this for this part of

the curve.

Now, for the other part the phase would start at 0 and go to minus pi by 1. So, that curve

would look something like this and the radius of this is going to be equal to 1 by small r.

The Nyquist plot is obtained by reflecting this Nyquist plot about the real axis that is

going to good look something like this, and we see that this curve always avoids the

point  minus  1  comma 0.  And we have  no open loop poles  on the  right  half  of  the

complex plane. So, our close loop system 1 plus G of s the G of s 1 plus G of s will

always be on the left half of the complex plane, so our close loop system will always be

stable.
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We will look at one final example we shall take G of s to be equal to 1 by S square times

S plus 1 in which case once again since we have 2 poles of the open loop system at the

origin we have to undertake a similar distortion to the d shaped contour exactly as we

had done for the previous example.

So, this is how our d shaped contour is going to look to have a tiny semicircular region of

radius r tended to 0 and this big d would have a radius capital or which is tended to

infinity  and these 2 straight lines are close to the imaginary axis.  So, we once again



compute G of s for values of S on this straight line and on this semi tiny semicircular part

and then look plot it. So, if you were to do that you would see that the phase of this

transfer function starts at an angle that is close to that is slightly greater than minus pi.

So, when we are near the origin somewhere here our Nyquist plot and the value would be

somewhere here and then as omega tends to infinity  G of s tends to 0. So, it  would

approach the origin in this particular  manner and on this tiny semicircular  patch you

would have S to be equal to r e power j phi. And will be substitute it in this expression

you would have G of s to be equal to 1 by r square e to the power 2 times j phi times 1 by

r e power j phi plus 1. So, this term 1 by r e power j phi plus 1 can be approximately

equal to 1.

So, G of s would be equal to 1 by r square e to the power minus j 2 phi. Since, we would

have phi going from 0 to pi by 2 we would have 2 phi going from 0 to pi and minus 2 phi

going from 0 to minus pi therefore, we would have this part of the curve being map to

this particular semicircular arc. And for the rest of the curve you just have to take the

reflection of this part about the real axis and that is going to look something like this.

And the point minus 1 comma 0 will always be inside this contour and you see that this

contour encircles the point minus 1 comma 0 twice.

So, this part encircles it once that part encircles it once more, so it encircles it twice and

we have no open loop poles on the right half of the complex plane. So, what it indicates

is that a close loop in the close loop system whose denominator polynomial would be 1

of 1 plus G of s will always have 2 close loop poles. On the right half of the complex

plane, on the right half of the complex plane.


