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So, let us now take another example namely of a quadratic polynomial; F of s equal to s

square plus a 1 s plus a 2. Now we want to tell  whether  the zeros of this  quadratic

equation or inside or outside a certain region in the complex plane.  Once again that

region is c bounded by the curve c is a real part of s is the imaginary part of s. Now

unlike in the previous example we cannot buy inspection locate the 0 of this polynomial,

we have to compute we want to solve this quadratic equation and the roots of a quadratic

equation  of  course,  can  be  obtained  with  by  solving  it.  Once  we  have  it  we  can

potentially locate them in this complex plane and tell whether there inside or outside, the

curve c. But once again we impose this constraint that we are not allowed to locate them

in the complex plane.

So, we are not allowed to see where exactly the r fall in relation to the curve c, but yet

we want to tell whether there inside or outside the region bounded by the curve c how do

we do it? So, this is once again a significance because in practice we are really not given

the roots of the polynomial,  but yet we want to tell  whether these roots are within a



certain region or not. So, let us assume that we can factorize the polynomial into 2 roots,

and let these roots be s minus c 1 and s minus c 2.

So, let F of s be equal to s minus c 1 times s minus c 2, which 1 expand it looks the way

it is originally given namely s square plus a 1 s plus a 2. Now there are three possible

cases 1 is when c 1 and c 2 are both inside the curve c, the second case is when 1 of them

is inside the other is outside, and the third case is when both of them are outside the

curve c. So, let us consider all these three cases and see what happens.

So, let us take the first case when both c 1 and c 2 are inside the curve, now we note that

if we pick a complex number s on the curve c, this is the complex number s. Therefore, s

minus c 1 would be this complex number, s minus c 2 would be that complex number

therefore, we would have F of s to be the product of these 2 complex numbers.

Now, when we have  a  product  of  2  complex numbers,  I  can write  s  minus c  1 the

complex number s minus c 1 as the magnitude of the complex number which is namely

magnitude of s minus c 1, which represents the length of this particular complex number

times e to the power j times the angle of this complex number angle of s minus c 1,

which is the angle theta 1 in this figure. Likewise, I can write s minus c 2 as magnitude

of s minus c 2, which represents the length of this complex number starting from c 2

ending at this point s, times e to the power j angle of s minus c 2 which is represented by

the angle theta 2 here.

Therefore  the  product  is  given by F  of  s  equal  to  magnitude  of  s  minus  c  1  times

magnitude of s minus c 2, times e power angle of s minus c 1 times e power j times angle

of s minus c 2. Now if I want to represent the left hand side also in terms of magnitude

and phase, I would have F of s to be equal to magnitude of F of s times e to the power j

angle of F of s. By comparing the left hand side and the right hand side I would get that

the magnitude of F of s, would be equal to magnitude of s minus c 1 times magnitude of

s minus c 2. And the angle of F of s to be equal to angle of s minus c 1 plus the angle of s

minus c 2, which according to our notation is theta 1 plus theta 2.

Now, what happens if we take the complex number s on the counter c in the counter

clockwise sense? What happen to the complex number s minus c 1. You can think of this

complex number as a kind of a dial, in a distorted clock. So, when we take this point s

around the counter c, this dial will go round once by and change its angle by an amount 2



pi. So, when we take the complex number once around the change in theta 1, which I call

delta theta 1 will be equal to 2 pi 2 pi radians. Likewise, when I take this point s around

this counter c, you can once again imagine the complex number s minus c 2 to be another

dial of this distorted clock. Then when this end point goes round this close counter, we

can imagine that this dial will also undergo 1 rotation or change its angle by an amount 2

pi.

Therefore, if both the zeros namely c 1 and c 2 are inside the contour, and I want to

compute F of s; let us say I want to graph real part of F of s verses the imaginary part of

F of s. If I want to plot it for every point s on the counter c, what I would see is that the

new curve would encircle the origin twice. Therefore, if both are inside you would have

2 encirclements of the origin in the F of s plane.
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Now, let us take the second case. The second case is 1 when 1 of them is inside the other

is outside and without lose of generality I have assumed that the 0 c 1 is inside this

counter and the 0 c 2 is outside the counter. So, s minus c 2 would be this complex

number s minus c 1 would be that complex number, we know that magnitude of F will be

equal to magnitude of s minus c 1 times magnitude of s minus c 2. Angle of F would be

equal to angle of s minus c 1 plus the angle of s minus c 2. If we call the angle of s minus

c 1 as theta 1 and angle of s minus c 2, as theta 2 then this would be equal to theta 1 plus

theta 2 and this is an important relationship that we are exploiting.



Now, suppose we want to take the point s around this counter c, we see that 1 of the dials

namely s minus c 1 is inside the counter and therefore, the net changed angle delta theta

1, when we go round the counter once will be equal to 2 pi radians. On the other hand if

you look at the change in angle of the complex number s minus c 2. Since c 2 is outside

the counter we can easily see that as we move the complex number s, the angle will

probably initially increased, then start to reduce become negative, and finally come back

to its original value. 

In other words the net change in angle will be equal to 0; what this therefore, reveals is

that the net change in angle of F which is the net change in angle of delta theta 1 plus

delta theta 2 will be only equal to 2 pi. If one of the zeros alone is inside the counter and

the other is outside the counter net change in angle of F the third case is when both the

roots c 1 and c 2 are outside the counter c.

So,  if  I  want  to  draw the complex  plane once  again,  and want  to  sketch  the  region

bounded by this counter c, I shall mark of the roots of F of s as c 1 and c 2 let us assume

that both of them are outside the counter. Now the complex number s minus c 1 is this

complex number the complex number s minus c 2 is that complex number for any point s

on this counter c. Now the angle of F will be equal to the theta 1 plus theta 2 where theta

1 is the angle made by complex number s minus c 1 with respect to the real axis and

theta 2 is angle made by s minus c 2 with respect to the real axis.

Now, if we take this complex number in the counterclockwise sense once, we see that

both these dials are outside this distorted clock. So, the net change in angle delta theta 1

and the  net  change in  angle  delta  theta  2 when we go round this  counter  when the

complex number s is taken round this counter once will both be equal to 0, which means

that the net change in the angle of F will be equal to 0. Therefore, what we see from all

these  arguments  is  this  very  nice  indicator  that  tells  us  whether  the  zeros  of  this

polynomial F of s are either inside or outside of this counter c.

So, what all that I need to do is once I am given this counter c, I compute F of s on the

counter. So, I compute real part of F and imaginary part of F and I plot it for all the

different values of s that I can assume on the counter c. Now if the encirclement of this

curve is once. So, it encircles only once something like this then we have only one of

these zeros inside the counter.



On the other hand if in the F of s plane there is no encirclement at all then we can be sure

that  neither  of  the  two zeros  are  inside  this  counter  c.  Therefore,  by looking at  the

number of encirclements of the origin in the F of s plane it is possible for values of s that

are on this counter c. It is possible to tell how many of the 0 or F of s are inside the

counter and how many are outside the counter, can be generalized this to other higher

degree polynomials of course, yes.

(Refer Slide Time: 11:33)

So, let us take the next case, where we have a polynomial F of s to be a general nth

degree polynomial namely s power n plus a 1 s power n minus 1 plus so on and so, forth

plus a n. Now we know that this polynomial has n roots, I shall call them s minus p 1 s

minus p 2 up to s minus p n, but the real challenge here is that we cannot explicitly

compute the locations of these roots for n greater than or equal to 5 analytically this is

not possible. But yet what we want to tell is whether the roots of whether any of the roots

of this polynomial are inside the counter c.

So, once again I shall mark out the counter c in the complex plane; suppose I have this

counter  c  close  counter  we  want  to  be  able  to  tell  how  many  of  the  roots  of  this

polynomial  are  inside  c  and  how  many  are  outside  c.  We note  that  F  is  equal  to

magnitude of F e power j angle of F and s minus P i is equal to magnitude of s minus P i

right e to the power j angle of s minus P i where i  goes from 1 to n. So, what this

indicates  to  me therefore,  is  that  the  magnitude  of  F is  equal  to  the  product  of  the



magnitudes of each of these factors. So, s minus p 1 times s minus p 2 so on and so, forth

times s minus P n. The angle of F is the sum of the angles angle of s minus p 1 plus angle

of s minus p 2 and so, on and so, forth plus angle of s minus p n.

Now, if we want to consider a general complex number s on the counter c, then if let us

say the k-th 0 p k is inside this counter then the complex number s minus p k is given by

this particular phrasal here, and when s goes round the counter once we see that s minus

p k the clocks dial will change its angle by 2 pi. On the other hand if the same complex

number p k were outside the counter, then the complex number s minus p k will change

the angle by 0. Therefore, the net change in angle of F would be equal to 2 pi times the

number of zeros that are inside the counter.

Therefore, this general analysis tells us by looking at the change in angle of the complex

number F, when we take the variable s around the counter c. This can also be reduced by

looking at the number of encirclements of the origin. The change in angle of F when we

go  round  the  counter  c,  once  can  also  be  reduced  by  looking  at  the  number  of

encirclements of the origin in the F of s plane. They are both equivalent and that will tell

us the number of zeros of this polynomial F of s that are inside that counter c.
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Now, in our particular application we are dealing with the function F of s is equal to D of

s plus N of s,  and we can repeat  the steps that we just  undertook for this  particular

polynomial and tell how many of its zeros are inside the counter c and how many are



outside the counter c. Of course, from a practical perspective a general counter c is of no

use, what we are interested to tell is whether our close loop system would be stable or

not. In other words we are interested to tell whether any of the zeros of this polynomial

are on the right half of the complex plane or on the left of the complex plane. And to do

that we have to distort this counter c to include the entire of the right half of a complex

plane, and judge how many of these zeros are on the right half of the complex plane.

So, it is a straight forward extension generalization of whatever we discussed whatever

we have been discussing so, far. However, what often happens in practice is that, we are

not given the function polynomial F of s is equal to D of s plus N of s, but instead we are

given from experiments the open loop transverse function G of s directly. This can be

evaluated experimentally or from mathematical modeling. So, it is easy to obtain directly

G of s and not D of s plus N of s.

In other words what is given to us is 1 plus N by D, but without factorizing G of s into its

numerator  polynomial  and  denominator  polynomial.  And  what  we  want  to  know is

whether the principles of micro stability theory which we have explored so far which

allows us to tell how many of the zeros of F of s are inside a certain counter c can be

apply also for this more general case where I have F of s to be the ratio of 2 polynomials.

Namely, it will be of the form D plus N by D how do we generalize whatever we have

discussed for this particular case?

So, to do this let us first consider again a simple example namely F of s is equal to 1 by s

minus a. So, here the numerator polynomial D plus N is just 1 denominator polynomial is

s minus a, this is just a simple example that I have considered. To do this let us first draw

the counter c I have drawn the counter c here, now the challenge is to determine whether

the point a, is inside or outside of this region.

Well 1 straightforward way is to just locate it in this scrap, because we know that the

pole of F of s is simply equal to s is equal to a, but assuming that we are not permitted to

do that can we indirectly infer whether the point a is inside or outside the counter c. To

develop the arguments let us first assume that it is inside the counter c ok.

So, the point s could be some point here, I should consider those points s that are on the

counter. So,  these are the complex numbers that  I  am interested in s  minus a is this

complex number. 1 by s minus a is the complex number whose magnitude is equal to 1



by the magnitude of s  minus a  in other  words it  is  the inverse of the length of this

particular complex number. The angle of 1 by s minus a is essentially equal to minus of

the  angle  of  s  minus  a.  This  is  because  if  I  want  to  write  1  by  s  minus  a  as  1  by

magnitude of s minus a times e to the power j angle of 1 by s minus a, I can easily show

a this equal to 1 by magnitude of s minus a times e to the power j minus j angle of s

minus a. Therefore, if I want to call this angle to be theta 1, then the angle of 1 by s

minus a is equal to minus theta 1.

Therefore when the complex number s goes round this counter and comes back to its

original position, then the net change in angle theta 1 which would happen when this dial

want to go round along with the complex number s would be 2 pi therefore,  the net

change in the angle of 1 by s minus a, will be equal to minus 2 pi. So, what this indicates

is that, if any of the poles of F of s are inside this counter then the net change in angle of

F of s will be equal to minus 2 pi times the number of poles of F of s inside the counter.

So, let us say I have F of s to be the ratio of 2 polynomials, p 1 of s and p 2 of s.

Now, let us say the polynomial p 1 is of degree n, and the polynomial p 2 is of degree n

and among this n zeroes of F of s, k of them are inside the counter c and among the m

zeroes of p 2 of s l of them are inside the counter c. Then because of these k zeroes that

are inside the counter c the change in the angle of F when the complex number s is this

taken around the counter once will be equal to 2 pi times k.

And because of the L poles that are inside the counter c the change in angle is going to

be equal to minus 2 pi times L. Therefore, by looking at the net change in angle of F,

which is equivalent to saying that by looking at the net number of encirclements of the

origin in the F of s plane. I will be able to tell the difference namely k minus l between

the number of zeros of F of s that are inside the counter c and the number of poles of F of

s that are inside the counter c.

Now,  this  is  all  that  is  required  for  us  to  extend  this  technique  and  apply  it  for

determining the stability of a close loop system.
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In the practical case we would have F of s to be equal to 1 plus G of s, which we know

can be written as D of s plus N of s divided by D of s. Now D of s is the denominator

polynomial of the open loop transverse function G of s. And now we have interest to

determine if the zeros of 1 plus G of s, which are the poles of the close loop system are

on the left half of the complex plane or not, which we can do by once again revisiting the

complex plane and stretching our counter c to include the entire of the right half of the

complex plane. I do that by shaping this counter to be this D shaped curve where the

straight  part  of  the  D  is  very  close  to  the  imaginary  axis,  but  just  a  little  bit

infinitesimally to the right of the imaginary axis and the semicircular part of this D is at a

distance R that is tended to infinity away from the centre of the origin of this complex

plane.

In this way I am able to consider all possible positions of the roots of 1 plus G of s on the

right half of the complex plane.


