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Hello. In the previous clip we looked that feedback control problem as one which allows

us  to  get  the  output  of  plant  x  of  t  to  track  a  reference  r  of  t  in  the  presence  of

uncertainties either in the plant model or in its environment in the form of disturbances

and I have sketched here the basic block diagram for the feedback problem. We have a

sensor that measures the output of the plant that you want to control which I have called

P here and then, compares it with the reference in the differences, manipulated by a high

gain function h and the output of the high gain function is fed back to the plant.

(Refer Slide Time: 00:49)

Now, what is quite interesting is to note that practically every single control engineer is

ultimately implementing this block diagram in one form or another. So, it is the high gain

of the controller that ensures that x of t would be equal to r of t. So, what are the typical

controllers? So, we might have come across the most common controller is the on off

control which we see in our refrigerators, in our air conditioner and many other such

thermal systems. So, what do we have there? We have the output u of the controller to be

related to the input e in terms of a step change.



So, if e is greater than 0, u is plus 1 if e is less than 0, u is minus 1 one can view this kind

of a control action as the limiting case of a linear controller with saturation. This is the

error and this is the output u and in the limit that the slope here k tends to infinity. We

would have on off control. So, one can therefore view on off control as another version

for the high gain controller, where the gain k is tended to infinity and there is saturation

that limits the output of the controller. 

So, this is therefore a simple example which one might not have realized has a version of

high gain control, but is actually the case. So, in the case of on off control, you would

have the control lot to be off the phone, u is equal to sign of e where sign is a sign

function where given by sign of x is equal to plus 1. When x is greater than 0, when x is

equal to 0 and minus 1 that x is less than 0, but this is not necessary the only way in

which we can implement high gain control. There are several other control loss that have

been developed over the last half a century. Also one other simple extension to what we

just discussed now namely on off control is what is known as sliding mode control.

In sliding mode control, we would have you to be the sign of not the error e, but rather

some dynamic function of error. For example, e dot plus e. Now, what happens in this

case is that when this kind of a control law is applied, then the system moves to the

surface e dot plus e equal to 0. So, this is a surface in the face space of error and its

derivative.

Now, this particular term that we have inside the sign function is a choice of the control

designer and we choose such a dynamic function of the error that it is stable and the roots

of this characteristic polynomial are sufficiently fast for the error to decay down quickly.

So, this kind of control strategy which is a general version of on off control is called

sliding mode control. So, we see that even in case of sliding mode control, we have this

high gain relating the input to the output let us responsible for getting the reference to be

track by the close loop system.

Now,  all  these,  the  two  techniques  that  I  talked  about  here  are  non-linear  control

techniques are several others. Some of them are linear, some of them non-linear, but it is

satisfying to underscore the fact that as far as getting x of t equal to r of t is concerned,

all of them attempt to achieve high gain for the controller. That is also true  in case of



linear control with an exception that the input output relationship for a linear control.

Linear control system would be a linear system itself.

So, if I have a controller see here. So, if I have a controller c, then if c represents the

linear system, I can obtain its transfer function C of s and the relationship between e and

u is therefore code would be given by u is equal to C of s times e of s and if my plant is

also  linear,  then  we would  be  dealing  with  linear  control  systems.  Now, one  would

naturally want to wonder if this motion of high gain is also valid in case of linear control

systems. It is so, but it is not easy to visualize it if one were to stick to the Laplace

domain over, it is obvious when one goes to the Fourier domain. So, if one were to look

at C of j omega, so one were to obtain the transfer function and represent in the Fourier

domain and represent the plant also in the Fourier domain as P of j  omega, then we

would have X of j omega to be equal to P of j omega times U of j omega and X of t to be

equal to integral minus infinity to infinity 1 by 2 pi X of j omega e to the power j omega t

d omega and if I were represent it in terms of u, I would have this to be 1 by 2 pi integral

minus infinity to infinity P of j omega u of j omega e to the power j omega t d omega.

Now, I can represent this term P of j omega times U of j omega in terms of the reference

r and the plant transfer function P as C times P by 1 plus C times P of j omega times r of j

omega. This would be equal to P of j omega times U of j omega. If I were to replace that

in the equation, I would get X of t to be equal to 1 by 2 pi integral minus infinity to

infinity C of j omega P of j omega by 1 plus C of j omega times P of j omega times r of j

omega e to the power j omega t d omega.

So, what we see therefore is that in the frequency range, where C of j omega times P of j

omega  is  much greater  than  1,  then  the  term here  would be  very  nearly  equal  to  1

because C of j omega C times p divided by 1 plus C times P will be approximately equal

to 1. So, if the frequency content of the reference is such that it is matching with the

range within which  C times  p is  much greater  than  1.  We would  have x of  t  to  be

approximately equal to 1 by 2 pi integral minus infinity to infinity 1 times r of j omega e

to the power j omega t d omega and that is equal to r of t. So, indeed therefore that a high

gain for the controller is necessary even in case of linear system analysis to get x of t to

be equal  to  r  of t,  however  there is  one central  concern for  all  the different  control

strategies that have been developing the past.



So, while the trick for getting x of t to be equal to r of t is very simple and is common

across all control techniques and for all plants that one might is to consider the really

important bottleneck that every one of these controllers have to address is the issue of the

stability of the close loop system. It can be easily shown, but when your controller gain

is very high, your close loop system can potentially become unstable which means that

some of the poles of the close loop transfer function would go on to the right half of the

complex plane. It is therefore imperative for us as control engineers to simultaneously

where  2  hertz.  One  is  the  hertz  that  you  would  were  when  you  are  trying  to  do

performance engineering and another words getting the output of our plan x of t to track

the reference r of t with the desired accuracy. 

The second had that you would where is one of stability engineering where in we try to

make sure that in our attempt to get x of t to be equal to r of t with the desired accuracy,

our close loop system has not become unstable in which case our entire effort are getting

the controller to have a high gain would be few tile. It is therefore very important for us

to have tools at our disposal which will tell us if our close loop systems are stable or

unstable. So, let us remind ourselves what transfer function we are talking of here.

(Refer Slide Time: 10:42)

When we are interested in the stability, the transfer function that we are looking at is the

one that relates the output X to the reference R and that is going to be given by C times c

of j omega times P of j omega divided by 1 plus C of j omega times P of j omega. It is



stability of this system that we are interested in and to pass the stability of the system, it

is  useful  to  represent  the  transfer  function  in  the  Laplace  domain  rather  than  in  the

frequency domain.

So, the frequency domain representation that we look that in the previous slide was very

useful to convince ourselves, but X of t would be equal to R of t when C times P is very

large. So, C times P therefore had a very nice physical meaning of a gain which needed

to  be large  in  order  for  our  control  performance objectives  to  be met,  but  as  far  as

stability objectives are concerned, it is useful to come back to the Laplace domain in

which case you would have the transfer function G of s to be equal to C of s times P of s

divided by 1 plus C of s times P of s. Now, one has to determine a stability of this

transfer function.

So, in order to do that we know that for the systems that would be working with, you

would  have  our  controller  and plant  to  both  be  represented  by  linear  time invariant

ordinary differential equations. Therefore, both C of s and p of s would be the ratio of

two polynomials.  So,  when I  take their  product,  they two would be the ratio  of two

polynomials. Let us say N of s and D of s in which case G of s would be equal to N of s

by T of s plus N of s. 

Now, we look at the roots of the denominator polynomial and we need to make sure that

the roots of the denominator polynomial which are the poles of G of s are stable or in

other words, they are on the left half of the complex plane. If they are on the left half of

the complex plane, the impulse response associated with this particular transfer function

would,  how would all  comprise  decaying exponentials  and therefore,  our  close  loop

system would be stable.

Now, the question is how do we go about determining whether the roots of D of s plus N

of s are stable or unstable. Well if the degree of the denominator polynomial is 1, it is

obvious. So, if let us say N of s for some constant k and D of s for some term of the kind

tau s plus 1, then we can by inspection tell that D of s plus N of s would be equal to tau s

plus 1 plus k and we can clearly tell the conditions under which this system would be

stable, namely that 1 plus k by tau should be greater than 0.

So, it is possible even by just visual inspection to determine whether a first order close

loop system would be stable or unstable. For a second order, close loop system it is not



that straight forward. One has to solve a quadratic equation because in that case D of s

would be of the form s square plus s plus b and N of s could be either a constant or could

be some linear function of s or at most a quadratic function of s. And therefore, 1 D of s

plus N of s would be a quadratic polynomial and one can still  determine its roots by

analytically solving this quadratic equation.

If our D of s is 3rd degree polynomial, then it is still possible to obtain the roots of 3rd

degree  polynomial.  There  are  several  techniques  available  to  factorize  3rd  degree

polynomials and therefore, be able to tell where the roots are and whether those roots are

on the left half of the complex plane or the right half of the complex plane. If you come

to the next level of complexity namely 4th degree polynomials,  then it is possible to

factorize 4rth degree polynomial into two quadratic polynomials in another word, 2nd

degree polynomials  and then,  subsequently  obtain the roots of these two 2nd degree

polynomials. We are not sure whether our close loop system would be either 4th degree

or 3rd degree polynomial.  Depending on the complexity of the system, it could be a

fairly  high  order  system  in  which  case  let  us  stay  let  us  say  we  have  5th  degree

polynomial for D of s.

Now, there are theorems in mathematics that say that it  is not possible to factorize a

general 5th degree polynomial and the same is applicable for higher degree polynomials

as well. Therefore, our initial attempt to determine the stability of the close loop system

by  identifying  the  locations  of  the  close  loop  poles  directly  by  factorizing  the

denominator  polynomial  is  not  going  to  take  it  very  far.  It  can  take  us  at  most  2

addressing the stability concerns up to a quad by quadratic or quadratic polynomials, 4th

degree polynomials, but not beyond that and there is no guarantee that our plant times.

The controller  would be would have a denominator  polynomial that would be of 4th

degree and not more than that. Also, we note that as engineers we are not just interested

in determining the stability or answering this. Yes or no? Question is whether it is stable

or  unstable,  but  we want  to  be  able  to  improve its  stability, we want  to  be  able  to

engineer the performance such that it has a desired amount of stability and the desired

speed of response. This approach of determining the 0s of the denominator polynomial

does  not  lend it  so very  well  to  our  engineering  intention  of  being able  to  tune  the

parameters of the close loop system to achieve a desired performance. So, therefore what

other approach to be have at our disposal, one other approach is what is known as a routh



array which you must have come across in your undergraduate education.  The routh

array looks at the denominator polynomial and uses a Routh table in order to determine

whether that polynomial is stable or has stable roots or not. As powerful as it is, Routh

array has this issue that it assumes that the coefficients of this denominator polynomial

are constants; however as I discussed control system designers often have to deal with

plants whose parameters might be uncertain and which might change with time and so

on.

Therefore, while Routh array is definitely useful in the contacts when we have fairly

good  knowledge  of  the  plants  parameters,  it  does  not  work  as  well  when  we  have

uncertainties associated with the plants parameters. Hence, what we would look at now is

an alternate technique of determining the stability of the close loop system and that is

based on the Nyquist stability theory. So, the subject of today's clip would be nyquist

stability theory. Now, if we come back to this problem of determining the stability of the

close loop system, we note that it is not really necessary for us to tell exactly where the

close loop poles are. In another word, it is not really necessary for us to tell the exact

roots of the denominator polynomial of the close loop system. All that is necessary or

expected of us is to check whether any of these poles are on the right half of the complex

plane or not. If this one decision can be made without even knowing whether, without

even knowing exactly where these poles are, then we are good. We would know whether

our close loop system would be stable or not.

So, Nyquist stability theory answers precisely this question, but it does more than just

that. It allows you to tell whether you have close loop poles in any part of the complex

plane or not.



(Refer Slide Time: 19:25)

So,  if  I  have  a  general  complex  plane,  what  Nyquist  stability  theory  allows  me  to

determine is whether you have any poles of a particular close loop transfer function in

any given region within the complex plane. So, if I were to demark at a close region

within the complex plane by its boundary C, then I can apply Nyquist stability theory to

tell me whether a function F of s has poles or 0s within that region and the power of this

technique is that I can do it without actually having to factorize F of s and determining

exactly the locations of its poles and 0s. So, in order to illustrate how Nyquist stability

theory works, let us take a numerical example. Let us start with a very simple function F

of s is equal to s minus a. Now, what is expected to start with is to verify whether 0 of

this turns of 0 of this polynomial F of s equal to s minus a is within this close contour c

or not. While you might say this is a very simple trivial problem because I know that 0 of

this polynomial is s is equal to a. I just locate this point s is equal to a in the complex

plane. Wherever it could be, could either be here or it could be there it might depend on

the exact numerical value of a and I just see whether this point is inside this contour C or

outside that contour. So, visually I can tell.

Well  that  is  so,  but  suppose  we want  to  impose  further  restriction  that  you are  not

allowed to locate within the complex plane, but yet you are asked to tell whether a is

within c or not, how would be do it ? So, this is where we would have to imply Nyquist.

The concepts of Nyquist stability theory, the reason that we want to do this is because in

real life our F of s which would be the denominator polynomial of our close loop system



cannot be factorized. So, we cannot tell exactly where its roots are, but yet by doing a

few simple tests based on Nyquist stability theory, we want to be able to tell how many

of  the  0s  of  F  of  s  are  within  the  contour  C  and  in  the  case  when this  contour  C

encompasses the entire of the right half of the complex plane, then we would have, we

would be in a position to tell how many of the 0s of F of s or on the right half of the

complex plane.

So, let us start off with this function F of s. For the moment let us assume, but the point a

is inside the contour. Now, let me consider a general complex number s on the contour.

So, the complex number s is represented by this particular phase or this particular phase

or here is the complex number a. Therefore, this complex number is essentially s minus

a. Now, if I want to take this complex number which is on the contour C and take it

round the contour  in  the counter  clockwise  direction  once,  what  will  happen to  this

complex number s minus a if I were to graph this complex number s minus a. So, in

other words the real part of s minus a versus the imaginary part of s minus a in the

present configuration, the complex number looks something like this.

Now, when I take the variable s around the contour C, what would happen is that this, the

end of this complex number would trace a curve that is similar in shape for this particular

case to the curve C and what is more significant is that it goes around once and therefore,

l circle the origin. Once the angle of this complex number s minus a changes by 2 pi if

the point a is inside that contour. On the other hand let us take the other scenario where

the point a is outside this contour in which case once again if we were to consider a point

s on the contour, you would have s minus a to be this complex number and when we take

the point s in the counter clockwise sense around the contour, once there what would

happened to this complex number s minus a. If I want to keep track of the change in

angle of this complex number, what I would notice is that the net change in angle of this

complex number s minus a would be 0.

So, in another words, it would execute a motion that would trace again a curve similar to

see in the plane that plots real part of s minus a versus the imaginary part of s minus a,

but in this case it will not encircle the origin. In another words, the net change in face of

the complex number s minus a will be equal to 0. In this case, therefore I have this one

nice test where in even if I cannot locate the point a in the graph paper where I have

drawn my curve c on the complex plane, I can still determine whether a is inside that



curve or outside that curve by looking at whether that curve encircles the origin in F of s

plane or does not encircle the origin in F of s plane.


