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results 
 

In the previous lecture, I described the Lagrangian formulation of quantum 

electrodynamics, how one can obtain the Feynman rules from that formulation by going 

through the procedure of deriving the equations of motions and treating each term 

individually. And then how divergences arise in the calculations of arbitrary Feynman 

diagrams. This diagrams typically involved loops over which momenta have to be 

integrated and the divergences appear, because the momentum integrals are unbounded. 

They go from minus infinity to plus infinity, and then I introduced a procedure called 

regularization which modifies this momentum integrals in order to give it mathematically 

well-defined meaning. I want to say a few more things about this procedure and then 

techniques to get rid of the divergences that appear, so that we can have finite answers 

for physically observable quantities. One thing I want to add to the regularization, 

description I mentioned last time is that. 
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The gauge symmetry has to be handled carefully, while regulating the momentum 

integrals. This is because the gauge symmetry or gauge transformations are space time 

dependant and so change the values of momenta. And so if one is going to modify the 

definition of the momentum integrals one has to make sure that that definition is not 

specific to some particular frame, rather it holds in all different frames which are related 

by gauge transformations. 

And that requires that one has to worry a little about the type of modification one does to 

the momentum integral. In particular just the knife cutoff of a momentum integral at a 

value of lambda which I mentioned last time is not gauge invariant. One has to introduce 

more sophisticated cutoffs. It can be done, but I am not going to go any detail. And this 

is indeed possible in the other regularization schemes which I mentioned poly villas, zeta 

function, dimensional regularization, etcetera as well.  
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Next I want to also state that the popular cutoff procedure is dimensional regularization 

where momentum integrals are evaluated in dimensions analytically continued from the 

physical value f 4 to 4 minus epsilon, and then the results expanded as Laurent series in 

epsilon. Now this looks like a mathematical trick, but it works and in particularly 

divergences appears as poles in epsilon. This procedure is popular, because it is 

algebraically the simplest; one can even program computers to do the calculations. But 

mathematically why it works is a sort of mystery, because we do not understand the 



physical underpinnings of such a procedure very well. And so it is used because its work, 

but it does not have a simple interpretation like a brivion zone kind of momentum cutoff 

which says that there is some underlying structure to the theory. Here it is more of a 

mathematical prescription and it does the job. 

So, it is algebraically simple, but physical meaning is not transparent. So, that much I 

would like to say in the case of ultraviolet divergences; I also want to say a few things 

about another kind of divergences which is called the infrared divergences. And that is a 

peculiarity of the theory which has massless particles, and the way it will appear is there 

will be integrals like d k over k are divergent contributions as the lower limit of the 

integral, which I am going to call here by lambda goes to 0. The part which I dealt with 

earlier was the upper limit of the integral where capital lambda goes to infinity, and this 

is a logarithmic divergence which actually diverges at both hands. It is the most common 

divergence occurring in case of QED; that is why I took this particular form. 

But one can have different powers of k also appearing which will have infrared 

divergences when the lower limit goes to 0, and the question is that this also has to be 

tackled. But we need another regularization procedure now working with the lower limit 

of the integral, and the easiest one to think about is that this is a contribution coming 

from the massless particle and it had a propagator which had a negative power of k in the 

denominator. And so if one just modifies this propagator by giving it a mass and sticking 

with our Minkowski signature, it should be minus lambda square. Then the divergence 

certainly disappears, because one can put k equal to 0 and the denominator will be finite. 

This is not gauge invariant, because the photon mass will break the gauge symmetry, but 

it is still used in situations where it works and we will see exactly how this things work 

in the next step. 
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I would also like to say that the dimensional regularization also works in case of infrared 

divergences, and again it is often used just like it is used in case of ultraviolet 

divergences. So, the description of various kinds of divergences and the diagrams from 

which it is produced is necessary to understand the meaning behind the whole theory. 

But so far what we have done is taken the mathematical expressions, identified the 

singularities and introduced the concept of regularization.  

What regularization does is isolates the divergent parts of a calculation. And one can 

explicitly do that by either taking lambda going to infinity and expanding in powers of 

lambda including logarithms, or similarly expanding in powers of the small lambda 

including logarithms when it goes to 0. And by doing that we keep the mathematical 

expressions well-defined and this is only the first part of the calculation in dealing with 

divergences. 



(Refer Slide Time: 16:39) 

 

Now to give physically meaningful results the divergences which have carefully been 

isolated by the regularization procedure, they must be cancelled or eliminated from 

observable quantities. And this is an elaborate and also somewhat sophisticated 

procedure named as renormalization, and there are various different possibilities which 

can occur in dealing with the divergences; renormalization actually refers to only one 

particular part of dealing with divergences. But I would list all the various possibilities 

which one encounters and then elaborate on renormalization. 

So, the first possibility is to after adding several contributions to a physical process the 

divergences cancel, and this can very well happen, because at a particular order in 

perturbation theory there may be several different fermion diagrams contributing. And 

we add up them together, and even the individual contributions might have divergences 

in the total sum things cancel out. If this happens then there is no problem at all with the 

calculations, and one can take the final answer as a physical result. It can also happen 

that the result can be broken up into distinct separately observable parts, and some parts 

may be infinite, but some part may be finite. And in particular the part of interest may be 

finite, and even in this case one can leave aside that some other part is infinite, but the 

part which of physical interest is okay and that can be considered as a valid result of the 

calculation. 
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And I would list an example that the vertex correction which I described 

diagrammatically earlier is logarithmically divergent. It has superficial degree of 

divergence equal to zero. But this has two parts; one when expands out the whole 

coupling up the photon with the external electromagnetic field, and they can be written 

as one is the coupling of the vector potential as in case of a current gamma mu A mu, 

and the other one is the contribution corresponding to sigma mu nu F mu nu which 

contributes to the anomalous magnetic movement of the electron, and the former 

diverges, the latter is finite. And so one can take the expression as far as the calculation 

of anomalous magnetic moment of electron is concerned gets a finite correction, and it is 

immediately is physical. One does not have to worry about that it came from a 

calculation which are some part which was formally divergent. 

Because the divergence is not relevant to the particular process which is being 

calculated, and this two different parts are separately physically observable. So, this was 

a calculation which was performed by Schwinger, and it gives the anomalous magnetic 

moment of the electron at one loop is g equal to or rather its written as g minus 2 is equal 

to alpha by pi; explicit calculation of a one loop diagram, and this was a calculation 

performed by Julian Schwinger. So, this is one possibility; one does not have to undergo 

any complicated part to remove the divergences, because in the part of interest the 

divergence is absent and then the result, obviously has physical meaning 
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Now let us go to the second possibility which is that the cutoffs which are formally 

introduced in the regularization procedure. We may have physical relevance in the 

problem, and by this I mean that the theory is valid only between certain cutoffs, and we 

want to get only the contribution from the theory between those particular cutoffs. And 

this means that the theory is valid only between certain energy scales. Such theories are 

often referred to as an effective theory in contrast to a fundamental one and we need only 

the corresponding contribution to the quantity which has to be observed. 

And in such scenarios, obviously, there are other features beyond the cutoff which we do 

not really know, and so there will be certain parameters which will appear in the result 

which will say that that momentum integrals have to be cutoff at certain values. And the 

answer then will depend on those values specifically, but those values are no longer 

mathematically defined objects. But they are actual physical scales, and again I will give 

an example then the result with physical values of this cutoff is meaningful in 

comparison with experiments. 

The example I want to give is again a landmark calculation in the early days of quantum 

electrodynamics which is known as Lamb shift arises from 1-loop QED corrections, and 

separates 2s and 2p energy levels of the hydrogen atom. Now this correction is a vacuum 

fluctuation of the electromagnetic field. We have dealt with vacuum fluctuations of the 

electron field which were typically labeled as Zitterbewegung where the trajectories are 



not well-defined but undergo very rapid oscillations. The same thing can happen in case 

of electromagnetic field as well and in the standard treatment of even the relativistic 

hydrogen atom the electric field was a background field; it was not allowed to fluctuate. 

But when we do that it gives a correction which shows up in QED calculations at one 

loop and this vacuum fluctuation of electromagnetic field. They influence the effective 

potential felt by the electron just as in the case of Zitterbewegung, and the contribution is 

largest where the field is largest. And that happens to be true, close to the nucleus of the 

atom and the states which are affected the most are therefore, the s wave states or l equal 

to 0. And so the difference of l equal to 0 and l not equal to 0 states gets connected to the 

size of this particular fluctuation, and that is what can be explicitly calculated in QED. 
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So, the states most affected are the ones that experience large coulomb field of nucleus 

which are the l equal to 0. So, now we want to calculate this particular effect; there are 

integrals. The divergent integral appearing in this particular case is a logarithmic 

singularity, but now we are dealing with a specific bound state problem, and we have 

reasons to cutoff these integrals at the two hands. So, for small value of omega or large 

wavelengths the size of the bound state acts as a cutoff, because the atom is not going to 

fill wavelengths which are much larger than its size, and for small wavelengths the 

meaning of small is compared to the Compton wavelength.  
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The non-relativistic natures of the problem enter the picture, and so it makes the scale of 

pair production which is mc square a cutoff. And so this integral is divergent, but the 

contribution which is important is only ranging from the size of the atom to the threshold 

for pair production, and that particular part of the integral is what contributes to the 

physically observable splitting of 2s to 2p energy levels. And this indeed so match with 

experimental observations and the theoretical justification arises from doing the integral 

within specifically justified limits. And the in-between contribution matches nicely with 

experimental data. This was again a famous calculation which was carried out by Hans 

Bethe. 

So, this is a second possibility. Again we have bypassed the dealing of divergences, 

because the integrals were truncated, and there was a reason for truncating the integrals 

to finite answers. Now there is a third possibility and which is actually helpful in dealing 

with infrared divergences, and that is the physical states appearing in the calculation can 

be redefined. And this happens to be necessary in case of infrared divergences, because 

as I will explain there are certain states which cannot be distinguished from one another. 

And then as in any quantum theory if you cannot identify the states separately we must 

sum over them. 

And when that summation is carried out again there is a cancellation between various 

contributions, and the final result will be divide of the divergences. And the way this 



occurs in case of infrared divergences is that a change electron can emit soft photons, 

and this is a process which is called soft Bremsstrahlung. And if the photon energy is 

really small that is the reason for calling it soft, then the detector may be not able to see 

them. And this is always true, because each detector will have specific threshold or 

sensitivity beyond which only it can detect a certain signal. So, now in calculation of the 

process we must sum over the contribution of not just the electron but the electron 

accompanied by these soft photons, or one can say that it is a cloud of photons 

surrounding an electron. 

The number of how many sets of photons is there in the cloud we do not really know, but 

we cannot observe them, and so we must add up all the pieces together. So, the total 

contribution it can be shown that the result is finite in particular the cutoff small lambda 

as I have been calling in case of infrared divergences cancelled out of the expressions. 

And this finite is dependent on detector threshold but independent of lambda, and if this 

happens then again we are through; the problem has been solved, and the final result has 

physical meaning and the calculation which demonstrated this whole procedure exactly 

in case of infrared divergences was carried out in case of QED. 
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So, by Yennie, Frautschi and Suura; so that is the third possibility, and now we come to 

the last possibilities. And this is actually the one which is strictly referred to as 



renormalizations and that is by all the tricks which I have mentioned before; we cannot 

get rid of the divergences from the results. 
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So, I should mention that this problem occurs only for the ultraviolet divergences; in case 

of infrared divergences all of them can be eliminated by redefining the meaning of 

physically observable states as I just mentioned. And so what does one do? Well, we 

have already gone through a separate case of an effective field theory where the lambda 

add a physical meaning and we could justifiably truncate the momentum integral and 

compare with experimental results. But in this particular case there is no effective 

description; we must invent something new, and this procedure can be invented only in 

certain classes of theory. 

And QED happens to be in that particular cast, and there is s solution for theories that are 

called renormalizable. And this solution or rather this characterization is possible 

because the so called renormalizable theory have a property. The divergent contributions 

have the same form; I can say algebraic form or structure has the terms already present in 

the Lagrangian. And so one applies a particular trick of modifying the coefficients of the 

terms in the Lagrangian and then gets two contributions. One from doing the usual 

Feynman diagram calculations, and another because the terms directly coming from the 

Lagrangian which has now a different coefficient. 



And these two contributions can be cancelled against each other, because they have the 

same algebraic structure. So, the coefficients of terms in the Lagrangian are considered 

unobservable, because they are just some mathematical parameters. And we must tune 

them so that we get some physical result at the end in that philosophy. So, the 

contribution from modification of these coefficients cancels the divergences arising from 

Feynman diagrams.  
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And that procedure is what is called renormalization and is not mathematically rigorous, 

because you are cancelling one infinity against another, and at the same time talking 

about perturbation theory where the term is supposed to be small in a certain sense, and 

infinity mathematically speaking can never be small. So, this is not mathematically 

rigorous, but it works in practice, and in particular it leaves behind one specific signature 

which is useful in tests with experiments. So, it leaves behind observable signature, and 

the signature is i.e. how the coefficients in the Lagrangian depend on the cutoff scale 

lambda which appeared in the divergence explicitly, and of course with a different value 

of lambda you will require a different value of the coefficient because the two have to 

mutually cancel. 

And so they have a specific relation between the two, and this relation is often expressed 

as what are known called renormalization group equations. Again this is a specific label 

for a certain behavior, but what it gives is a particular form which is say lambda d by d 



lambda appearing acting on some coefficient in the Lagrangian, say, a particular 

coupling is equal to a series expansion in one or many of the couplings which may be 

present in the theory. And this equation is quite powerful in the sense that it does not 

explicitly refer to or involve any divergences and gives or predicts observable effects. 

And this feature what it observes or can be verified experimentally is that the various 

couplings are predicted to have scale dependence, and it indeed is predicted and verified. 

In case of QED the well known number is that alpha is 1 over at 137 at the scale of 

electron mass, but its value changes to about 1 over 128 at scale of the mass of the z goes 

on that characterizes weak interactions. And this can be calculated in QED and matches 

with experimental observation and in particular this so called renormalization group or 

RG framework was put in a strong foundation by the original work of Gell-Mann and 

Low and later work by Wilson. 

And that basically concludes whatever I want to say regarding all the types of 

divergences, how they can be handled, and what are the physically observable effects 

that can be seen, and they have let to many important tests of QED over the years from 

its early formative years to moderned technology where the calculations have been 

carried out to not just the one loop which was the starting point but to much higher loops 

like fourth and fifth order loops in the expansion, and the accuracy matches the precision 

of experimental observation. So, it indeed is a theory on a very strong foundation 

because of experiments, and theory is both proceeding hand in hand. So, this much I 

should say about the theory of electrodynamics, and there are certain other features 

which you might read later in going through the books which I mentioned in the very 

first lecture as reference material. 


