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Lecture - 42 
Lagrangian formulation of QED, Divergences in Green’s functions, superficially 

divergent 1-loop diagrams and regularization 
 

In the lectures of this course, I have developed the subject of quantum electrodynamics 

roughly in the order in which it was historically formulated. This is instructive, because 

it underlines the various problems that occur in development of a theory either because 

of new experimental discoveries or because of theoretical inconsistencies and then what 

kinds of modifications are needed to overcome the hurdles. But nowadays the theory of 

quantum electro dynamics is described more as a finished product. So, we do not start at 

the historical level first which say the Maxwell’s equations, then the Dirac equation, then 

efforts to combine the two and calculate various processes, and then come to a 

comprehensive picture. But rather than that we write down the full theory in one shot and 

then derive various consequences depending on the application. 
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So, this formulation is often described in the Lagrangian framework, and here we start 

down with writing down a Lagrangian, derive the equations of motion from that 

Lagrangian and then investigate the consequences. This is the way it is now given in 



most text books, but as I said historically this was not the sequence of development of 

QED. In fact, many of the processes were calculated and matched with experiment even 

before the full formulation was completed. So, in this more conventional framework the 

theory now starts by defining the action which is integral of a Lagrangian density, and in 

quantum theory it is useful to know that S has units of angular momentum which is the 

same as units of the planks constant. 

And that plays an important role in trying to do calculations with S because we are trying 

to investigate the quantum effects which are characterized by appearance of planks 

constant in all the observed phenomena. So, the Lagrangian density for QED is psi bar i 

D slash minus m psi minus one-fourth F mu square, and this has all the symmetries 

which we have already discussed. So, it is Lorentz and gauge invariant which is seen in 

the fact that all the indices are contracted; f mu square is just shorthand for F mu nu 

contracted with F mu nu. And gauge invariants automatically is taken care of by 

appearance of covariant derivatives; on top of that it also has the discrete symmetries 

which we discussed parity charge conjugation and time reversal. 

So, everything which follows from this action will follow the rules of these symmetries, 

and in particular we can construct all the equations which we have used by taking this 

Lagrangian and following the Euler Lagrange variational procedure to derive the 

equations of motions. So, the equations of motions are obtained by variational Euler 

Lagrange procedure, and to apply that procedure we have to define which variables are 

the independent variables and which are the dependant variables. 

And in this particular language taking the variables psi psi bar and A mu as independent, 

it is important to note that psi and psi bar are treated as independent variables in this 

lagrangian framework which is different than the Hamiltonian procedure which we used 

earlier where psi bar was treated as psi dagger multiplied by gamma 0. Here they are 

independent variable which is indeed necessary to obtain the correct equations, because 

the term in the Lagrangian has only first derivative when fermion fields are involved. For 

the photon it is a secondary term each of mu nu has one derivative, and so there is a more 

standard prescription to get the equations for that. 
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So, let me just write down the equations which are easily seen. So, the Dirac equation is 

easily obtained by just varying psi bar; psi bar does not have any derivatives acting on it, 

and so the Dirac equation appears rather immediately which is i D slash minus m, psi 

equal to zero. So, this is very simple. I should mention that the covariant derivatives have 

a very specific structure in the notations; I have used where D mu is ordinary derivative 

plus i e A mu in the units in which h cross n c r set equal to one. So, this is the Dirac 

equation. Now, one can vary psi; it is more convenient in this particular case to first do 

integration by parts. So, this derivative in D slash now acts on the left on psi bar with a 

change of sign, and then the equation does not have any derivatives of psi remaining in 

it. 

So, that gives this conjugate of Dirac equation which can be written as psi bar minus i 

del slash with the derivative acting in the opposite side minus e A slash minus m equal to 

0. And so this is again the standard form one can one obtains this equation from the 

Dirac equation by the usual procedure of taking Hermitian conjugates and changing the 

orders of derivatives from one side to another depending on where psi and psi bar 

appear. So, this is also standard result, and the third equation appears where I vary A mu. 

Now A mu appears in two parts; inside of mu nu it is acted on by derivatives and inside 

psi bar d slash psi it does not have any derivative, but it just couples to psi bar and psi. 



And now by differentiating by D mu A nu over f mu nu you get the result that this gives 

the Maxwell’s equations or rather only the inhomogeneous parts of Maxwell’s equation. 

The homogenous part is already solved exactly by the definition of f mu nu, and this 

equation is then D mu F mu nu is equal to e times psi bar m nu psi, and this is the 

quantity which we had called the current. So, all this equations are implicit in this total 

Lagrangian, and the normalizations have been chosen so that we get the same 

normalization which we had used earlier in the Hamiltonian description where various 

things were put together. And so this is a rather complete description; you can get all the 

ingradients from it. The classical equations or this Euler Lagrange equations if you solve 

they give the classical behavior, and then the fluctuations around this classical solutions 

give the quantum effects. 
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So, solutions of these equations give the classical behavior and fluctuations around them 

provide the quantum corrections. I also want to state that in doing these formal 

manipulations with action or the Lagrangian density, so they often use integration by 

parts in dealing with the theory. And then they ignore the boundary terms arising from 

these integration by parts; typically they are sitting at infinity and you assume that 

nothing peculiar is going on at infinity. But there are certain theories where there are so 

called topological effects more careful treatment of the boundary terms becomes 

necessary. Fortunately in case of QED this trouble is not present, and we can just ignore 

the boundary terms in dealing with this Lagrangian framework. 



Furthermore given the Lagrangian one can choose a perturbative vacuum which means 

no particles, and then expand around it to obtain desired correlation functions what we 

also called the Green’s. And to do that all one has to do is a simple Taylor series 

expansion of various terms which appear as interactions in the Lagrangian and then build 

on it given a certain number of external states which define the Green’s function, and 

order by order one can proceed in this particular calculation. 
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The Feynman rules which we used for this procedure they follow from the Lagrangian in 

a straightforward manner; that is because we constructed the Feynman rules by looking 

at the equations of various interactions and the equations are already present in the 

Lagrangian. So, it is no surprise that the Feynman rules will automatically come from the 

Lagrangian. So, all this machinery now can be quickly summarized given the Lagrangian 

we have the Feynman rules and then we can calculate any particular correlation function 

in perturbation theory which we have illustrated by working out several specific 

examples. 

Now I would like to mention a new feature which is much more clearly apparent in this 

framework, and it is also dealt with much more easily in this particular framework. And 

that is this in calculation of this Feynman diagrams divergences may appear in the 

language which we have used. They appear inside momentum integrals, and we need to 



develop a procedure to deal with that. So, now let me disgrace onto a discussion of how 

this divergences appear in calculations of Feynman diagrams. 
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These divergences appear in two particular limits; once when the momenta go to infinity 

which is often denoted as ultraviolet divergences or at momentum going to 0 which are 

referred to as infrared divergences. And in particular these infrared divergences appear 

only in theories with massless particles, because we will soon see that the origin of the 

divergences is the various factors of propagators. And only when mass is 0 the k square 

plus m square which appearing in the denominator in all these propagator factors can 

become singular QED; we do have to worry about this infrared divergences, because the 

photon is a massless particle. But let me first deal with this ultra violet part which is a 

consequence of having momentum integrals going from minus infinity to infinity of 

some dimensionality divided by some power of dimensions. 

And typically the angular integrals are all thrown out, or rather they are all finite, and we 

already have to worry about the radial integral, and in that particular case I can drop this 

D from the exponent and leave only this behavior as k going to infinity. So, whenever 

the value of D; so D is called superficial degree of divergence. And to be dimensionally 

correct I need to change these factors to k minus D plus 1, and in particular D is equal to 

0 is logarithmic divergence, and D greater than 0 is power law divergence. So, to 

understand this divergence we need to estimate what is the value of D for a given 



Feynman diagram, and that follows from using the various rules of counting powers of 

momenta in each of the factors that appear inside Feynman diagrams. 

In case of QED in QED with 3 plus 1 dimensions the coupling is dimensionless and D 

depends only on the propagator factors. So, we just have to now work out what those 

various propagator factors are in a particular diagram. So, in a given diagram there are 

vertices which I will denote as v, then there are internal propagator lines I, external state 

lines E and closed loops. And we will only talk about irreducible ones and also 

independent of each other and denote them by L. So, now there are various relations 

between D and this numbers of V, I, E and L. 
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So, the diagrams; so total diagram behaves as limit k going to infinity k raise to D from 

the structure which we have assumed, and we want to avoid the positive or 0 powers of 

D. So, we just have to count the overall powers; the masses are negligible in this 

particular limit, because the momentum is going to infinity, and we just have to do a 

simple rule of putting the various factors together. So, now we can do this counting by 

looking at all the factors of propagators which involve momenta, and we will do it a step 

by step. 
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So, the first step is to count the independent involved in the particular process, and these 

are constrained by momentum conservations at every vertex, and we know in particular 

that in case of tree level diagrams there are no free momenta left in tree diagrams once 

all these conservation rules are applied. So, counting is very simple, every internal line 

brings in one. So, independent momentum show undetermined number of momenta; it 

also happens to be the same as number of loops, and these are the momenta which by the 

rules of quantum theory they are not fixed, and they are not observed. So, we must sum 

over all the possibilities, and by summing over all the possibilities are where these 

integrals over momenta will arise, and they can leave to divergences according to the 

value of D. And we just look at the momenta which are introduced by drawing the 

general diagram. 

So, every internal line gets a new momentum label. Then every vertex introduces one 

delta function which eliminates one degree of freedom for a momentum. So, we have I 

minus V, but all the vertices cannot be counted as constraints, because one of the 

constraints refers to the overall total momentum conservation which depends only on the 

external links and not on the internal momenta. So, actually only V minus 1 delta 

functions can be eliminated in a diagram, and so the net number of undetermined 

momenta is I minus V plus 1. And sometimes it is useful to separate the contributions of 

electrons and photons from this diagram, and this is a number of loops equal to L. So, 

this is one relation between the number of loops and the number of lines and vertices.  



Now we can also count the powers of momenta in propagators, and that gives the degree 

of divergence D. Now it has various sources. One of the sources is this momentum 

integration which is left over and which must be summed ups, and so the first term is just 

4 times the number of loops. Every loop is in 4 dimensional momentums integral and 

one has to take care of the numbers, but then there are negative powers in the 

denominator coming from the propagator. And those are two powers for every photon 

the propagator is 1 over k square, and one power for the electron, because the propagator 

is one over k slash neglecting the mass. So, this is the expression for the degree of 

divergence, but clearly there are too many unknowns here which do not have enough 

information to fix the value of D from these two equations alone. 

So, we need more equations, and to do that we look at the structure of interaction vertex, 

and in this particular theory it has a very specific form. It involves two fermion lines and 

a photon line, and so there is a relation following from this between the number of 

vertices and the number of propagator lines. So, first let us look at the number of photon 

lines. So, each vertex will have one photon line, but this photon line could come either 

from an internal line or from the external line. Every internal line gets counted twice 

because a photon goes from one vertex to another. So, we have V is equal to 2 I gamma, 

but if it is an external line it gets counted only once, and so there is a relation between 

the number of vertices and the number of internal photon lines and external photon lines. 

So, that is for the photons; we can do the same job for the electrons, but now at every 

vertex there are two electron lines. So, if you count the number of electron lines there 

will be 2 V from counting the vertices, but on the other hand they can be counted also in 

terms of internal propagators. The internal line will be counted twice and the external 

one will again get counted once. So, we have these two relations, and I want to stress that 

many of these relations are just topological, and it is only in the last two equations we are 

using the property of the particular interaction vertex; the other ones can be used in a 

more general theory also. So, now we have enough unknowns and enough equations so 

that we can eliminate whatever we want. 
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And so we will now look at what is the value of D, then eliminating V, I e and I gamma 

want to get rid of all these objects. So, then we get D is equal to 4 times the number of 

loops, and well, we just have to do a little bit of algebra. So, it is for which I will kill 

explicitly outside and from this one which is there in the diagrams, and then there is 

minus 4v, and that has to be rewritten in terms of internal and external lines. So, let me 

just 4 minus 4 v, and then there is a little bit of cancellations between the values of this 

photon and an electron internal lines. 

So, it is two times I gamma plus 3 times I e. So, we got rid of the number of loops. Now 

we need to simplify this thing further, and we can substitute for v as well, but we will do 

it in a specific manner which will cancel all this internal line factors. So, this 4 v will be 

written as v plus 3v. The first we will be substituted from the photon equation and that 

will cancel this 2 I gamma exactly, and the 3 v will be substituted by three half times the 

electron equations which cancels this 3 I exactly as well, and the result then looks much 

simple. So, it is 4 minus E gamma minus 3 half E of the electron. 

So, this is now the expression which is independent of internal lines and vertices. It is a 

peculiar result for this particular theory, but it is extremely useful. So, that the D depends 

only on the type of Green’s functions without worrying about internal details about how 

many orders you want to calculate the Green’s function, and when you are calculating 

the higher order when new things will go wrong or not, the order of the calculation does 



not appear here at all. It depends on the Green’s function has how many external line, 

and that is extremely helpful in doing calculations with this theory and looking at the 

various kind of divergences that arise and how to find solutions for them. 
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So, before describing the solution let me just describe the specific type of divergences 

which follow this particular rule, and we will only look at diagrams involving only one 

loop where these things appear in tree level diagrams. There are no such divergences, 

and this can be quickly listed; if there is one external photon and no electron there is a 

diagram which is called the tadpole diagram for the reason of its shape. So, this is 

tadpole, then one can have E gamma is equal to 2 E e equal to 0; it gives a diagram 

which looks like a bubble connected by two ends, and this is a correction to the photon 

propagator. And this is called the vacuum polarization diagram, then there are three 

photons and no electron labels, and this is a diagram which is drawn in the shape of a 

triangle with photon attached to each vertex. 

Then there is the four photon lines with no electron line, and so that will be a diagram 

which looks like this, and for obvious reason this corresponds to a process which is 

called light-by-light scattering, two incoming photons and two outgoing photons. So, 

these are all the diagrams where there are a number of photon lines but no external 

electron lines. And then now one can write down the diagrams which have external 



electron lines, and the simplest one is two electron lines and one photon loop interacting 

with it. 

And this diagram corrects the fermion propagator and so it corresponds to corrections of 

either the wave function or the mass which are the two terms involved in the fermion 

propagator, and the diagram with four fermion external lines has D less than zero. So, we 

do not have to worry about it. There is just one more possibility left with one photon and 

two electron lines, and that corresponds to the correction of an electron photon vertex, 

and this essentially exhausts all the list of diagrams at one loop which have D greater 

than or equal to 0; everything else will be convergent and it turns out that. 
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Once we take care of these divergences at one loop no further divergences at higher 

orders or loops need to be tackled, and this is a particular feature of quantum 

electrodynamics connected with the fact that the degree of divergence depends only on 

the number of external lines, and one can give a detailed proof of this result based on 

extensions of this topological counting rules. I would not do that, but it is a useful thing 

to keep in mind that one loop we have to take care of a certain number of things and after 

that there is nothing at all, and of course, at 0 loop which is the tree level there are no 

divergences by definition. 

So, this is a list of all the possibilities of various divergences, and we have to now deal 

with how to control this particular divergences. And one thing I should add that 



symmetries of the theory can reduce the value of D from the superficial value above, and 

this is a fact because we have not used any details of symmetries in calculating this 

diagrams, but they are the properties which involve the specific structures of the vertices 

and propagators. And they can follow the rules so that certain contributions vanish, and 

then we do not need to calculate those corrections at all. 

So, this is as much as I would like to say about the appearance of the short distance 

divergences. Now come the question of how we are going to deal with them? So, the 

procedure to deal with this divergences require some or the other modification of the 

momentum integrals, and this is where various algebraic techniques of how you change 

this integrals do enter this particular picture, and this modification is called 

regularization. The easiest among this list to understand is just something which is called 

momentum space cutoff which means that change the upper limit of integrals from 

infinity to lambda. Lambda is some number large enough so that it does not affect the 

calculations which we are doing with a certain value of external momentum on the legs, 

but otherwise it is not infinity, because if it is really going to infinity things will diverge. 

And the common way to understand this thing is an introduction of atomic structure in a 

mechanics where momenta gets restricted to the brillouin zone and do not go all the way 

till infinity. So, one can phrase this cutoff in various ways. So, in position space, spacing 

which is of some size a gives the momentum space lambda which is of the order of 1 

over a, and this is a technique which is easy to understand because we have real atomic 

systems in which such behavior applies when we are trying to do useful mechanics 

calculations. We have to cut off the momentum integrals, and it works, and we have 

quantitatively correct descriptions of how the atomic structure plays a role in cutting of 

these integrals. 

And so it is a convenient method to understand the divergences and its regularization, but 

there are other procedures as well, and they go by various names. One method is called 

Pauli-Villars, another method is called zeta function regularization, and yet another one 

is called dimensional regularization, and one can probably think of some other 

possibilities as well. But the use of this various techniques is limited by ease of algebraic 

calculations with them and in the present day machinery it is actually the dimensional 

regularization form which is the most common in controlling the divergences that appear 

in quantum field theory. 


