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In the previous lecture, I described the calculation for production of a bound state by 

combining relativistic perturbation theory with non-relativistic bounds state wave 

function, and the total transition matrix element in that case just turned out to be the 

transition matrix element for production of f f bar pair multiplied by the wave function at 

the origin of the bound state. And now to complete these cross sections calculations we 

have to perform the usual tricks and evaluate this T f i instead of just the relativistic 

production cross section, but that is just a trivial multiplication factor by mod of psi at r 

equal to 0. But the remaining part is the same as what we had encountered before. So, 

now, we calculate it explicitly. 
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So, assuming square root of s which is also equal to the mass of the bound state which is 

roughly equal to two term mass of the fermion, and we will take this to be much heavier 

then the electron, and so we can drop the factors of electron mass square compared to the 

electron momentum square in particular E 1 and magnitude of p 1 both of them are equal 

to half of m. 



So, then the usual unpolarized cross section requires average over the initial spins and 

sum over the final spin. We have done this calculation before; I will just write down the 

answer and which is E raise to 4 divided by 2 times m e square times M square and then 

the whole thing. This is the matrix element for the f f bar production multiplied by psi 0 

and its absolute value square which appears, and this is a result for unpolarized case. And 

then we can plug it back inside to get sigma unpolarized for e plus e minus going to B; 

various factors cancels out, m E square cancels E 1 and p 1 are both equal to m by 2, and 

the factor of E raise to 4 can be converted to alpha square by multiplying by 4 pi square. 

So, then the result is counting all the factors of two’s, it is 32 pi cube alpha square 

divided by m raise to 4 mod psi 0 square remains, and we have the delta function also 

which remains. So, this is explicit result for e plus e minus going to f f bar bound states. 

In practice this bound state is not going to be stable; it can decay back into the e plus e 

minus by reversing the time evolution, or it can decay into some other particles if that is 

possible as well. So, the actual bound state decays, and so the delta function actually 

becomes smeared or broadened into resonance peak. 

And to estimate how much is the broadening we have to actually calculate the decay 

probability, but even when the peak broadens the area under the peak is persevered, 

however. And so they calculate that quantity which we calculated represents the area 

under this particular resonance peak; we just have to find out the shape of the curve 

explicitly if you want to compare these numbers to experiments. So, now let us go on to 

the calculation of the width of this peak are equivalently the decay right of this bound 

state. 
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We can easily calculate the decay process which is thus the inverse of the production 

process, because for that we have the complete machinery at hand. If there are other 

roots of decay we will not be able to calculate with formalism that has been set up 

already, and in this simple problem I will ignore that root or equivalently the bound state 

decay’s only into e plus e minus and not into anything else; that is the assumption. So, 

assuming only decay is to e plus e minus; in that case the transition matrix element 

where B going to e plus e minus is the complex conjugate of that where e plus e minus 

going to B. And this is nothing but the property of time reversal invariance which our 

theory obeys, and since we are interested in only mod t square the complex conjugate 

does not really matter. 

So, we will just use mod t square calculated earlier, and now do the calculation for B 

going to e plus e minus by the same token; first calculate mod t square, then plug it back 

into the formula for the decay rates by putting in all the delta function. And the phase 

space area and integrating over all the things which are not observed, and that gives the 

formula for the decay rate which we will calculate in the rest frame of B. So, the initial 

flux we do not have to worry about the functions; wave functions are non-relativistic, 

everything is normalized to one. And we have the differential result in terms of all the 

machinery there is overall energy momentum conservation. Then there is the 

normalization for the electron and positron spinors. 



Then there is this matrix element square, and then the integrals over the particles in the 

final state. Again the box normalization factors of v cancel out if you put them in 

explicitly, and we have done most of this stuff before. We will just repeat the same thing. 

There is a m e square by 2 pi square E 1 E 2 in terms of all the constant factors; one of 

the delta function say d cube p 2 can be just integrated out. So, there is an energy delta 

function which remains that gives delta of M minus E 1 minus E 2. The other d q p can 

be written in terms of differential angles as well as p square d p, but p square d p we can 

rewrite in terms of, say, p 1 E 1 d E 1, because E 1 d E 1 is the same as p 1 d p 1 by the 

dispersion relation, and then there is the angular d omega, and that takes care of all the 

phase space factors, and finally we have the usual T f i square from the matrix element. 

And now noting that E 1 and E 2 are equal; they are just each of them m by 2, we can do 

the delta function integral rather trivially. So, also there is some cancelation of other 

parts of e. So, there is only m e square by 4 pi square which remains; then there is a 

factor of p 1 divided by 2 times E 2 that comes because E 1 and E 2 are equal. So, the 

delta function has actually m minus 2 E, and integrating it produces extra one half, and 

then there is T f i square and d omega. So, this is the simplification after doing all the 

phase space integration, and now to calculate the total rate; well, we will again do the 

unpolarized case where we will sum over all the possibilities of the e plus e minus 

directions of spins. 
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So, for the unpolarized case now we have to sum over e plus e minus spin directions and 

average over spin directions of B. And here there is a little difference compared to earlier 

cases, because B is s equal to 1 vector particle with three spin states corresponding to 

helicity values of plus 1, 0 and minus 1. So, the result then is for the total decay width. 

Well, we again calculated in the limit of square root of s much larger than m e, and in 

this particular case for example, p 1 is the same as E 1 which is same as E 2. So, these 

extra factors cancel out, and we just have to put in the remaining terms. 

So, what survives here is first m e square divided by 8 pi square. Then there is a T f i 

square which we calculated earlier. It is e raise to 4 psi 0 whole square divided by m e 

square m square, and there was a half, but that half corresponding to an overall averaging 

factor of one-quarter. So, you have to remove that factor, because that is not present here. 

So, removing that one quarter and the half factor produces two in the numerator, but now 

we have to divide by this three spin states of the b. So, this is the contribution of the 

taking care of all the spin indices, and then there is 4 pi from the angular integral, 

because nothing in this expression depends on the angle. 

It is isotropic distribution, and now everything can be plugged in to write it in terms of 

the fine structure constant 16 pi alpha square by 3 and then mod psi 0 square divided by 

m square. So, this is the result for the total decay width. It is explicitly calculable again 

provided we know that the wave function at the origin. And this wave function at the 

origin generically is not known, but even if we do not know that we can still relate the 

production cross section as well as the decay width because both of them have this mod 

0 square, and the other one part will be cancel out. 
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So, if we do that then the relation between sigma is independent of mod psi 0 square. 

Explicitly we have 2 pi square by M square three times the decay width and the delta 

function. So, this is a relation which can be actually tested without worrying about mod 

psi zero square, because sigma will give the area under the peak, and this gamma will tell 

you how long the particle will leave and both of them are experimentally measureable 

quantities. So, in case for states which are called quarkonia which means these are the 

spin equal to one bounds state of a quark and an antiquark; we have to include the extra 

factors which we have not counted here. And those factors are factor of three for the 

number of colors of the quark and factor of q square for the electrical charge of the quark 

which does not have to be the same as the charge of the electron. 

And also roughly we know the magnitude of mod psi 0 square for this particular states, 

because the bounds states are typically of the size of Fermi, and if you consider just like 

a box normalization then mod size 0 square is about inverse of a fermi cube in this case. 

So, one has reasonable idea about what to except, and that is how many of this process is 

for production of new quarks where historically searched for. I can also mention one 

caveat for these decays which is a consequence of helicity conservation equivalently the 

fact that the mass of electron is totally negligible at the energy scales which we are 

looking at the decay helicities of B are restricted to the choices that helicity plus 1 will 

always decay into R L for E plus L E minus helicities. And that is just conservation rule 



for the component of angular momentum along the direction along which e plus and e 

minus travel. 

They travel in opposite direction, but we are in the center of mass frame. So, it just 

defines one possible axis. Similarly if it is minus 1 then the decay will be of the type L R, 

and the unusual part is that if the helicity is the third possibilities 0 that states does not 

decay. Where in other words the decay rate if you calculate in full detail will be 

suppressed by powers of m E m divided by where m where is the mass of the electron, m 

E is the energy of the electron; currently it will be the ratio of the electron mass to the 

bound states mass, and that is generally small. So, this is a conservation law which plays 

its role that out of the three helicities only two of them really contribute to the decay. 

And finally, we can put together various factors to see the experimental signature in 

terms of a resonance peak. 

(Refer Slide Time: 29:59) 

 

So, a good parameterization of the resonance peak is replacement of the delta function of 

square root of S minus M by the so called Lorentzian Breit-Wigner form, whose 

algebraic expression is gamma divided by 2 pi square root of S minus M thing whole 

square plus gamma square by 4. And this particular form is chosen so that the areas 

under this broaden form is the same as the area under the delta function it normalizes to 

one. The center of the peak is at the location of the delta function, but the nonzero value 

of gamma gives it a width, and the algebraic expression is that of Lorentzian. 



And with this structure one can interpret that the singularity which was at square root of 

S equal to M producing a delta function, now it can be labeled as the singularity of this 

new form is a pole in the complex plane located at root s is characterization of the 

energy. So, we can write it E is equal to M minus i gamma by 2, a particular sign is 

picked for the imaginary part so that the time evolution given by E raise to minus I E t 

will get a exponentially decaying factor coming from gamma which is what the decay 

process should give. So, this is a replacement, and if we now do that one can see the 

change in the shape of the peak rather easily, and one can only describe it in terms of two 

parameters; one of them is the height and another is the width, width is dictated by 

gamma already which we have calculated. 
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And the peak height is the value at square root of S is equal to M which is nothing but 2 

divided by pi gamma in this particular formula. And if you now go back and plug in the 

relative constants which where there in the relation between sigma and gamma basically 

this formula is smeared the delta function by this Lorentzian it becomes 2 by pi gamma 

the product of that with; this remaining part just cancels out the value of gamma 

completely, and we just have a peak value of sigma given in terms of pure constants and 

no dependency on the various transitions matrix elements. 

So, peak in sigma e plus e minus going to B has height 12 pi divided by m square, and 

this is very easily identifiable. It just depends on the mass of the bound state, and 



experimentally it is also very easy to check. What one sees in actual experiments is the 

behavior of the cross section as a function of energy. Actual experimental data would 

show several peaks corresponding to many different bound states being produced one 

after the other. They are all radial excitations of the lowest state, and ultimately the cross 

section would show the asymptotic behavior which in this particular case is described as 

one over s as we have calculated above. 

So, one has a schematic structure if one plots the cross section or rather s multiplied by 

the cross section versus s; in that case the asymptotic behavior is a constant. So, some 

value which dependence on alpha the fine structure constant, and the charge is of the 

particles, and the numbers of colors and all those kind of degrees of freedom. And there 

is a threshold which is 4 times m f square; there might be some sharp delta function 

before reaching the threshold which can show up in the data. They might be more than 

one, but the higher states will have a lower value of the wave function at the origins of 

the peak will be reduced. In height it will become border as well, and then one has a 

gradual square root of raise to the final cross section, but it can happen that there might 

be another peak of some bound state which is above the threshold. 

It will again decay, but it can exist for a short time and show up as a peak, and then 

asymptotically it goes to some constant value as we see. So, this is a kind of generic 

feature which if you open a description of e plus e minus cross section data you will find 

pictures of this type; often well known cases are the production of the charmonium states 

and also the bottomonium or upsilon states. So, that is as much as I want say about the e 

plus e minus going to fermion, antifermion pair and vice versa. There are many things 

which can be deduced and verified easily in this particular situation in real experiments. 
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Now I want to describe somewhat unrelated topic but which can be easily extracted from 

the calculation machinery which you have setup, and that is how to obtain non-

relativistic potentials for a given pair of particles. And that is something which can be 

extracted from the relativistic formalism which we have setup by looking at situations 

where all the velocities are small and also no pair creation or annihilation occurs. So, you 

have to take a particular limit of our calculation to get such results. There is one more 

thing which is necessarily included in this non-relativistic framework that the particles 

are separated over distances much larger than their Compton wavelengths, and because 

of that reason their wave functions do not have much overlap with each other. 

And so they become distinguishable by their position coordinates, and we really do not 

have to worry about exchange interactions; for example, we can talk about the potential 

between two electrons. One at position x 1, and the other at position x 2, and we do not 

have to worry about what happens when these two electrons interchange positions, 

because that never occurs in a non-relativistic situation. So, we will have to 

correspondingly drop all the contributions which are related by interchange and only 

keep the ones which keep the locations of the particles fixed. 

So, the interactions are the potentials or consequences not about these particles which are 

remaining stationery; they are moving at a very low speed. But they will be produced by 

exchange of virtual particles which get emitted and absorbed and not included in either 



the initial states or the final state. So, let us just work out this elementary stuff for the 

case of interaction between two electrons.  
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And let us have two charges E 1 and E 2; what this result gives us are rather simple 

Feynman diagram. There is p 1 going to p 3 and p 2 going to p 4 and in between there is 

an exchange of a photon which will carry some momentum q which is fixed by the 

momentum conservation at the vertices. And we will not include the exchange diagram 

where p 3 and p 4 are interchanged, because the locations of the two charged particles 

are fixed, and they do not allow the exchange process where this two legs p 3 and p 4 are 

crossed, okay. So, then we have the well known expression which I have been writing 

many times is minus I e for the first particle, then the wave functions u bar 3 gamma mu 

u 1. 

Then there is a photon propagator minus i q square plus i epsilon and contracted in the 

Lorentz index with the others vertex are the other side which is minus i e 2 u 4 bar 

gamma nu u 2, and this is the full relativistic result. Now we have to simplify this by 

taking the non-relativistic limit; in the non-relativistic limit the lower components of u 

are order p over m and so negligible compared to the upper components which are order 

one. And now the gamma matrices have the structure that gamma 0 is diagonal and 

gamma i are off diagonal. 



So, the dominant contribution comes from gamma 0 which connects the two upper 

components; both of them are order one and the sub dominant contribution couples the 

upper component with the lower component using gamma i, and we will drop that part. 

So, in this whole expression only mu equal to 0 term. So, we do not have to sum over 

these indices, okay. I should correct these indexes, because it is contracted and should 

not put mu, but it is the same index as on the other side. So, we will need only u bar 

gamma 0 u, and we already know what that value is. By our normalization convention 

this object was normalized to E over m, and that becomes one in the non-relativistic 

limit. It is just that non-relativistic are normalized to unity, and we leaded this Lorentz 

contraction factor in going to relativistic case which we are just dropping again. 

So, that simplifies this whole algebra, and then we get a rather simple expression that i T 

of f i everything cancels. We have to put some minus i as the overall factor, but all that 

remains is e 1 e 2 by q square. And now this, sorry this should be plus i here, and we 

have to now look at the components of the exchange photon momentum. The time 

component is the energy difference between the electron energy, and the electron energy 

is the mass plus the next term is p square by 2 m. So, the q the mass gets cancelled by 

doing a difference between p 3 and p 1. So, q 0 is order p square by m. On the other hand 

q i is order p, because it is just the difference of the momentum. And so we can simplify 

this denominator as well it had q 0 square and q i square both of them together, but q 0 

square is negligible. 

It is only the q i square which survives and with the Minkowski sign this now becomes e 

1 e 2 divided by mod q vector whole thing square. So, this is the result for the matrix 

element, and this matrix element is related to the potential is just V is equal to minus T of 

f I; the overall sign comes because of the various conventions used. In particular the 

Lagrangian involves minus V as a particular term while this T f i uses the evolution 

scheme involving the Hamiltonian, and one just has to check the signs and convince that 

this is the actual relation. And that then is e 1 e 2 by q square, and this is in terms of the 

momentum which is exchanged. 
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And one can go back to the position space by simple Fourier transform, and one gets the 

potential in coordinate space as e 1 e 2 divided by 4 pi r which is the usual expression for 

the coulomb potential. And in more detail one can want to calculate to higher order one 

can follow the same procedure but involve more complicated diagrams, and I will just 

illustrate a few of them which are the simplest diagrams which correct this single photon 

exchange. They are the so called one loop diagrams; one of them is a double photon 

exchange. 

So, all of them are one loop which is like this. Then one can have a cross photon diagram 

as well, and third possibility is a virtual pair production by the photon and then 

annihilation, etcetera. And all these diagrams can be evaluated and converted back by the 

same non-relativistic scheme to construct the correction to this lowest order coulomb 

potential. And in particular those corrections can be found in standard text books, and in 

particular these diagrams are one loop, and they give contributions which are order alpha 

square. The coulomb potential is order alpha. So, this is the next correction to the 

coulomb potential. 


