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In the last lecture, I derived the Klein-Nishina result for scattering of photons from 

electrons essentially at rest, which is the so-called Compton effect. In that calculation, I 

already assumed that the electrons were unpolarised or rather whatever polarization they 

may have it was not observed. So, we had to sum over the various spin states of the 

electron by introducing corresponding projection operators. Now, this result can be 

simplified further by assuming the same criterion for the photon; that means the photon 

is also unpolarised. And then we have to average over this epsilon polarization vectors 

by the same kind of technique; means projection operators and sum over the allowed 

states. So, let me illustrate that. 
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So, when the photons are unpolarised as well, we need to sum over the final state 

polarization and average over the initial state polarization. And we have been using the 

physical basis in which there are only two transverse polarization vectors allowed for the 

photons. So, this gives the same kind of a completeness and orthogonality relations, but 

now, in the three-dimensional space… So, in three-dimensional space, the two 



polarization directions, which I can just call epsilon 1, epsilon 2, and the direction of 

propagation of the photon k – they together form a complete orthonormal basis. And just 

as in case of any such complete orthonormal basis in a linear vector space, we can 

therefore, write down the completeness relation, which says that, the sum over all the 

three directions with components unspecified, you will get the identity operator. And I 

am writing the same relation; but the 3 components instead of writing on the same side, 

the two polarisation I am writing on one side. And the contribution corresponding to the 

direction of propagation I have shifted on to the right-hand side, which is the same thing. 

And to get the unit vector, I have divided all by the normalization. So, this is the 

description of the physical basis and it helps us to sum over now this quantity lambda. 

And, we have to basically perform the calculation, which is a half from the averaging of 

the initial part; and sum over both the polarisation calculation and then whatever 

quantity, which we calculated, which was d sigma by d omega. And now, there are 

various terms in this d sigma by d omega. One part is just a constant; and in that 

particular case, this both these sums lambda i and lambda f will give a factor of 2; one of 

them will cancel out, but the other factor survives. And that remains overall factor of 2 in 

the calculation of the unpolarised cross-section. But, the nontrivial term is the one which 

depends on the epsilon symbols themselves. And there we have to put in the various 

factors explicitly; and the object, which is of interest, is the average of this dot product 

between epsilon final and epsilon initial whole thing squared. 



So, by explicitly writing these quantities in terms of lambda i and lambda f, everything 

occurs twice. We sum over the quantities. And then we therefore, get one factor of this 

delta i j minus k i k j by k square for the final part; the other one for the initial part. And 

the two parts are contracted with each other, because of the dot product. And the dot 

product importantly is now in 3-dimensional space. So, we can now write this object as 

this delta function minus k i k j by k square, which can be called a transverse delta 

function contracted with itself. And so writing this thing explicitly, the product of ((Refer 

Time: 07:28)) delta i j’s contracted together basically gives 3; delta contracted with k i k 

j gives k square, which cancels with the denominator. So, there are two contributions of 

the cross-terms, which produce minus 1. And then the final term k i square and k j square 

together – they again cancel the denominators. And therefore, these objects will give… 

The final term coming from this k i k j on one factor contracted with other has to be 

calculated by taking into account that, the one of the factor belongs to the final photon 

and another belongs to the initial photon. So, the 2 k i’s though I wrote by the same 

symbol, are actually not the same. And so when I take k i final dotted with k i initial, it 

actually produces the cosine theta of the angle between the two. The normalization does 

cancel out, but the result of that calculation is that, this object is now cos square theta; 

and which can be written as 1 plus cosine square theta. So, now, we can go back and 

substitute this quantity in the equations derived in the previous lecture. 
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And so we have the result for unpolarised cross-section for the photons as well. There is 

an overall factor of 2, which I am explicitly taking into account in changing the 

normalization. So, it is instead of alpha square by 4 m square, it is alpha square by 2 m 

square, which came in. And then there is k f by k i square the whole thing unchanged. 

Then there is k f by k i plus k i by k f, which is also unchanged. Then there was a factor 

of 4 times this object multiplied by half coming from the averaging.  

And so this 4 and half takes into account the total overall normalization outside. And this 

1 plus cosine square theta remains. And that quantity is 1 plus cosine square theta. And 

then there is minus 2, which was the last term and which can be now written as k f by k i 

plus k i by k f minus sine square theta. So, this is the result for the unpolarised cross-

section. And that is the one, which is kind of easy to measure in experiments without 

bothering to detect many of the final state or initial state variables. 

I should make one comment that, this calculation in many text books is also done in a 

different manner. So, that calculations uses the property that, this summation over 

lambda. But, this lambda is no longer restricted to the physical degrees of freedom. They 

go over all the four components and produce a contribution, which is the metric instead 

of the identity operator. And that is equivalent in presence of current conservation. Or, in 

other words, it is the word identity, which will ensure that, the result of using this 

Lorentz covariant description of the polarisation tensors is the same as just counting the 

physical transverse degrees of freedom.  

The only thing one has to watch out for is… When one does this Lorentz covariance 

scheme, one has to keep all the 4 degrees of freedom. And the criterion, which we used 

quite often in simplifying the algebra of this matrix element T f i that, the polarisation 

vector dotted with p i equal to 0, which is true for the physical basis, but not true for this 

4-Lorentz component basis . So, one has to do the same calculation without explicitly 

using this condition epsilon dot p i equal to 0. So, then the expression for T f i square is 

different. And one has to then take this different expression and then average over the 

polarisation tensor using this metric as a completeness relation. And one then gets the 

same result for d sigma bar by d omega. But, these are equivalent procedures; one has to 

just keep in track what are the explicit symbols, which are being used and what do they 

correspond to in terms of physical variables. 
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There are a couple of things one can work out rather simple mindedly from this 

differential cross-section regarding the total cross-section. So, that requires just the 

angular integral. And one has to just express all the various variables in terms of the 

angles cosine theta. In particular, the final momentum is related to the initial momentum 

by Compton’s formula, which we have derived earlier just the energy momentum 

conservation constraint. And a dummy variable of integration, which is convenient is just 

z is equal to cosine theta. And with that, the total cross-section can be now expressed as 

integral over the angle phi is trivial; gives the factor of 2 pi. The theta integral is written 

in terms of this integral over cosine theta. So, it is minus 1 to 1 d cos theta is same as d z. 

And then this whole expression in the brackets, which now can be written as… 

Everytime there is a ratio of k f by k i. There are associated powers of this denominator. 

So, 1 plus k i by m 1 minus z. In one case, it is the cube, which is appearing; the 

reciprocal term has just a linear part. And the sine square theta has numerator is 1 minus 

z square and denominator is square of the same object. So, this is a managable integral. It 

can be solved in a closed form. There are only simple polynomials at various places. The 

detail result is a not that important. But, the limiting cases can be written as simple 

enough formula. And in the first case, this low energy cross-section, which we… or the 

compton cross-section – it can be just worked out. 



In that particular case, this first two terms do not contribute in the low energy limit; it is 

only the last term. And the result we have already seen; it is just 1 plus cos square theta, 

which comes from the polarisation tensor integrated over. So, it produces this term 8pi 

by 3 alpha square by m square for this k i by m going to 0. When it is large; which means 

the k i is much bigger than m. Then again we can do a similar expansion in terms of all 

the various terms. The important singularity is the one which is logarithmic, because 

everything else turns out to be finite quantities. And that result I will just write down; it 

can be easily verified. And that essentially comes from the middle term producing the 

log part, the dominant part; and then the subleading terms are the other ones.  

So, this gives log of 2 k i by m, which is the difference between z equal to plus 1 and z 

equal to minus 1 of this log argument; then there is a constant term; and then there is 

terms, which are supressed by inverse powers of k. So, these are the values for low 

energy and high energy Compton cross-sections. The high energy because of this inverse 

factor of k in the denominator, the cross-section actually falls to 0. But, there is a 

logarithmic correction to that inverse power, which one must take into account in trying 

to make a detailed analysis or comparison with experiments. So, that is as much as I 

want to say for this Compton scattering process. 
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Now, I would like to discuss another process, which is pair production through 

annihilation. And the typical situation is illustrated by e plus e minus going to mu plus 



mu minus; where, this muons are essentially another set of fermions, which have the 

same charge as the electron, but a different mass. And in particular, the calculation, 

which I am going to describe can be used for any other productions, cross-sections for… 

Fermions may have different charges; it may have different masses. And the reason this 

process is important that, it has kind become a bench mark for describing a production of 

new particles in accelerators, where beams of electrons are collided with each other. And 

out of the whole mess, which comes out, you try to detect what are the new objects, 

which may have been created. So, this is a bench mark process for colliders to produce 

new types of particles. 

And, the reason it is popular; one thing is it is clean and that arises just for the fact that, 

there are just two particles initial state and two particles final states. The objects are 

particle-antiparticle pairs. So, they satisfy all the conservation laws. When things are 

added together, the only thing, which survives as nonzero is the energy. Charges cancel 

out, momenta cancel out all those kind of things. And so the signature is very simple in 

terms of detection. And that is why it is clean. And the conservation laws are very 

simple. In terms of analysis, you can take any two particle-antiparticle state; and all the 

quantum numbers basically become the same as that of vacuum, which can be obtained 

by another particle-antiparticle pair. So, there is essentially no restriction on what are the 

kind of particles or antiparticles that may be produced by this particular process. Any 

pair, which can be produced will be produced in this collision. 

The only thing which is required that, electromagnetic interaction is needed, because the 

process is mediated by a photon. So, the process can also produce bosons. There is 

nothing wrong in it. For example, e plus e minus going to w plus w minus, which are the 

weak bosons and they have indeed been studied in this particular manner. The objects 

which cannot be easily produced are the final state particle-antiparticle pair. If they 

happen to be neutral, there might be a different process, which can couple this neutral 

particles to the initial state. For example, instead of a photon, it could be the z boson and 

then can the final state have nutrino-antinutrino pair. But, all these calculations actually 

are related by just very simple overall normalization factors. So, this process is 

illustrative of many useful calculations. And so now, let us try to work out the various 

formula relavant for this particular process. 



(Refer Slide Time: 27:26) 

 

So, first, let me draw the Feynman diagram, which is relavent. And I am going to assume 

that, this pair production is those of fermions and not of bosons. And the particle-

antiparticle pair is now denoted by these arrows pointing in opposite directions; p 1 is 

coming in, minus p 2 is going out, which is equivalent to saying that, p 2 is coming in. 

And then same way the final state has p 3 and minus p 4. And then there are these two 

interaction vertices coupling this initial particle and the final particle to the photon. And 

the photon momentum can be written as p 1 plus p 2; or, equivalently, it is the same as p 

3 plus p 4 by momentum conservation. So, that is the Feynman diagram. 

And, it is convenient to analyse the process in the centre of mass frame, because the 

calculation becomes quite simple. But, if the final result is re-expressed in terms of 

Lorentz invariant quantities, then the same result is true no matter what frame one works 

in. And we will actually do that. So, the useful parameter in this particular process is the 

total energy in the center of mass frame, because of everything else is 0; then in the 

center of mass frame, the total charge is 0; the total momentum is also 0; the only 

nonzero quantity is the energy.  

And, that is parameterized in terms of this quantity denoted by the symbol S. It is 

nothing but the square of the total momentum in the center of mass frame. But, since it is 

a Lorentz invariant quantity, S has the same value in any frame. And then this is equal to 

just the object E 1 plus E 2 whole square, because the center of mass momentum adds to 



0; only the energy survives. And since we are talking about particles with identical mass, 

this can be converted that E 1 and E 2 are actually also equal. And it can be written as 2E 

whole thing square. And this object is sometime referred to as 4 E square; where, E is the 

energy of the beam – single particle beam, whatever it may be. So, this is a very useful 

variable in which the whole calculation is expressed and we will use it to our advantage. 

So, now, let us write down the matrix element by following the Feynman rules. And the 

same thing we start at the end of the fermion line and work backwards. So, there is a 

spinner for the positron with momentum p 2. Then there is a vertex for the photon and 

the electron spinner with momentum p 1. Now, there is a photon propagator, which is 

minus i divided by p 1 plus p 2 whole square. And then a similar object for the muon, 

But, now, the end of the muon line is a u spinner with momentum p 3. Then there is a 

vertex for the photon and then there is a antimuon spinner with momentum p 4. There is 

a little bit of messiness in the expression, because the mu I have used in for the Lorentz 

indices is also being used to denote the particle name. But, from the context, it should be 

clear which one corresponds to what and confusion should be avoided. So, this is the 

expression for the transition amplitude. 

And, it obeys the usual current conservation, which follows from saying that, the photon 

vertex can be contracted with the corresponding momentum and that should give 0. And 

in this particular case, the contraction is with total momentum p 1 plus p 2, which gives 

this expression v bar p 1 slash plus p 2 slash times u at the vertex. And that now can be 

reduced using the equations for the external legs of the particle. And one term gives plus 

m, the other term gives minus m; and the whole result is 0. I wrote it down just to 

contrast with the earlier case in the Coulomb interaction, where the momentum was p f 

minus p i. And there both the spinners were u. And the relative minus sign between p f 

and p i produce the cancellation. Here the signs are positive in terms of p 1 plus p 2; but 

the spinner involves is v instead of u and that produces the relative minus sign; and the 

final result is the same. So, that is the property of this transition matrix element. 
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And now, we can calculate the probability. And that is obtained by taking the square of 

this matrix element. But, combining with it, all the phase-space factors of all the delta 

functions of the initial final state particles – the corresponding volume element as well as 

the flux. And that expression is now common place; just I have to keep track of all the 

normalization. There is an overall delta function for the total energy momentum 

conservation. One has to factor out the normalizations of the initial state particles. Then 

there is the square of the matrix element.  

And now, one has to include all the volume elements in the phase-space of the final state 

particles. And they are d cube p for each of the final state object. And the last part is 

multiplied by 1 over flux. And again in writing this thing down, the box normalization 

factors of V have already cancelled; they came together with the initial state wave 

functions and they came with this d cube p and d cube 4 and they just exactly cancel out. 

So, we have to now perform integrals, were all the states, which are constrained by these 

delta functions; and also, include this overall factor of flux. And so we have to first 

calculate what this particular value of flux is in this particular frame. So, in the CM 

frame, the collision is collinear. And so we will work out the cross-section or rather the 

flux in the particular frame, where the directions of velocity are already known. So, then 

flux is equal to the difference in the two velocities; V 1 is approaching from one side; V 

2 is approaching from the other side.  



And so V 1 minus V 2 is the relative speed of approach. And this is actually true even in 

the case of relativistic transformations, because one just has to count how many numbers 

of partilces pass through a particular section. It is V 1 from one side; V 2 from the other 

side. So, the total objects, which have passed through a particular section is actually 

magnitude of V 1 plus magnitude of V 2. And that is what this object expresses. And we 

can rewrite it in terms of momentum and energy in a different way, which is this. And 

that can be still written as a combination E 2 p 1 plus E 1 p 2 divided by E 1 E 2. 
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Now, this expression is not Lorentz invariant; the value of the flux depends on which 

frame one works with. But, one can try to convert as much of this particular part to a 

Lorentz invariant expression as possible. And I will first write down the final answer and 

then show that, it is equivalent to the expression written above, because it is partly 

Lorentz invariant. And that expression is a p 1 dot p 2 whole thing square minus m 1 

square m 2 square divided by E 1 E 2.  

And so what is appearing in the numerator actually is a Lorentz invariance quantity. And 

to derive that, let us just simplify this object, which is now E 1 E 2. And then the dot 

product of the two momenta; but momenta are collinear and they are oppositely directed. 

So, the dot product is actually positive sign; and the two magnitudes. And now, one can 

simplify this object. So, it is E 1 square E 2 square plus p 1 square p 2 square plus 2 E 1 

E 2 p 1 p 2 minus m 1 square m 2 square. 



Now, let us rewrite these objects in terms of the dispersion relations to cancel of a few of 

the terms. And so one can now rewrite this thing as E 1 square and then p 2 square plus 

m 2 square. And in the second term, the same kind of combination can be used, which 

gives p 1 square into E 2 square minus m 2 square minus m 1 square and m 2 square. 

Then I will keep this minus m 1 square m 2 square explicitly, and then this cross-term as 

it is. So, this is a form, which roughly corresponds to the square of the numerator, which 

is implicit over there. And so now, we can rewrite this object as E 1 square p 2 square 

plus p 1 square E 2 square; and then m 2 square is a common factor; and then there is E 1 

square minus p 1 square minus m 1 square m 2 square; and then the cross term as it is. 

Now, one can cancel off these terms involving m 2 square, because E 1 square minus p 1 

square is m 1 square. So, there is a plus m 1 square m 2 square and a minus 1, which 

cancels. And the remaining part is a perfect square, which is exactly the numerator 

above. So, this thing is E 1 p 2 plus E 2 p 1 whole thing square. So, that explains this 

form for a flux in terms of collinear collision. It has a simpler form, where the numerator 

part we reduced it to a Lorentz covariant term. It can be written in other alternative ways. 

For example, this p 1 dot p 2 can be obtained by p 1 plus p 2 whole square, which can be 

written in terms of the variable S I mentioned at the beginning; and p 1 square p 2 square 

just reduced to m 1 square and m 2 square by their own dispersion relation. So, if there 

are simpler way of writing these terms and they are all useful in some form or the other; 

for us, this object is a good enough or actually we can simplify in the specific case that 

we have at hand. 
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In our case, this p 1 dot p 2 is E 1 E 2 plus p 1 p 2, which can be now writen as the beam 

energies rather in a simple manner, because E 1 and E 2 and p 1 and p 2 are all equal in a 

magnitude. So, this is E square of beam and plus p square of beam. And one can write it 

as p square in terms of the masses as well. So, one can simplify this relation further. So, 

then this p 1 dot p 2 whole thing square minus m 1 square m 2 square is… I will rub the 

labels for the particles; they are all equal. And I will not put the subscript on it. So, there 

is m raise to 4. And now, one can simlify this object a little more.  

So, it is E fourth plus 2 E square p square minus p fourth minus m fourth. This last term 

can be combined into p square minus m square and p square plus m square. p square plus 

m square again happens to be just E square. So, E square can be factored out. And then 

there is E square plus 2 times p square. And p square plus m square has been taken out. 

So, p square minus m square remains. And so this object is now p square minus m square 

is again p square; there are 2 p square and p square altogether. So, altogether, there are 4 

p squares. So, this object is 4 E square p square. Or, since it is inside the square root, it is 

easy to rewrite it as 2 E p whole object square. So, that is what becomes of the flux. And 

we will now just directly insert it into the expressions and see what the result becomes. 
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So, then we have this expression d sigma f i; where, we now remove all the delta 

function constraint one by one. And first, is easy to get rid of p 4, because it is a kind of 

straightforward. And that gives a result, where there is overall m e square m mu square 

coming from the various normalizations. The 2 pi’s raise to various power cancels to 

produce this 4 pi square momentum constraint is gone. But, the energy constraint 

remains. The d cube p can be written in terms of various angles. So, it is p 3 square d p 3 

d omega divided by the factor of E 3 E 4, which is part of the story. And then there is this 

matrix element t f i square. And I should include this factor of E 1 E 2 for the initial 

normalization as well. And now, there is a final flux, but which we simplified to the form 

of E 1 E 2 divided by 2 times E p. And I can take it to be the initial particle 1 in terms of 

the beam energy. So, this is the expression. 

The delta function of p 4 is gone. We can cancel off some of these energy factors to 

simplify the result. And the d p 3 integral can also be converted to be a d E 3 integral, 

because p 3 d p 3 is the same as E 3 d E 3. And so we have a result now, which looks 

like m e square m mu square by 4 pi square. This E 1 E 2 can be cancelled. The 

momentum p 3 and p 1 – one of them is a numerator, one of them is a denominator. And 

that can be written as just the ratio of muon momentum derived at the electron 

momentum. Then there is t f i square; then there is d omega. And the part, which now 

survives is a factor of E 4. And a factor of E 1 or rather 2 E 1 together with the integral 

over the energy delta function. 



Now, in the energy delta functions, we have E 1 is equal to E 2, which are fixed by the 

initial state. But, we have to take into account that, E 3 is equal to E 4 guaranteed by the 

momentum conservation. And so it is a delta function of 2 E 3 in the argument. When 

you integrate it, it produces half. And so the total denominator is actually 1 divided by 2 

E 4; that is from the momentum integration. And then there is 2 E 1. And now, one can 

go and look back at the definition of the variable S – the center of mass energy square, 

which I defined. It is exactly this particular object 2 E the whole thing square; it does not 

matter whether it is an initial state or the final state. The total momentum is just 0 and 

2E. Then becomes just the total energy in the center of mass frame. So, this is a final 

expression, which is written in terms of the Lorentz invariant variable S. The masses, 

which are also Lorentz invariant; the part, which is not lorentz invariant are the 

momenta. 

And, p mu by p e factor arises from what are called these integrals over delta functions; 

or, otherwise, they are also known as phase-space integrals and describes the behavior 

near the threshold, where the momentum is close to 0. The energy is roughly equal to the 

mass. And that is where the cross-section will very heavily dependent on the magnitude 

of the momentum. And we have to include that explicitly in this particular form to 

estimate the actual size. Once one goes away far away from the threshold means energy 

is much bigger than the mass; then the momenta and energy are roughly of the same 

magnitude and this overall phase-space factors do not matter much.  

But, this is a feature, which is experimentally easy to see as the energy of the beam goes 

beyond the particle-antiparticle pair threshold. At one sense, suddenly sees the cross-

section rising at that particular point. And the raise is defined by this phase-space factor. 

And it can be fitted to the experimental data to verify details of the theory and properties 

of the particles involved. We will continue from this to actually calculate the cross-

section next time. 


