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In the previous lecture, I worked out the algebra for calculating the Coulomb cross-

section for scattering of an electron. And we converted the amplitude to the differential 

cross-sections, simplified all the algebra coming from conservation of momentum and 

appropriate delta functions; included all the kinematics factors. And now the last step to 

put in is the appropriate structure of the input and output electron wave functions. And 

that is best done in the form of projection operators. 
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So, the electron wave functions appearing in the cross-section can be arranged in the 

form u times u bar or the positrons v times v bar, and then replaced by the corresponding 

projection operators. And this is the straightforward thing to do, because the arrangement 

in the order u bar u is not possible, because there is always a gamma matrix representing 

the interaction sitting between the two. And one cannot just take out that gamma matrix, 

but and the amplitude is squared; the squared form always have this u times u bar sitting 

together. Or if they are sitting at opposite ends, they can be brought together by including 



the cyclic trace functions, and then the whole structure simplifies, and one only ends up 

using projection operators and not the explicit form of the wave functions. 

The projection operators can decide between positive and negative energy solution or 

also corresponding up or down spin whatever may be necessary. And, I will just 

illustrate in one particular case. And that happens to be the case of unpolarised 

scattering; in which case both the spin projections appear with equal likelihood. And so 

they are summed over; they sum up to the identity. And, the only projection operator 

remaining after that is the energy projection operator. So, if it is an electron, it will be p 

slash plus m divided by 2 m. And, if it is positron, it will be p slash minus m divided by 

2 m. So, let us just work it out explicitly.  

So, consider now the special case of unpolarised scattering; which means that, the initial 

value of the two polarisations are equally likely; and, in the final state, we do not observe 

the polarisation; we just sum over the two possibilities. So, then we sum over S f – that 

is, remains unobserved; and, average over S i – and, these are… because they are 

equiprobable. And, the only distance is you have to count the number of spin state to 

take out the average; otherwise, the structure is just the summation further two cases. 

And so we have the form. 
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So, the required matrix element absolute value square – it becomes one-half coming 

from the average and the sum over both S i and S f; the matrix element, which we had 



was u bar f gamma 0 u i whole thing square. So, now, we use the rules for rewriting this 

square. And, the result is just the structure, which I described last time. It happens that 

gamma 0 bar is equal to gamma 0. So, nothing happens to that. So, we have now this 

object equal to half S i S f; then u bar f gamma 0 u i multiplied by u i bar gamma 0 u f. 

And, here we see the structure explicitly appearing of the u u bar structure, which can be 

replaced now by a projection operator. So, that becomes one-half sum over S f u bar f 

gamma 0 p i slash plus m by 2m gamma 0 u f. 

Now, u bar f and u f are not next to each other in the form, which we want. But, we can 

see that, if these operators, the factors are permutated into cyclic manner, it will come 

into the right form; and, the cyclic permutation is something which is allowed if this 

product of these factors is inside a trace. Now, what we have is just a complex number as 

in the form written. And so trace is equal to the number and we can just add a trace 

outside without any trouble. And then the cyclic permutation produces another projection 

operator; and, the expression becomes one-half trace gamma 0 p i slash plus m by 2 m 

gamma 0 p f slash plus m by 2 m.  

So, this is in a form, where we can now use all the algebra for developing traces of a 

product of gamma matrices and simplify this trace into just a pure number; and, it is 

easily worked out. First of all, the terms, which contribute to the trace are only which 

have an even number of gamma matrices sitting inside the product. So, we can just 

remove all the terms, which have an odd number of gamma matrices inside it. So, there 

is one term, which has all the four gamma matrices; and, there is another one, which has 

just two gamma matrices. And, that is it. So, this is the first step. 

And now, we can use the recursion relation to reduce the trace of four gamma matrices to 

terms, which have trace of two gamma matrices. That is also kind of straightforward. 

You have to take a dot product of successive terms. So, the first is the dot product of 

gamma 0 with p slash i. So, that produces a term, which is E i; and then the remaining 

part remains gamma 0 p f slash. Then the next term appears with the negative sign with 

the dot product of 2 gamma 0, which happens to be 1.  

And then it is p i slash p f slash. And then there is another with a dot product of gamma 0 

with p f slash. So, that gives E f and then it is p i slash gamma 0. And, the last time, 

gamma 0 square is just identity. So, it is m square. So, we have now reduced everything 



to two gamma matrices. And, the trace of gamma matrices are in this particular trace of 

identity is easily done. There is an overall factor of 4. And, that gives the result that, 

there is a dot product – gamma 0 dot product with p f slash is giving E f; the dot product 

of p i slash p f slash is p i dot p f. The third term will give E f times E I, which is the 

same as the first term and then m square is as it is. So, the net result is 2 E i E f minus p i 

dotted with p f plus m square. And, this is the simplified form. It can be put inside still 

simpler form by expanding out this p i dot p f in terms of the various factors of beta and 

the angle cosine theta. We can do that. 
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And so let us see p i dotted with p f is E i E f. And, the time component and the space 

component gives just the magnitude minus p i times p f times cosine theta. And, this can 

be written as E i E f minus beta i beta f E i E f cosine theta. Now, this can be further 

simplified by noting that, the process, which we are using, is an elastic process. So, the 

initial and final energies are identical. So, E i is equal to E f, beta i is equal to beta f. 

And, the whole structure then simplifies further.  

And, one now has a simple looking form for the whole cross-section. So, first of all, the 

cosine theta part can be still be written in terms of sine square theta by 2; and, the various 

terms of E i and E f can be cancelled. So, let me work that one out too. So, this object 2 

E i E f minus p i dotted with p f plus m square is now – 1 E i E f cancels, the two are 



equal; so it is E square. The second term becomes plus beta square E square cosine theta. 

And then the last term is plus m square. 

Now, cos theta can be written as 1 minus 2 sine square theta by 2. So, this is E square; 

one will just give beta square E square, which is actually equal to magnitude of the 

momentum square and minus this beta square E square sine square theta by 2. And, there 

is a factor of 2, which goes with it. And then there is plus m square. So, again p square 

plus m square becomes E square; which can be taken out. So, there is a 2E square, which 

comes out as a common factor and then there is 1 minus beta square sine square theta by 

2. So, in this form, now, everything is expressed in terms of the initial energy of the 

electron and the scattering angle; everything else is simplified. 



And so finally, we put together all these factors calculated above to get d sigma by d 

omega. And, it has a form e square Q square divided by 64 pi square. There is a vector, 

which is just ((Refer Time: 17:33)) What we calculated is 1 minus beta square sine 

square theta by 2. And, there is the denominator, which ((Refer Slide: 17:46)) from 

essentially the normalisation coming from the flux. And, all these factors of E square 

have been included in the normalisation. So, this is the final result. And, it is often 

labelled as Mott cross-section, because it was calculated by Mott and it has a form, 

which differs from the classical or the non-relativistic formula by just this extra factor in 

the numerator 1 minus beta square sine square theta by 2. The rest of the stuff is identical 

to what Rutherford calculated and used. 
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Now, let us look at some of the features of these cross-sections, which are useful to 

understand and also experimentally important in trying to fit this formula to the data. So, 

one feature is that, it is independent of the mass of the electron; just did not matter 

whether we use electron or we use some other particle. For example, Rutherford used 

alpha particles. It is all the same, the only thing which matters is the charge in this 

particular order and also signs of either the projectile or the target. The sign is irrelevant; 

positively charged particle will scatter with the same cross-section as the negatively 

charged particle although the trajectories, which are followed in the two cases, will look 

completely different, because one of them will have an attractive potential and the other 

one will have repulsive potential. 



But, the cross-section when one sums over all the different impact parameters, turns out 

to average between the opposite signs of impact parameters and it ends up being 

independent of the sign of both e and Q. These properties are actually true only in these 

leading order calculations. So, higher order calculations – they end up changing it. But, 

the lowest order – this is kind of peculiar feature, which shows up. And, one of the 

consequences is that, whether we use electron or we use positron, the leading order 

cross-section is the same. So, for example, I can have these new corrections appearing 

not at e square Q square, but at higher order e cube Q cube, where things will change. 

Let me make one more observation, is what is the significance of this beta square sine 

square theta by 2. So, it can be given an interpretation. So, beta square sine square theta 

by 2 – it is a consequence of the magnetic moment of the electron interacting with the 

magnetic field, which the electron feels in its own rest frame, because in the rest frame of 

the electron, the nucleus or the target charge is moving; it has therefore, a current and it 

will produce a magnetic field. And, the magnetic moment of the electron will respond to 

that magnetic field. And, that contributes to the cross-section.  

And, this correction beta square sine square theta by 2 is actually the consequence of that 

interaction. If there was only coulomb field, we will just get the same as answer the 

Rutherford got. In other words, if the electron did not have the spin, this extra factor of 

beta square sine square theta by 2 will be absent – with the magnetic field, it sees in its 

own rest frame. That is because where the target charge Q is moving. And, one can see 

that, this is indeed true by doing a similar calculation, but not with an electron, but with 

the scalar particle like a Klien-Gordon field, where the magnetic moment is not there; 

and then this new feature kind of disappears. And so we can be sure that, it is a 

contribution of the spin of the electron. 
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The third feature is that, the backward scattering, which means theta equal to pi vanishes 

as beta approaches 1. This overall factor 1 minus beta square sine square theta by 2 just 

becomes 0. And, this also has a meaning, because this is due to the helicity conservation 

of the electron. When beta goes to 1, the helicity is essentially decoupled from each 

other. There is no mass term, which connects the two; it is negligible. And, as long as the 

electron has a fixed helicity, it cannot scatter backward, because backward scattering 

means the spin will remain where it was pointing; the angular momentum is conserved. 

But, the momentum direction reverses.  

So, a backward scattering corresponds to change in helicity. If the helicity is conserved, 

that contribution vanish, must vanish rather. And, this is also very useful feature to see 

not only in this Coulomb scattering, but many other processes, where if you have ultra-

relativistic particle, the conservation of helicity produces restriction on backward 

scattering. As a matter of fact, we saw this feature in earlier in studying the properties of 

graphene, where indeed there is a massless excitation and the properties of it are 

governed by conservation of helicity rules. So, these are the some of the important 

features. 

And, one more thing I can add is the description of the same process. So, for what will 

happen, just a little different notations. So, for scattering of say positrons from the 

Coulomb field, we have the same structure for all the kinematic properties, but the 



amplitude looks little different, because the wave functions are little different. So, I will 

write down only that particular part; where, now, we have instead of u v bar and v 

appearing; instead of minus i gamma mu, we have plus i e gamma mu for the change or 

flip of the charge. And then it is v p f, S f and combined with A mu with whatever 

photon momentum we had.  

So, the same structure appears; the kinematics is the same. And, the only thing, which 

will come from this new wave functions is products, will be the order of v times v bar. 

And so the projection operators give this v times v bar equal to p slash minus m by 2m. 

And, this is again for unpolarised scattering. So, we have only the energy projection 

operator and not the spin projection operator. There is an overall sign from the actual 

projection operator, which is m minus p slash by 2m, but those signs we have already 

included in the Feynman rules. So, there was a minus sign for every positron in the initial 

state, which must be included in the cross-section. So, having done that, projection 

operator is easily written as p slash minus m by 2m. 

And of course, as we mentioned earlier, the cross-section at the leading order gives the 

same result, because this minus sign does not matter everything as contributing only 

when the there are even factors of gamma matrices inside that trace. And, the minus sign 

will come only if there are odd factors. So, nothing changes. So, the leading order cross-

section is the same as that for electrons. So, this as much as I can say for the Coulumb 

scattering problem. And, we have various important things to learn both in terms of the 

calculation techniques as well as the interpretation of final result. So, next step for me is 

to define a different process and do the calculation for that. 
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And, I will choose that process to be what is known as Compton scattering. We have 

seen that, in this case, there are two diagrams, which contribute. And, the process in 

laboratory is essentially observed as scattering from a material say a free electrons in a 

metal or even from atoms. So, there is just a target, which is essentially non-relativistic 

and you shine some light on it and you observed the final photon, which… And, that 

properties of the final photon is what we want to calculate. So, here the initial electron is 

essentially at rest. The final electron is not observed. And, the incoming and outgoing 

photons are plane waves. So, that describes the initial and final states of the process. 

And, we want to now calculate various things in this particular normalisation. And so we 

can write down various rules at the photon wave function in the momentum space, is just 

given by the polarisation. And, the box normalisation in a volume V, omega is the 

energy of the photon. So, it is k 0; it is equal to magnitude of the k; and, the polarisations 

are physical. So, they will have the transversality property that, epsilon mu dotted with k 

mu is equal to 0.  

And, we will normalise the polarisation vector to unity. So, these are all standard 

properties. And, we can write even k square is equal to 0 for the photons. And, these are 

the things, which we will use in simplifying the algebra, which comes out of it. The 

actual photon wave function will have an e raise to i k dot x factor. But, if when we 

transform to momentum space by a Fourier integral, that e raise to i k dot x becomes part 



of the Fourier integral and goes away and what is left is just this – overall constant, 

which is independent of the location. 
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So, now let us go back and draw the diagrams for this particular process. And, those I 

had drawn earlier; I will draw them again. One thing I can mention before that, the 

photon normalisation of photon is chosen such that the energy of the plane wave, which 

we are familiar in electrodynamics form – it is one-half of E square plus B square in the 

units, which I have used. And, this is just a volume integral with this box normalisation 

and this energy is omega. In the units, again we have h cross equal to 1. So, this is the 

standard normalisation of the photon energy. And, the wave functions have been chosen 

to be consistent with it. 

So, now, the Feynman diagrams I can draw. There were two of them. one of them is the 

ordering where the incident photon is absorbed, and then the final one comes out. And, 

the other diagram was the final one is emitted first and the incident one is absorbed little 

later. So, now we can put some labels. There is p i p f for the energies or the momenta of 

the electrons. And, k i k f is the same for the photons. And, as you have seen, the two 

diagrams correspond to just ordering of the vertices. In a different way, they are 

interactions with these bosonic photons and the contributions have to be added. 

So, now, we have to write down the matrix element, which correspond to the sum of 

these diagrams. So, the sum of the two diagrams gives the matrix element, which I am 



going to write in this form of the transition matrix element. So, the overall delta function 

for energy momentum conservation is taken care of. So, there is a factor of minus i e 

square, which comes from the two vertices. And then there is a u bar f for the initial 

wave function. And then there is a huge product of various gamma matrices, which we 

have to now explicitly write down. So, the gamma matrices of the interaction are 

contracted with the corresponding photon wave function A mu. And, A mu is simplified 

to this factor of epsilon mu.  

So, we only have the photon part appearing as epsilon slash. So, as the rule goes, we start 

with the end point of the electron line mu bar f and then work backwards all the way. So, 

the first diagram, the first interaction produces is epsilon f slash. Then there is an 

electron propagator. And, we have to use energy momentum conservation to find out 

what its momentum is. And, that momentum is p i slash plus k I, slash and then minus m 

plus i epsilon. So, that is the propagator. And then there is a second vertex again 

contracted with the A mu. So, it gives epsilon i slash. And, that is the first diagram. 

And now, the similar thing for the second diagram; but now the vertices are 

interchanged. The first we have epsilon i slash. Then there is an i times the propagator 

for the photon. But, the momentum conservation now says that, this intermediate 

momentum is p i slash minus k f slash. That proton got emitted first, and then minus m 

plus i epsilon. And then now, we have epsilon f slash. So, that now gives the sum of two 

diagrams; and then the last wave function – the electron, which u i. So, this is the 

structure, which emerges after using all the Feynman rules and it gives a matrix element. 

We of course, have to use all the normalisations for the various wave functions and 

fluxes when we convert this to the cross-section. But, that will be done in the next step. 
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We can still simplify this calculation a little bit more. So, first is this all the factors of i 

can be combined. And, that give minus i e square u f bar. And, the denominators can be 

rationalised. So, all the gamma matrices now come in the numerator and the calculations 

will become simple for taking all the traces of the gamma matrices. So, this object will 

produce p slash plus k slash plus m. And, the denominator – now, we will have the 

square of the total momentum minus m square.  

And, that can be simplified as well, because the initial and final momenta belong to 

particles, which are on ((Refer Time: 45:31)). So, we exactly know what is p square and 

k square corresponds to within those particular cases. So, here for example, p i slash 

square produces just m square, which cancels with the minus m square, which is there in 

the rationalised denominator; k i slash whole thing square – this is just k square, which 

happens to be 0, because physical photon. And so the p i slash plus k i slash whole thing 

square just produces the dot product of the two, which is 2 p i dotted with k i. Everything 

else is gone from the whole gamma matrix algebra. And, then the epsilon i slash remains. 

Same thing can be done on the other side or the other diagram as well, where the result is 

p i slash minus k f slash plus m. There is an epsilon i slash in the front, epsilon f slash at 

the back. And, the denominator follows the same rule; p square cancels with m square; k 

f slash square is 0. And, we only have the dot product surviving, which is 2 p i dot k f. 

And so one can now close the bracket and put the electron wave function outside it. So, 



this is the simplification. We just rationalised the propagator denominators. Can still do 

little bit of simplification, which comes from the various properties of this polarisation 

tensors. In particular, we can commute this polarisation epsilon slashes to be just next to 

each other by taking them through these momentum factors. Of course, as far as the mass 

is concerned, there is no problem; it just goes through. But, as far as the other objects are 

concerned, we just have to be little careful about commuting the matrices. 

So, let us see what that produces when epsilon i slash is commuted with k i slash. We 

will get the object in the reverse order with a negative sign plus a dot product of epsilon i 

and k i, which happens to be 0, because of photon is transverse. So, we just get a 

negative sign. That negative sign can be combined with the negative sign outside. And, 

we have the object, which I am going to write down from commutation with k i slash. 

And, the denominator is the same thing 2 p i dot with k i. What about p i slash? Again 

you can anti-commute with what is there on the other side. That is fine. And, the dot 

product will now has epsilon dotted with p i. But, here we can use another property that, 

the initial electron is essentially at rest; and so its structure is m, 0, 0, 0. And, the 

polarisation is transverse, which has some component only in the space directions. So, 

again, p dotted with epsilon gives 0. And so we have only the negative term remaining. 

So, it will be now minus p slash plus m. 

And, that whole object, which will act on the u i; so we have also this relation that p i 

slash minus m acting on u i is equal to 0. So, the commuted part of p i slash just cancels 

with m, because of this wave equation satisfied by the initial electron wave function. 

And, the only part, which survives is then the k part; and, which produces this particular 

object. Similar analysis can be done for the other side. Again p slash can be commuted 

with epsilon f slash. For the same reason, epsilon f is also transverse. So, its dot product 

with p is 0. Again, we will have minus p i slash plus m acting on this wave function u i, 

which gives 0 from the Dirac equation. So, the term which survives is essentially k f 

slash. 

But, since again k f slash and epsilon f slash can be commuted together with a change in 

sign, the reason being that, k dot epsilon is again 0. So, we have now getting plus epsilon 

f slash k f slash. This is a negative sign in the denominator; but that can be eaten up by 

the overall negative sign outside. And so the final result looks like a product divided by 2 

p i dot k f whole thing acting on u i. So, transverse polarisations, which means epsilon i 



dotted with p i is 0, epsilon f dotted with p i is also 0; and, epsilon dotted with its k is 

also 0. So, these are all the rules, which we have used. And, that simplified the 

expression to this particular form. At this stage, there is not much else one can do; but 

the structure is in a form, where one can see the various symmetries. 
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Explicitly, in particular, there is this symmetry between the two contributions, which 

come from the two diagrams. And, that is very obvious in this particular structure. It is 

something, which I have earlier called a crossing symmetry – interchange of the two 

photons, where one of them is in the final state and the other one is in the initial state. 

And, in particular, for photons, it has its own antiparticle; there is no distinction between 

particle and antiparticles. So, one can move them just from one side to the other. And, 

that will interchange k i and epsilon i with k f and epsilon f with the only change is that, 

the momentum of the photon is reversed. 

And, if one applies this crossing symmetry to the two diagrams I drew above, one 

immediately sees that, one diagram goes into the other. In the algebra, we have to 

include this negative sign, which comes from converting a particle in the initial state to 

an antiparticle in the final state. And, in this process, the 4-momentum is completely 

reversed. And now, one can see that, the two terms, which are written in the expression 

above, are indeed related by this particular interchange. If i and f are interchanged, all the 

indices of epsilon and k appear in the correct order; and, the negative sign of k f does not 



play any role, because there is a factor of k f both in the numerator and the denominator. 

So, the sign essentially cancels out. So, in this particular form, even this crossing 

symmetry is a manifest in the structure of i times T f i. So, that is as much as one can do 

in terms of calculating this matrix element. 

And now, to calculate the probability of this particular scattering, is obtained by taking 

the absolute square of this T f i’s object and including all the normalisation factors 

coming from the volume parts. And, that object is – first, there is this factor from the 

momentum conservation, which I include only once; the second factor of 2 pi to the 4 

delta 4 0 is scattering per unit volume and the unit volume part is divided out.  

So, that is the scattering part. And, the wave function normalisations of the initial states 

for the electron gives E by m. And, for the photon, it gives twice omega. Then there is 

factor of T f i square. And then one has to now include the final state differential volume 

elements for the electrons and for the photons. And, the last factor to include is 1 over 

the incident flux of the particles involved in this particular process. And, I will continue 

with calculation of this flux and simplification of this scattering probability in the next 

lecture. 


