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Lecture - 33
Feynman rules for Quantum Electrodynamics, Nature of the perturbative
expansion

So, we have put together all the machinery to describe the interactive theory of electrons
and photons, and there are quite simple rules which can summarize everything, and they
are actually heavily used in doing the calculations; they were invented by Feynman. So,

obliviously they carry his name.
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And what they allow us to do is quickly write down the amplitude for a given process,
and this process will be represented by Feynman diagrams which are nothing but space
time picture of what is going on. Now, while doing this we quickly forget about all the
quantum dynamics in the sense of having a wave functions and distributions, etcetera.
We will just look at the whole thing as in a particle language, some particle going from
one place to another and interacting with some object and then scattering from it,

etcetera, and so on and so forth.

And we have seen two different descriptions for these; first for the electrons we have

written down the element of the scattering matrix as the part where nothing happens and



then part where the electron wave function responds to the electromagnetic field
represented by A slash in this process. Now the electromagnetic field can intern arise
from distributions of charges and currents, and we had that relation as well which were
summarized by this equation. So, putting those two things together we can quickly iterate
the procedure that electron response to photon, and photon is consequences of
electromagnetic charges distributed in a particular way as well as the moments. And so
net result can be written in a simpler form where now we have only various

combinations appear in terms of the wave functions of one type or the other.

So, this quantity in the bracket is nothing but what was there in the electron equation, but
the A part is now written explicitly in terms of the source, and this is a combined
equation which is in a form which can be iterated as many times as necessary. So, if the
photon is an external field, well we do not write it in terms of it sources, but if it is
produce by another electron then it can be written by j mu. J mu again is represented by
psi bar gamma mu psi of some other source which in turn may have been interacting
with its own electromagnetic field, and one can just iterate this procedure as many times
as you want to produce the necessary description which goes along with the space time

picture provided by Feynman diagram.

This equation as | have written is a formally exact, because what appears on the right
hand psi tilda which is the exact solutions of the Greens problem; when trying to use
perturbation theory we start out with the simplest answer, where psi tilda is replaced by
the initial plane wave distribution you get the result from this equation. Then iterate it;
next time you put in the answer inside it. It was found at the first order, and that gives
rise to all the description which we can now easily summarize in terms of this so called

Feynman rules.
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So, we now have a procedure to this to first draw all the diagrams. Then first we draw the
diagram to any desired order and then convert what is represented by this diagram to
algebraic expressions. And clearly in doing this perturbation theory the parameter of
which powers are counted is the charge e, and we want to calculate any object, say, to the
first order m e or second order a d e or third order n e. It can be easily done by just
expanding psi tilda and j mu iteratively one step after the other and constructing all

possible descriptions of the processes.
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So, the rules can be easily obtained for the tree diagrams where the tree diagram refers to
a topology of this space time picture. There are no closed loops, and once one learns how
to go beyond that that requires some knowledge of quantum field theory. And then we
have loops, but we know how to handle the loops as well in the same picture and might
have to include a little bit extra stuff to deal with loops. But that is not too complicated
once a complete field theory description is made; the tree level rules are easily extended
to interactions of arbitrary type. So, what are these rules? One is well draw all the
diagrams to desired order in e, and as we have constructed the whole thing these are

space time picture.

So, the rules as you have constructed will be obtained in the coordinate space. The
second step is there are various segments of these diagrams. So, they will be referred to
as vertices. There are propagators which can also be called internal lines and external
lines which correspond to particles in the initial and final state and the numbers of
various things of various types is actually related. And for tree diagrams one can easily
convince oneself that the number of vertices is equal to number of propagators plus one,
and that is easily obtained from the equation which | wrote down for the scattering
matrix; every time one expands the right hand side to a particular order there is an extra
factor of a propagator coming in, and there is an extra factor of the power of the charge e

coming in.

So, the power of e actually counts the number of vertices and both of them at every order
increase by one. So, one has to only identify the lowest order term where there will be a
single vertex but no propagators, and that fixes this particular relation, and the power
counting is a just the factor which we have put in the equation minus i e gamma mu and
an integral over a location of the vertex; that is because the vertex represents the
interaction and interaction could have occurred anywhere in the whole space time. So,

every vertex basically counts the power of e.

So, if you want to calculate say to third order perturbation theory the theory or the
diagrams will have three vertices inside them; there is no other place which contributes a
power of e. So, that much is for the vertex; what about the propagators? We have seen
both type of the propagators corresponding to the fermions or the photon, and so each
propagator gives the factor i S F x minus y. This is for Dirac fermions or i D F x minus y
together with this g mu nu if necessary to contract the indices for photon.
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So, this essentially counts the second part that propagators each will bring in a certain
weight; the vertices bring in a certain weight, and the last weight will be the external
lines which will have a corresponding. Each factors line gives the so called wave
function factor, and this can be of different type depending on what the particle is. If you
put v for an electron in the initial state or a v for a positron it can be u bar for an electron
in the final state. Similarly, v bar for a positron, and if it is a photon we have seen that the

description is given by this polarization times for epsilon mu.

So, this now has completed the description of the diagram; every vertex every propagator
and every external line have been accounted for, and beyond this now there are a couple
of factors of the signs which appear. They have to do with our conventions as well as the
statistics which has to be followed by the theory, and this may not be too obvious, but
once one works out the full field theoretical formulation it becomes quite straight

forward to handle.



(Refer Slide Time: 19:53)

& Alatol_Locture! - Windows Jourmal
M Eal » ctons. Tooks e

"] 29 b W %) z
o) P2 r-PRw-
EEEilnemm u
(o) For pesi trmm g w wabtal stale | tha Sign

+
n; (e ) !"V"ﬂ’vl Er
i - Cf

w ()

(b) For ewvery closed fermaon II'F‘ amd  for each

|
ex (;J-»a,m,r}c u% ex £ ernal cdewnty cal l—fvmwu_én L,

there v & fa i rt 1) J:rww\ halistl ca
The overaldl s g cam be conventy v JJT emeand -

bt the relative a«jwdj hove & be ‘ftr.r_.i, correck lj :
These r ules l"_CM«\JL e associ zni&!l descr [‘tt MJ

{7, 0%1, e whed v mom enbum Spce The Fowries

tro- %orm.’, one f',f-XSLL"? corried oub

o MPTEL,

oL (s B e

So, there are signs, and there are two sources of this particular sign. One is that for
positrons in initial state; there is the sign is a minus 1 raise to the power of the number of
positron, and this arises from the various rules we have used to define the wave functions
or the free Dirac particles, and in particular there was an epsilon r which defined the sign
of the energy of the solution whether it is positive or negative. For positrons epsilon r is
equal to minus 1 and which enters in this whole analysis in some particular way. So, that
is one overall sign, and for every closed fermions loop and for each exchange of external
identical fermions lines, there is a factor of minus 1. And this is a consequence of
statistics in dealing with the single particle theory we have not seen statistics directly, but

in a field theory it has to be properly included.

And for the fermions the anti comumutators between various fields they produce this
statistical sign of minus 1 when two of them are exchanged, and the close fermions loop
is related to this statistical sign as | have illustrated in analysis of the Lorentz group. That
it is something which can be visualized as a rotation by 2 pi, and that rotation by 2 pi
produces the same sign as the sign for the statistics. So, these are overall signs picked by
the various conventions which we have used, and one more thing one can keep in mind
that the overall sign can be convention dependent, because quantum wave functions
cannot be specified with an absolute value of phase. But the relative signs they have to
be fixed correctly, because they correspond to observable interference; in fact then if you
do not get it right the answer will not be correct.



So, this is the summery of how to convert a given Feynman diagram to an algebraic
expression describing the scattering amplitude, and we will work out various examples
of a different level of complexity to illustrate these rules and algebraic calculations. But
there are some more things which can be easily added to these descriptions, and in
practical calculations these rules are often used in momentum space and which means
that we will Fourier transforms everything from the coordinate description to momentum
space. And that gives rise to description which is actually simpler, and the reason for it
that the propagators which we have written down look much simpler in a momentum

space than they look in position space.

And what happens in this Fourier transforms is that you have generic factors like e raise
to i p dot x for every point. So, in case of vertex it is just a single factor; in case of
propagator it will be a factor like e rise to i p dot x minus y where x and y are the two
ends, and then one has a description of the vertex and propagator both in a momentum
space. And then one can combine these various factors of e rise to i p dot x which
accumulate at every vertex from the position of the vertex itself as well as all the
propagator as well as external lines that may be connected to a vertex. And one has to do
an integral over the position of the vertex which can be now easily done in other trivial

fashion.
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So, at every vertex factors of type e raise to i p dot x accumulate and then integral over



position of the vertex which | wrote down produces a delta function, because integral of
a factors of e rise to i p dot x will just produce delta of the summation of all the momenta
corresponding to that particular. And we can see that that is delta 4 summation over all
the momenta, and it have to be counted in terms of the direction described by the arrow
of the various lines and so one has to now keep track of the momenta but in a direction

dependent manner.
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So, then now the momentum space diagram will have a momentum with direction which
is represented by drawing an arrow on the line for every line and extra momenta. So, one
draws a generic diagram. We have seen that the number of vertex is one plus the number
of propagators. So, the external lines have an incoming momentum which is provided by
the definition of the problem; we cannot do anything with it, but all the internal
propagators will have their own momentum. Then we will impose all the constraints at
every vertex that will keep on eliminating all the internal momenta one by one, and what
happens is one gets the number of delta functions correspondingly equal to the number

of vertices.

Now these number of delta function are capable of eliminating all the internal propagator
momenta for the tree diagrams, because the number of vertices is one plus the number of
propagators, but that extra one means that there is an one overall delta function is left.

So, that has to have a meaning, and it is quite obvious what that meaning is. For tree



diagrams all internal line momenta are uniquely assigned, because this relation which |
can schematically just write that v is equal to p plus 1, and overall delta function for the
momentum conservation remains. And that is the total outgoing momentum must equal

total incoming momentum for all the external legs of the diagram.

If that is not satisfied then there is no interaction at all, because the theory has an overall
translational symmetry, and the total momentum conservation must hold. So, this one
overall delta function completely factors out of the whole problem. We did the counting
for tree diagrams here, but it is true as well for any arbitrary diagram it may have extra
loops as well, but this overall momentum conservation is still valid. So, there will be
always be a factor of delta for p f minus p I, and many times it is convenient to factor it
out of the whole calculation as well, and write only the remaining part of the object
which corresponds to the so called transition matrix element.

So, in case of diagrams with loops there remain undetermined momenta going around
which are not at all constrained by what the external legs provide without running into
any conflict with momentum conservation. And this have to be integrated over, because
the Fourier transform always produces integrals d for x or d for p; if something is not
eliminated by delta functions, well we have to perform that particular integral. And in
case of loop diagrams these integrals may have to be handled with little care, because
their momenta go from minus infinity to plus infinity and these integrals have to be often
handled with care. We have not seen anything like the loop diagram picture so far, but
when it occurs and we will see some examples we have to be careful in how you deal

with these integrals over momenta.
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And typically, each loop gives a structure which is of integral in four dimensions, and the
care is required because some of this may diverge, and so the care which | mentioned is a
procedure which is called regularization. So, one has to do a little bit of jugglery to take
care of these loops, but that is a necessary price to pay once you go beyond the simple
equation of motion to a field theoretical language. And the normalizations of photons and

electrons | already wrote down, but I will repeat them once again.
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So, the normalization of external lines is chosen as per the plane wave convention. In



case of fermions it is a structure which is of the form square root of m over e which
normalizes according to the Lorentz contraction factor v is just box normalization for
unit valium. And the spinner is u or v depending on the positive or negative energy
solution, and for the photon we have written formula which | will repeat its 2 k v epsilon
mu being the polarization tensor and then the two forms either the positive energy part or

the negative energy part.

So, this is a sort of complete description quite elaborate in terms of various conventions,
but it is sufficient to now do calculations to any desired degree in the perturbation
expansion for any process described by the scattering matrix. | would like to make a few
comments about the nature of; we will get a series working out terms one by one in the
analysis, but then we want to compare it with other kind of perturbative expansions
which we have seen either in mathematical physics or in non-relativistic quantum
mechanics and compare what are the new features or related features which appear here.
So, one fact here is that the expansion contains denominators of type p square minus m
square plus i epsilon. Generically this is the feature in relativistic theories; for massless
photon m is 0, and for fermions it can be mass nonzero, but these are the factors which
appear, and they vanish in states which are called on shell which obey the dispersion

relation exactly you mean p square equal to m square.

In the expansion which we are constructing in the virtual quantum states these are so
called off shell propagators appearing as internal lines. They do not vanish, and this is
related to the fact that all these internal states are transients. They are not asymptotic
states. They can live for short times and in the short times you are allowed to have
fluctuations in energy as well as momenta consistent with the uncertainty principle. And
so the p square and m square can go little bit away from each other’s values and the
denominators then do not become zero. And that is the part which actually contributes to
physics, and what we do in this quantum theory calculated the contribution coming from
all these internal virtual states, and they add up to giving us full result for the
perturbation theory. And one can see the relation of this kind of objects to the description

which appears in normalativistic theory.
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Where in non relativistic quantum mechanics there are so called energy denominators in
perturbative expansions, and they correspond to virtual states which live for very short
times. So, one has a transition from one state to another, and then you come back to the
original states or produce another transition to another state and so on and so forth, and
the momentum is explicitly conserved in the non-relativistic expansion. But energy is not
that uncertainty in energy allows us to deal with this energy denominators which appear

in the expansion, and there so the p is conserved while E is not.

Here in the relativistic case we have already conserved the momentum at every vertex; it
came out from our formulation automatically, but the uncertainty is appearing as the
dispersion relation between energy and momentum is not conserved for all these internal
lines. So, it just got disguised in a different form, but the uncertainty principle is having a
particular effect in the structure of the calculation, and how we then sum over all these
internal diagrams, and one can see the relation between the two by just a simple

decomposition.
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If different time orderings are separated we did the reverse in combining the stop
functions into a single description with I epsilon prescription and so on, but if you now
go back and rewrite this propagator as sum over two different poles one corresponding
the positive energy and one corresponding to negative energy. Then all these factor of p
sguare minus they separate out into the energy denominator of the same nature as seen in
non-relativistic quantum mechanics, and in that case e is not conserved for individual
terms. Of course, the total energy momentum conservation is still exact that corresponds
to the overall delta function of p f minus p I. All these stuff is the internal virtual states
which do not have to obey this rule, and that is exactly the place through which the
quantum effects are entering if we do not allow these fluctuations of the states to official

part then we will have only the classical mechanics and no quantum effects at all.

So, this is one particular feature for the organization of perturbative expansion just
illustrating what it is. The other feature which is useful to note is the nature of this
particular series in terms of its convergence that you can write down order by order terms
in e, but it can be some of these things is any mean meaningful fashion; if not
analytically then can you do it numerically. So, that question has an unusual answer that
the series is actually not convergent, and so we have to put in some effort to make some

sense of that this particular series.

So, the first thing to note that the series expansion is in powers of the electromagnetic



charge, but if you go to processes which are charge conjugation symmetric, then one can
change e to minus e and expect not to see any difference at all in the result. And so the
series expansion is in powers of the fine structure constant and which in the
normalization which | have been using it is equal to e square by 4 pi. And so e goes to
minus e; alpha does not change, and that is a natural parameter which appears because
lots of processes which we calculate in this description are charge conjugation

symmetric.

And now one can ask what is the convergence property can then be analyzed in the
complex alpha plane around the expansion point alpha equal to 0? This is the standard
machinery of mathematical function when expanded in a series whether the series has a
analytical form, and it can be summed to any particular order or its non analytical, and
then it has no meaning in terms of a expansion. And the result is that the series is not
convergent for any alpha. This means more explicitly the expansion is zero radius of
convergence, but it has another name which is that the series is asymptotic, and we have
to understand these features in a little bit of detail; why it is so but a quick answer is that
the theory is unstable when analytically continued to alpha less than 0. And there is the
whole branch cut for the whole negative real axis of alpha, and we will see the argument

which substantiates this result next time it was provided by Dyson.



