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Lecture - 31
Abelian local gauge symmetry, the covariant derivative and invariants

In the previous lecture | discussed the theory of electromagnetic field based on the
classical equations that is the Maxwell’s equations; we identified the correct degrees of
freedom and also identified an important property of gauge invariants of those equations.
So, when you use the vector potential as a dynamical degree of freedom there are
unphysical components which are used for convenience in writing down the equations

but which can be eliminated later by imposing constraints.
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So, summary of all this can be said that the photons are massless particles with helicity
equal to plus or minus 1, and that is a language which gives the appropriate Lorentz
group representation to which photons belong; the both helicities together make a theory
which is symmetric under parity, and in describing the theories we found it convenient to
use the covariant language to make the Lorentz symmetry manifest. But in order to do
that we have to use the vector potential or which is also referred to as a gauge field A



mu. This has four degrees of freedom while that actual degree of physical field are only
two and so we saw how the imposition of gauge fixing constraint can be removed or can

be used to remove the unphysical components.

So, constraint of gauge fixing, then remove them, and that is the basis of the symmetry
which is referred to as gauge symmetry. The directions specified by those symmetric
transformations are not physical; they do not change any observable values, but they are
convenient in order to write down formulation which looks algebraically simpler. So,
this was all based on the equations of motions, and we need to give a little more general
framework to go to quantum theory which goes beyond the classical equation of motion,
and for that reason different language of describing this same theory is appropriate. And
that language is now the standard formulation for describing a general system of fields
which are known as gauge fields, and that has a direct connection with symmetries as

well as the accompanied features like conservation loss.
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So, this formulation starts out with constructing a local symmetry for a particular sort of
fields; there is no mention of what are the equations of motion at this stage. But we first
construct certain operations for the fields which appear in the theory and then worry
about in which way these fields are going to evolve, and what is the corresponding
Hamiltonian or the Lagrangian, and then the equation of motions will come out from that

particular analysis. So, the concept of local symmetry is to actually go beyond the



concept of symmetries which we have seen earlier in the course, where we have

essentially discussed the symmetries which can be called global symmetries.

So, these global symmetries have parameters of whatever the symmetry transformation
may be, and these are independent of the position or location in space time. For example,
the symmetries which we have heavily discussed is Poincare group symmetries which
included translation rotation boosts and even going beyond parity time reversal things
like that, and those symmetry at parameters for example, the rotation angle and the angle
was the same over the whole space time; it was independent of the particular location.
Now this symmetry is common in many theories Poincare group just happens one
particular example, but it can be often associated with specific choice of a basis, and one

can perform a transformation of bases which changes the values of various components.

But the overall observables are independent of the basis choice, and so they will be
independent of those particular parameters specifying the orientation of the axis, and
they all correspond to particular choice, and that is the concept of invariants that
observables do not change when you change bases. Now local symmetries extend this
concept to a next level by saying that not only there are going to be transformations, but
the transformations can be dependent on the location of the particular point. So, in local
symmetries; so, this extra freedom of choosing arbitrary transformation at different
points certainly enhances the degrees of freedom of the theory, and we have to find a
interpretation of what this extra degrees of freedom do, and also ask whether such exact
degree of freedom have any physical meaning in the problem which we are dealing with,

and if that is so then we have a new framework to study an extended theory.

And it turns out that taking a global symmetry and constructing this local symmetry out
of it by changing these parameters as a function of space time location produces a theory
which is a gauge theory, and we will now see explicit construction of it in a specific case
of the quantum mechanics which we are dealing with. Now historically this concept of
space time dependent transformation was introduced by Weyl in the context of Einstein’s
general theory of relativity and many of the terminology for that reason which has
entered this concept of local symmetry comes from the phrases defined and used in

general theory of relativity.



So, Einstein constructed the general theory of relativity based on the principles of
equivalence and constancy of speed of light, and Weyl then asked whether one can go
beyond this general theory of relativity in a certain manner. In particular the postulated
of general theory of relativity where such that it left the space time invariant interval
proper time or proper distance unchanged when one performs an arbitrary

transformations.
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So, the question was that d s square can also be written as minus d tau square is an
invariant. The question of Weyl was that this is an object with dimension of length, and
what if the standard measuring rod which is used to specify the length had different size
at different points in space time? And that is the reason for the nomenclature gauge
theory or gauge degree of freedom; gauge literally refers to a measuring rod, and this
extension turned out to be meaningless as far as general theory of relativity was

concerned.

Because Einstein quickly pointed out that such an arbitrariness in measuring rod is
inconsistent with the principles of general relativity, the postulates of equivalence and
constancy of speed of light do not allow such a degree of freedom, and so the concept
had to be put aside, but the name the gauge degree of freedom got stuck, and it was

resurrected when the concept of local symmetry came back in quantum mechanics. So,



that is a little bit of history of how the main gauge theory came about, and the concept

was resurrected when quantum mechanics came along.
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So, and here indeed there was an object which was unobservable, and that is the overall
phase of the wave function; one can measure relative phases between two different wave
function by doing an interference experiment, but the common phase was unobservable,
and so it was a phase symmetry which can be called a global symmetry. And then
Weyl’s idea was to convert this global phase symmetry to local phase symmetry and see
what happens to the theory; what are extra component which appear, and that is what |
am going to construct explicitly, but we do not call this whole structure a local phase
theory; we still call it a local gauge theory, and that has to do with the way history gives

names to various ideas as things develop and get revised.

So, let us give some basic definitions that we want to construct a description where the
phases can change from one point to another, but the overall theory does not see this
particular change in the phase. So, the basic object is wave function for a particle; let us
call it electron or any other charge particle will do, and let the transformation which we
want to implement is this local phase transformation be specified with the object. We
will need this particle to be charged because as we have seen earlier in the discussion of
Klein-Gordon equation as well as Majorana fermion that the wave function become real

if we have neutral particles. So, to get the phase we need a charged object and the



various constant inside here are stuck up with a little bit of foresight so that the equations
turn out to have the same form as we have used them before, and they are all the
fundamental constants of charge speed of light and Planck’s constant, and lambda x is

actually a real object which varies from one location to another.

So, we want to develop a set of equations and Hamiltonians, etcetera for this particular
object. So, that will have derivatives both space and time derivatives of psi also
appearing in the equations, and we would want a prescription which does not depend on
this value of lambda, and to do that the derivatives also need to appear in such a way that
they transform the same way as the wave function does. So, then the whole thing can be
just factorized out as an overall proportionality constant, and then the theory does not
care about what that proportionality constant is, because the equation of motion the right
hand side will be 0, and you can multiply by any nonzero constant, and it will have the

same solutions.

So, the derivatives should also transform the same way to keep the equations
independent of the phase which is parameterized by this function lambda x. Now clearly
an ordinary derivative does not do the same job because if when you try transforming
according to this particular rule you’ll see that there is a derivative d mu which can act
on lambda as well which will produce an extra term. So, d mu psi x will not be the same
phase specter times d mu psi X. So, we have to define a new kind of derivative, and the

name for it is covariant derivative.
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And this is rather easy to see, but I will write down the operator, and it is easier to see the
consequence of it that will define a covariant derivative as an ordinary derivative plus i e
by h cross ¢ times A mu where A mu is a new object. We have stuck it in the theory at
this particular stage by hand, and then we will have the property where A mu will be a
function of space time as well that. So, this is a transformation property we needed. Now
we can stick in the various quantity of what is going to happen to this covariant
derivative, and we will see immediately that if you take psi to this particular object e
raised to i then d mu will operate on it. So, there will be one term which will d mu
operates on psi, but there will be a partial derivative of mu which operates on a lambda,

and so this overall factor will come.

But there will be an extra term in lambda, and that term needs to be cancelled, and that
can be achieved by changing this extra quantity which we have inserted also changes,
and that changes exactly the one which we have seen before, and that was the reason for
using all this constant in a particular way that the derivative will produce d mu lambda,
and then a mu will also change by minus d mu lambda; the total result is that the whole
objects transforms wide overall phase. So, once this overall phase is outside then one can
now construct any complicated equations or Hamiltonians out of the wave function as
well as its covariant derivates and the whole theory is invariant under this local phase

symmetry.



But we have explicitly added the extra degrees of freedom; there was a phase, but now
we have to add an extra gauge field A mu which also gets connected to the
transformation in the phase. So, this is a whole structure of the theory; the new degrees
of freedom is explicitly appearing in the theory which is this gauge field A mu, and we

can now explore what all features come out of it.
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So, this structure actually described in a geometrical language which is called differential
geometry. The phase is a called a fiber bundle and the group which specifies this phase is
the group corresponding to rotation on a circle is just an angle which goes from 0 to 2 pi,
and it is periodic. So, this is actually a much more formal and mathematically regress
machinery; 1 am not going to use it per se, but this names again are commonly used. So, |
would like to mention these particular words which often appear in many text books in
describing gauge theories. Let me go ahead with the definitions which | have
constructed. Now it turns out that this covariant derivative describes translations just like

an ordinary derivative does.

But in undergoing this translations something simultaneously happens to the phase; the
phase is changing as you go from one place to another and the label for that is parallel
transport, and so it stand amount to carrying around a particular arrow pointing in the
direction of the phase, and then as you move along see what happens to that particular

arrow as you go around a trajectory. And some nontrivial features enter when this



function lambda is not 0, okay, and those are the features which now can be constructed
out of this covariant derivative, because it has all the information about how the phase is
changing in going from one phase to another, and this feature can be again summarized

in a simple way.

They do not commute with each other in particular one can explicitly workout this
commutator, and that is i e by h cross ¢, because the derivatives can produce nontrivial
effects on the A and which we know to be a definition of the electromagnetic field
tensor. So, the field arises as a nontrivial commutator of covariant derivatives, and in the
language of general relativity these non-commuting derivatives actually specify the
curvature of the space, and so the field in some sense measures the curvature in this
space of gauge degrees of freedom. And so we have a nonzero electromagnetic field
which means that the corresponding structure in this sense of fiber bundle has a certain
curvature, and that produces a nontrivial effect on the trajectories which we will now

look at modified; they will not be the same as what happens in a flat space.

So, this is the way f mu nu naturally appears in this whole description, and now one can
go ahead and construct whatever one wants, and in particular f mu nu again turns out to
be gauge invariant in the sense that the same transformation which psi. So, the whole
theory is. So, a gauge invariant theory can be constructed from suitable combinations of
psi d mu psi and f mu nu, and this structure is exactly what appears in the theory of
electrodynamics. But we have arrived now here in a much more geometric fashion about
what all things go on as one changes location and then change the phase of the particular
wave function, and here the wave function, change of phase, hands up getting reluctant
to the strength of the electromagnetic field. There are other features which can also be
seen which play an important role in looking at the gauge invariant objects which can be
constructed, and there are many such instances | will just want to point out an important

case.
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And that is let us define short form for this space time dependent phase, psi changes to,
then one can construct an object which is called a link between two points U x 1 and x 2,
and it is defined as exponential of minus i e h cross by c integral of A mu x d x mu
integrated from x 1 to x 2. And now one can see what happens one performs the gauge
transformation. A mu changes to A mu minus d mu lambda, and so d mu lambda can be
exactly integrated along this curve from x 1 to x 2, and it just produces the boundary
term which is value of lambda at x 2 minus value of lambda at x 1, and that can be
rewritten back in terms of v of x. So, then we only have an overall constant. So, it can be
written as V x 2 U x 1 x 2 and then V inverse of x 1, and this is a very useful form,

because it can be maintained quite easily while multiplying such segments together.

Whenever you take one segment and multiply by another the factors of V at either end
will cancel out in combining V and V inverse and then the whole segments then
transform. So, this is a covariant. So, we have a specific object single point object psi
transforming at V times I, and now we have a link connecting two points which
transforms at U going to V times U times V inverse. And we can now multiply this
objects of links together with psi and construct nontrivial products, and show that the
whole object can remain the same covariant transformation property and which can

ultimately be factored out to do various calculations and form equations.
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So, this transformation shows that one can have psi bar x 2 U x 1 to x 2 psi x 1 is gauge
invariant. This is a useful object; it is an extended object; it is a link. There is another
form which is also gauge invariant. And this is a trace of the same link but now taken
around a nontrivial loop in the space, but we come back to the same starting point and so
we have a V and V inverse, but both belonging to the same point. And | have written this
trace as a kind of generalization of these particular analyses which is not necessary in
case of electrodynamics but can be useful in other kind of gauge theory. So, when you
have a trace of V U V inverse the cyclic trace basically analytes V and V inverse at
either end, and you have the same object returning as trace of U, and so it is a gauge
invariant object as well, and this particular object is rather heavily used in analyses of

quantum field theory.

It is called a Wilson loop. In particular Wilson used this object heavily in studying a non-
perturbative formulation of gauge field theories. So, this is also a useful feature of how
we construct gauge invariant objects out of this various species, but this geometric
language and how things transform is extremely useful in this whole context. One
another things one can notice in this structure of the Wilson loop, one can use an infinite
decimal Wilson loop as a definition of the field strength itself, because this is a cyclic
integral one can easily apply stokes theorem to it. So, then it becomes an integral of f mu

nu over the area; the area can be made infinite decimal. So, the integral will be just



exponent of f mu nu times the little area f mu nu roughly constant over the infinite

decimal area.

And from that one can deduce whether there is a nontrivial electromagnetic field in that
particular region or not, and this is a kind of gauge invariant definition of what this field
is, and one does not have to refer to any particular strength. This is actually what can be
referred to a non-perturbative definition. We do not assume anything about how large or
small the magnitude of the gauge field is, and so these are useful concepts which come
out from this description of the local symmetry as a gauge theory concept. There are
some other things which are also useful to see that; in this description the A mu becomes
a fundamental variable, f mu nu is constructed as a subsidiary object or equivalently the

covariant derivative is a powerful element and everything comes out from the derivative.

So, the covariant derivative actually gives what is known as the minimal coupling of the
gauge theory. We have used it rather empirically earlier where p mu was just substituted
by p mu minus e time A mu, but looking at it from this framework of covariant
derivative we know exactly where it comes from. It is a consequence of the particular
phase symmetry structure and its corresponding fiber bundle. So, that is one concept, and
it can happen that this gauge field is nonzero, but the field strength is zero. This is not
surprising because F is a curl of A mu nu, just means that we have a curl free gauge

transformation and in a corresponding gauge field.
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And in this case there is a question psi x directly couples to A mu through the covariant
derivative, and if A mu is nonzero there can be situations where behavior of psi actually
changes even though F mu nu is zero, and this peculiarity is a famous Aharanov-Bohm
effect where one has a setup where the electromagnetic field F mu nu is 0. But A mu is
not in this region; the charge particle passes through, and it ends up changing its phase
which can be detected by an interference experiment on the other side of the region. So,
one can have a situation which essentially giving accrued diagrammatic representation at
one sends in a beam of particle which splits and then rejoins to produce a interference
effect on the screen or observable on the either side. But the pass can be such that at

nowhere in the regions of path there is a nontrivial F mu nu.

But one can cook up a situation such that the phases corresponding to the two effects are
different that can happen because the Wilson loop which corresponds to this whole loop
of trajectory can have a nontrivial value, and we have seen that because of stokes
theorem it means that F mu nu has to be 0 at some point in the trajectory, but in the
centre of the loop where the particle does not go through, it can be nonzero and then the
Wilson loop can have a nontrivial value, and so one has an interference effect with a
certain phase change. So, one can have a situation of two different setups; in one case
there is a electromagnetic field inside the loop, and another case there is not, and
comparison shows whether the introduction of the electromagnetic field in the loop
changes the interference pattern or not in particular shift sit in one direction or the other

if that does happen, then certainly the electromagnetic field produce a nontrivial effect.

And that can be paraphrased as flux is enclosed inside the loop, and so one can observe
this peculiar feature and the various concept which we have introduced in this rather
nontrivial experiment, and it is certainly experimentally observed, and in that particular
sense in a sense A mu is more fundamental than F mu nu, because one sees the effect of
A mu directly on the wave function even when F mu nu is absent. So, these are all the
useful geometric concepts connected with gauge field and its symmetry properties, and
now we will go on to the next stage trying to couple it with electromagnetic interactions

of Dirac particles.



