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Lecture - 31 
Abelian local gauge symmetry, the covariant derivative and invariants 

 

In the previous lecture I discussed the theory of electromagnetic field based on the 

classical equations that is the Maxwell’s equations; we identified the correct degrees of 

freedom and also identified an important property of gauge invariants of those equations. 

So, when you use the vector potential as a dynamical degree of freedom there are 

unphysical components which are used for convenience in writing down the equations 

but which can be eliminated later by imposing constraints. 
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So, summary of all this can be said that the photons are massless particles with helicity 

equal to plus or minus 1, and that is a language which gives the appropriate Lorentz 

group representation to which photons belong; the both helicities together make a theory 

which is symmetric under parity, and in describing the theories we found it convenient to 

use the covariant language to make the Lorentz symmetry manifest. But in order to do 

that we have to use the vector potential or which is also referred to as a gauge field A 



mu. This has four degrees of freedom while that actual degree of physical field are only 

two and so we saw how the imposition of gauge fixing constraint can be removed or can 

be used to remove the unphysical components. 

So, constraint of gauge fixing, then remove them, and that is the basis of the symmetry 

which is referred to as gauge symmetry. The directions specified by those symmetric 

transformations are not physical; they do not change any observable values, but they are 

convenient in order to write down formulation which looks algebraically simpler. So, 

this was all based on the equations of motions, and we need to give a little more general 

framework to go to quantum theory which goes beyond the classical equation of motion, 

and for that reason different language of describing this same theory is appropriate. And 

that language is now the standard formulation for describing a general system of fields 

which are known as gauge fields, and that has a direct connection with symmetries as 

well as the accompanied features like conservation loss. 
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So, this formulation starts out with constructing a local symmetry for a particular sort of 

fields; there is no mention of what are the equations of motion at this stage. But we first 

construct certain operations for the fields which appear in the theory and then worry 

about in which way these fields are going to evolve, and what is the corresponding 

Hamiltonian or the Lagrangian, and then the equation of motions will come out from that 

particular analysis. So, the concept of local symmetry is to actually go beyond the 



concept of symmetries which we have seen earlier in the course, where we have 

essentially discussed the symmetries which can be called global symmetries. 

So, these global symmetries have parameters of whatever the symmetry transformation 

may be, and these are independent of the position or location in space time. For example, 

the symmetries which we have heavily discussed is Poincare group symmetries which 

included translation rotation boosts and even going beyond parity time reversal things 

like that, and those symmetry at parameters for example, the rotation angle and the angle 

was the same over the whole space time; it was independent of the particular location. 

Now this symmetry is common in many theories Poincare group just happens one 

particular example, but it can be often associated with specific choice of a basis, and one 

can perform a transformation of bases which changes the values of various components. 

But the overall observables are independent of the basis choice, and so they will be 

independent of those particular parameters specifying the orientation of the axis, and 

they all correspond to particular choice, and that is the concept of invariants that 

observables do not change when you change bases. Now local symmetries extend this 

concept to a next level by saying that not only there are going to be transformations, but 

the transformations can be dependent on the location of the particular point. So, in local 

symmetries; so, this extra freedom of choosing arbitrary transformation at different 

points certainly enhances the degrees of freedom of the theory, and we have to find a 

interpretation of what this extra degrees of freedom do, and also ask whether such exact 

degree of freedom have any physical meaning in the problem which we are dealing with, 

and if that is so then we have a new framework to study an extended theory. 

And it turns out that taking a global symmetry and constructing this local symmetry out 

of it by changing these parameters as a function of space time location produces a theory 

which is a gauge theory, and we will now see explicit construction of it in a specific case 

of the quantum mechanics which we are dealing with. Now historically this concept of 

space time dependent transformation was introduced by Weyl in the context of Einstein’s 

general theory of relativity and many of the terminology for that reason which has 

entered this concept of local symmetry comes from the phrases defined and used in 

general theory of relativity. 



So, Einstein constructed the general theory of relativity based on the principles of 

equivalence and constancy of speed of light, and Weyl then asked whether one can go 

beyond this general theory of relativity in a certain manner. In particular the postulated 

of general theory of relativity where such that it left the space time invariant interval 

proper time or proper distance unchanged when one performs an arbitrary 

transformations. 
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So, the question was that d s square can also be written as minus d tau square is an 

invariant. The question of Weyl was that this is an object with dimension of length, and 

what if the standard measuring rod which is used to specify the length had different size 

at different points in space time? And that is the reason for the nomenclature gauge 

theory or gauge degree of freedom; gauge literally refers to a measuring rod, and this 

extension turned out to be meaningless as far as general theory of relativity was 

concerned. 

Because Einstein quickly pointed out that such an arbitrariness in measuring rod is 

inconsistent with the principles of general relativity, the postulates of equivalence and 

constancy of speed of light do not allow such a degree of freedom, and so the concept 

had to be put aside, but the name the gauge degree of freedom got stuck, and it was 

resurrected when the concept of local symmetry came back in quantum mechanics. So, 



that is a little bit of history of how the main gauge theory came about, and the concept 

was resurrected when quantum mechanics came along. 
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So, and here indeed there was an object which was unobservable, and that is the overall 

phase of the wave function; one can measure relative phases between two different wave 

function by doing an interference experiment, but the common phase was unobservable, 

and so it was a phase symmetry which can be called a global symmetry. And then 

Weyl’s idea was to convert this global phase symmetry to local phase symmetry and see 

what happens to the theory; what are extra component which appear, and that is what I 

am going to construct explicitly, but we do not call this whole structure a local phase 

theory; we still call it a local gauge theory, and that has to do with the way history gives 

names to various ideas as things develop and get revised. 

So, let us give some basic definitions that we want to construct a description where the 

phases can change from one point to another, but the overall theory does not see this 

particular change in the phase. So, the basic object is wave function for a particle; let us 

call it electron or any other charge particle will do, and let the transformation which we 

want to implement is this local phase transformation be specified with the object. We 

will need this particle to be charged because as we have seen earlier in the discussion of 

Klein-Gordon equation as well as Majorana fermion that the wave function become real 

if we have neutral particles. So, to get the phase we need a charged object and the 



various constant inside here are stuck up with a little bit of foresight so that the equations 

turn out to have the same form as we have used them before, and they are all the 

fundamental constants of charge speed of light and Planck’s constant, and lambda x is 

actually a real object which varies from one location to another. 

So, we want to develop a set of equations and Hamiltonians, etcetera for this particular 

object. So, that will have derivatives both space and time derivatives of psi also 

appearing in the equations, and we would want a prescription which does not depend on 

this value of lambda, and to do that the derivatives also need to appear in such a way that 

they transform the same way as the wave function does. So, then the whole thing can be 

just factorized out as an overall proportionality constant, and then the theory does not 

care about what that proportionality constant is, because the equation of motion the right 

hand side will be 0, and you can multiply by any nonzero constant, and it will have the 

same solutions. 

So, the derivatives should also transform the same way to keep the equations 

independent of the phase which is parameterized by this function lambda x. Now clearly 

an ordinary derivative does not do the same job because if when you try transforming 

according to this particular rule you’ll see that there is a derivative d mu which can act 

on lambda as well which will produce an extra term. So, d mu psi x will not be the same 

phase specter times d mu psi x. So, we have to define a new kind of derivative, and the 

name for it is covariant derivative. 



(Refer Slide Time: 27:00) 

 

And this is rather easy to see, but I will write down the operator, and it is easier to see the 

consequence of it that will define a covariant derivative as an ordinary derivative plus i e 

by h cross c times A mu where A mu is a new object. We have stuck it in the theory at 

this particular stage by hand, and then we will have the property where A mu will be a 

function of space time as well that. So, this is a transformation property we needed. Now 

we can stick in the various quantity of what is going to happen to this covariant 

derivative, and we will see immediately that if you take psi to this particular object e 

raised to i then d mu will operate on it. So, there will be one term which will d mu 

operates on psi, but there will be a partial derivative of mu which operates on a lambda, 

and so this overall factor will come. 

But there will be an extra term in lambda, and that term needs to be cancelled, and that 

can be achieved by changing this extra quantity which we have inserted also changes, 

and that changes exactly the one which we have seen before, and that was the reason for 

using all this constant in a particular way that the derivative will produce d mu lambda, 

and then a mu will also change by minus d mu lambda; the total result is that the whole 

objects transforms wide overall phase. So, once this overall phase is outside then one can 

now construct any complicated equations or Hamiltonians out of the wave function as 

well as its covariant derivates and the whole theory is invariant under this local phase 

symmetry. 



But we have explicitly added the extra degrees of freedom; there was a phase, but now 

we have to add an extra gauge field A mu which also gets connected to the 

transformation in the phase. So, this is a whole structure of the theory; the new degrees 

of freedom is explicitly appearing in the theory which is this gauge field A mu, and we 

can now explore what all features come out of it. 
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So, this structure actually described in a geometrical language which is called differential 

geometry. The phase is a called a fiber bundle and the group which specifies this phase is 

the group corresponding to rotation on a circle is just an angle which goes from 0 to 2 pi, 

and it is periodic. So, this is actually a much more formal and mathematically regress 

machinery; I am not going to use it per se, but this names again are commonly used. So, I 

would like to mention these particular words which often appear in many text books in 

describing gauge theories. Let me go ahead with the definitions which I have 

constructed. Now it turns out that this covariant derivative describes translations just like 

an ordinary derivative does. 

But in undergoing this translations something simultaneously happens to the phase; the 

phase is changing as you go from one place to another and the label for that is parallel 

transport, and so it stand amount to carrying around a particular arrow pointing in the 

direction of the phase, and then as you move along see what happens to that particular 

arrow as you go around a trajectory. And some nontrivial features enter when this 



function lambda is not 0, okay, and those are the features which now can be constructed 

out of this covariant derivative, because it has all the information about how the phase is 

changing in going from one phase to another, and this feature can be again summarized 

in a simple way. 

They do not commute with each other in particular one can explicitly workout this 

commutator, and that is i e by h cross c, because the derivatives can produce nontrivial 

effects on the A and which we know to be a definition of the electromagnetic field 

tensor. So, the field arises as a nontrivial commutator of covariant derivatives, and in the 

language of general relativity these non-commuting derivatives actually specify the 

curvature of the space, and so the field in some sense measures the curvature in this 

space of gauge degrees of freedom. And so we have a nonzero electromagnetic field 

which means that the corresponding structure in this sense of fiber bundle has a certain 

curvature, and that produces a nontrivial effect on the trajectories which we will now 

look at modified; they will not be the same as what happens in a flat space. 

So, this is the way f mu nu naturally appears in this whole description, and now one can 

go ahead and construct whatever one wants, and in particular f mu nu again turns out to 

be gauge invariant in the sense that the same transformation which psi. So, the whole 

theory is. So, a gauge invariant theory can be constructed from suitable combinations of 

psi d mu psi and f mu nu, and this structure is exactly what appears in the theory of 

electrodynamics. But we have arrived now here in a much more geometric fashion about 

what all things go on as one changes location and then change the phase of the particular 

wave function, and here the wave function, change of phase, hands up getting reluctant 

to the strength of the electromagnetic field. There are other features which can also be 

seen which play an important role in looking at the gauge invariant objects which can be 

constructed, and there are many such instances I will just want to point out an important 

case. 
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And that is let us define short form for this space time dependent phase, psi changes to, 

then one can construct an object which is called a link between two points U x 1 and x 2, 

and it is defined as exponential of minus i e h cross by c integral of A mu x d x mu 

integrated from x 1 to x 2. And now one can see what happens one performs the gauge 

transformation. A mu changes to A mu minus d mu lambda, and so d mu lambda can be 

exactly integrated along this curve from x 1 to x 2, and it just produces the boundary 

term which is value of lambda at x 2 minus value of lambda at x 1, and that can be 

rewritten back in terms of v of x. So, then we only have an overall constant. So, it can be 

written as V x 2 U x 1 x 2 and then V inverse of x 1, and this is a very useful form, 

because it can be maintained quite easily while multiplying such segments together. 

Whenever you take one segment and multiply by another the factors of V at either end 

will cancel out in combining V and V inverse and then the whole segments then 

transform. So, this is a covariant. So, we have a specific object single point object psi 

transforming at V times I, and now we have a link connecting two points which 

transforms at U going to V times U times V inverse. And we can now multiply this 

objects of links together with psi and construct nontrivial products, and show that the 

whole object can remain the same covariant transformation property and which can 

ultimately be factored out to do various calculations and form equations.  
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So, this transformation shows that one can have psi bar x 2 U x 1 to x 2 psi x 1 is gauge 

invariant. This is a useful object; it is an extended object; it is a link. There is another 

form which is also gauge invariant. And this is a trace of the same link but now taken 

around a nontrivial loop in the space, but we come back to the same starting point and so 

we have a V and V inverse, but both belonging to the same point. And I have written this 

trace as a kind of generalization of these particular analyses which is not necessary in 

case of electrodynamics but can be useful in other kind of gauge theory. So, when you 

have a trace of V U V inverse the cyclic trace basically analytes V and V inverse at 

either end, and you have the same object returning as trace of U, and so it is a gauge 

invariant object as well, and this particular object is rather heavily used in analyses of 

quantum field theory. 

It is called a Wilson loop. In particular Wilson used this object heavily in studying a non-

perturbative formulation of gauge field theories. So, this is also a useful feature of how 

we construct gauge invariant objects out of this various species, but this geometric 

language and how things transform is extremely useful in this whole context. One 

another things one can notice in this structure of the Wilson loop, one can use an infinite 

decimal Wilson loop as a definition of the field strength itself, because this is a cyclic 

integral one can easily apply stokes theorem to it. So, then it becomes an integral of f mu 

nu over the area; the area can be made infinite decimal. So, the integral will be just 



exponent of f mu nu times the little area f mu nu roughly constant over the infinite 

decimal area. 

And from that one can deduce whether there is a nontrivial electromagnetic field in that 

particular region or not, and this is a kind of gauge invariant definition of what this field 

is, and one does not have to refer to any particular strength. This is actually what can be 

referred to a non-perturbative definition. We do not assume anything about how large or 

small the magnitude of the gauge field is, and so these are useful concepts which come 

out from this description of the local symmetry as a gauge theory concept. There are 

some other things which are also useful to see that; in this description the A mu becomes 

a fundamental variable, f mu nu is constructed as a subsidiary object or equivalently the 

covariant derivative is a powerful element and everything comes out from the derivative. 

So, the covariant derivative actually gives what is known as the minimal coupling of the 

gauge theory. We have used it rather empirically earlier where p mu was just substituted 

by p mu minus e time A mu, but looking at it from this framework of covariant 

derivative we know exactly where it comes from. It is a consequence of the particular 

phase symmetry structure and its corresponding fiber bundle. So, that is one concept, and 

it can happen that this gauge field is nonzero, but the field strength is zero. This is not 

surprising because F is a curl of A mu nu, just means that we have a curl free gauge 

transformation and in a corresponding gauge field. 
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And in this case there is a question psi x directly couples to A mu through the covariant 

derivative, and if A mu is nonzero there can be situations where behavior of psi actually 

changes even though F mu nu is zero, and this peculiarity is a famous Aharanov-Bohm 

effect where one has a setup where the electromagnetic field F mu nu is 0. But A mu is 

not in this region; the charge particle passes through, and it ends up changing its phase 

which can be detected by an interference experiment on the other side of the region. So, 

one can have a situation which essentially giving accrued diagrammatic representation at 

one sends in a beam of particle which splits and then rejoins to produce a interference 

effect on the screen or observable on the either side. But the pass can be such that at 

nowhere in the regions of path there is a nontrivial F mu nu. 

But one can cook up a situation such that the phases corresponding to the two effects are 

different that can happen because the Wilson loop which corresponds to this whole loop 

of trajectory can have a nontrivial value, and we have seen that because of stokes 

theorem it means that F mu nu has to be 0 at some point in the trajectory, but in the 

centre of the loop where the particle does not go through, it can be nonzero and then the 

Wilson loop can have a nontrivial value, and so one has an interference effect with a 

certain phase change. So, one can have a situation of two different setups; in one case 

there is a electromagnetic field inside the loop, and another case there is not, and 

comparison shows whether the introduction of the electromagnetic field in the loop 

changes the interference pattern or not in particular shift sit in one direction or the other 

if that does happen, then certainly the electromagnetic field produce a nontrivial effect. 

And that can be paraphrased as flux is enclosed inside the loop, and so one can observe 

this peculiar feature and the various concept which we have introduced in this rather 

nontrivial experiment, and it is certainly experimentally observed, and in that particular 

sense in a sense A mu is more fundamental than F mu nu, because one sees the effect of 

A mu directly on the wave function even when F mu nu is absent. So, these are all the 

useful geometric concepts connected with gauge field and its symmetry properties, and 

now we will go on to the next stage trying to couple it with electromagnetic interactions 

of Dirac particles. 


