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We constructed the transformation matrix for the Dirac spinor by demanding that the 

equation remains covariant when a Lorentz transformation is applied. And that lead us to 

this explicit form for the matrix S and the corresponding generators sigma mu nu. Now, 

we are in position to construct various operators and more complicated quantities, which 

will have specific transformation rules under Lorentz transformations. And so we can 

now just work out some simple examples one by one. 
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The first thing is to construct the adjoint spinor; just like psi goes to S times psi, we want 

to find a quantity, which transforms as psi bar goes to psi bar S inverse. And this defines 

the so-called adjoint spinor, and one can construct invariance by combining psi bar and 

psi, so that the factors S cancel out. Now, the Hermitian conjugate of psi actually does 

not obey this property, because the matrix as is not always unitary. But, we saw how to 

find an inverse of S by taking the Hermitian conjugate of S, but adding extra factors of 

gamma 0. And that allows us to see the solution of this particular result that then we can 



choose psi bar is equal to psi dagger times gamma 0. When one takes Hermitian 

conjugate equation of psi, one get S dagger. But, then the extra factor of gamma 0 

converts the S dagger to S inverse. Various constructions involving Dirac Spinors 

heavily use this particular form that, everything is written in terms of psi and psi bar; psi 

dagger actually is very rarely used. So, this is one particular structure. 

What about the gamma matrix itself? We saw the relation for the gamma matrix, which 

involved both the transformation rules for the space coordinates as well as the 

transformation rules for the spinor coordinates. And that is because the gamma matrices 

of both the vector space-time index as well the spinor internal space index. And so when 

x goes to lambda x, that leads to a double transformation rule for the gamma matrix, 

which we already seen before. Let me show it again, which is lambda gamma is equal to 

S inverse gamma S.  

So, we can rewrite this equation in an equivalent form that, gamma mu will go to S times 

lambda gamma times S inverse. The lambda gamma basically performs the 

transformation on the vector index. And S and S inverse on either side performs the 

transformation on the two spinor indices that each gamma matrices has. So, now, this all 

machinery for psi as well as gamma allows us to create lots of different invariant 

quantities. Some simple examples are that, if I construct psi bar psi is Lorentz invariant. 

One can combine some of these gamma matrices together with it. 

Let us look at the simplest case, which is psi bar gamma mu psi. In this combination, 

under the Lorentz transformation, the factors of S completely cancel out; only the 

lambda remains and the lambda just transforms space-time coordinates. So, this is a 

vector and one can go further. In this kind of construction, the particular structure psi bar 

gamma mu psi is important, because it is also the expression for the current. So, psi bar 

gamma mu psi is the current; and its time component, which happens to be psi dagger 

psi, is the density. We have seen both these structures before psi dagger psi as the density 

and psi bar gamma mu psi as the special component of the current. And they now 

naturally appear in this form and we explicitly see that, the Lorentz transformation of 

properties indeed that of 4-vector, which is necessary for describing a current. 
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One can now go further and define all possible structures, which can be constructed by 

products of spinors and various kind of gamma matrices. This internal space spanned by 

gamma matrices has sixteen independent components. These are just the complex entries 

of the 4 by 4 matrices. And one can now construct a basis, which is useful in dealing 

with Lorentz symmetry. As far as just the matrix is concerned, one can just look at each 

entry as the independent orthogonal component. But, the Lorentz symmetry requires 

specific transformation rules. And it turns out that, little bit of rearrangement helps. 16-

component basis can be specified with simple Lorentz transformation properties. We 

have so far only dealt with the matrix as per continuous Lorentz transformation. To this, 

we can add the usual discrete symmetry parity and time reversal. 

In the case of Dirac equation, we have already seen what these discrete operations of 

parity and time reversal are and those operators, where gamma 0 and i gamma 1 gamma 

3 with complex conjugation respectively. Operator for parity was gamma 0 and operator 

for time reversal was i gamma 1 gamma 3, and then the complex conjugation of the 

spinor. This time reversal operator was specific to the Dirac basis, while the gamma 0 is 

independent of the choice of the basis. We will use basically the Lorentz transformation 

together with parity to specify generic properties. So, that allows classifications of 

operators by their J P properties, where J comes from the continuous part of the Lorentz 

group and specifies the angular momentum or equivalently the spin value for the 



operator. And P is the discrete part. It is the value coming from what happens to the 

operator under parity. So, now, let us construct the orthogonal basis. 

This is a conventional orthogonal basis and it has a normalization that, each operator 

squares to plus or minus 1. The minus 1 is necessary, because some of the operators are 

anti-Hermitian. And then you have to have either a factor of i or let it be minus 1. That 

cannot be avoided, because the Clifford algebra itself says that, the anticommutator of 

the gamma matrix produces the Minkowski metrics. And Minkowski metric has both 

plus or minus 1 sitting inside them. These are the 16 operators; I am just going to write 

down. First is identity; the second are the 4 gamma matrices themselves; the third one is 

objects described by 2 gamma matrices. And the symmetric part just leads back to the 

Minkowski metric. So, we have to look at the antisymmetric part. And that 

antisymmetric part we have already selected as the generators of the Lorentz 

transformation. And I might as well choose these objects to be sigma mu nu. 

Then, comes the stage; one can have three Lorentz indices; but using again the Clifford 

algebra, the three are giving a nontrivial contribution only when they are completely 

antisymmetrized. Antisymmetric component reduces to Minkowski metric. So, we have 

three antisymmetrized products. And that can be written as say mu nu rho – anti 

symmetrized. But, one can also now rewrite it as the fourth component multiplied by 

gamma 5, because gamma 5 has all the 4 components antisymmetrized inside it. And the 

last one will be the product of 4 gamma matrices completely antisymmetrized and that 

might as well be written as gamma 5. The list ends here in a sense, because if you count 

the number of operators, there is 1; there are 4 here; there are 6 here; there are another 4 

here; and there is 1 here and there add up to the 16 components. 

Beyond this, any product of more than 4 gamma matrices can always be reduced to this 

form either using Clifford algebra or using the definition of gamma 5. If you have more 

indices, you can always either symmetrize it or antisymmetrize it. And then it all boils 

down to these 16 components. And since we have chosen them as a specific 

constructions, there are all orthogonal to each other. And orthogonality can be specified 

in many different ways. One way is to take the product of any two components. And 

these are matrices and take a trace. And if two components are not equal, the trace is 0. 

That again follows rather trivially, because the matrices obey Clifford algebra as well as 



the matrices are trace less. So, if you pick two operators from a different set, you will 

end up with a traceless matrix; hence, that implies orthogonality. 

Now, we can work out the value for the angular momentum together with parity for this 

particular case. This is a list of matrices gamma. And this whole object has the form psi 

bar gamma psi. So, the gamma matrix is inserted between psi bar and psi. And we saw 

that, if you pick identity, psi bar psi is Lorentz invariant. And so the corresponding value 

of J P in this particular case happens to be 0. The parity is plus, because identity matrix 

does not transform under parity operator, which is gamma 0. 
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What about the next one? This is the vector. The single Lorentz index indicates that, its 

transformation property is like a spin 1 object. One can go to the rest frame; and in that 

frame gamma i defines the same object as the three components of the space coordinates 

or equivalently the momentum coordinates. And its property under parity is given by P 

gamma mu P inverse, where P is essentially gamma 0. The space components 

anticommute with gamma 0. And so this object transforms as 1 minus, which is the 

property of a genuine vector under transformation of rotation and parity. What about 

sigma mu nu? It has two indices.  

And so it is going to transform as a 2-index Lorentz object. And one typically calls these 

things as tensors. And you can construct objects of various spins and parity from these 

constructions by projecting on to various different components. I will not write them 



down explicitly. But, it is an asymmetric tensor similar to the electromagnetic tensor f 

mu nu. So, one can in principle break it up into the electric part and the magnetic part 

with specific transformation property under rotation as well as parity. 

The next object gamma tau gamma 5 has the same property as far as the spin is 

concerned, because gamma 5 is a scalar under Lorentz transformations. The gamma 5 

basically commutes with the matrix S for the simple reason that, the S involves the 

generator sigma mu nu, which has two gamma matrices; gamma 5 anti commutes with 

each of them. So, gamma 5 ends up commuting with sigma mu nu. And so it left time 

invariant under S. So, it is a scalar. So, the spin part of this gamma tau gamma 5 is still 1 

just like as in case of vector. But, gamma 5 does change the parity of the operator, 

because under gamma 0, gamma 0 gamma 5 gamma 0 inverse produces a negative sign 

times gamma 5. So, it is an object with opposite parity compared to the vector. And it is 

sometimes called as a pseudo vector, sometimes it is called axial vector. 

And, gamma 5 – we already dealt with it; it does not transform under S, but its parity is 

negative. So, it behaves like a pseudo scalar. And these abbreviations are often used. So, 

it is S, V, T, A and P. This is now a very useful organization of the 16 independent 

components specifying the internal space spanned by gamma matrices. And we have 

broken up those components according to the simple properties of Lorentz 

transformations. These are now helpful in dealing with many detail calculations of 

interactions of electrons with photons and many other kind of fields, where spinors 

appear interacting with other fields, which are consistent with Lorentz symmetry. 
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We have a complete list of operators and basis. Let us now specify the spinors 

themselves explicitly by going to the little group. And that is convenient to give a 

complete description of the states in any basis or any frame. General form of the so-

called spinor wave functions; we have already seen that, the generic solutions are kind of 

plane wave. And what we want to do is reorganize these plane waves in a form 

consistent with Lorentz symmetry. So, we will first specify the wave functions in the rest 

frame of the particle in which case the momentum is basically zeroth component, is a 

mass; and special component all vanish. And then you can go to a general state by a 

boost operation to whatever momentum you desire. Or, in the rest frame, the spin 

coordinate can also be specified by various directions and you can apply the rotation 

operator to go to a particular spin direction as well. 

Free particle solutions will denote them as psi with a superscript r and r will take 4 

values corresponding to the 4 spinor components. And this will be organized in terms of 

the spinor description and an overall phase, which describes the plane wave structure. It 

is p mu x mu by h cross. And we have explicitly put a label epsilon r, which is actually 

the sign of the energy, because it is conventional to describe all the solutions with the 

component p 0 always positive. And so whenever the energy is negative, we will take 

into account that fact by putting epsilon r equal to minus 1. This is a choice for certain 

conveniences; it is not always necessary. But, it has become common place. So, we will 

just use this. These are the four so-called plane wave structure solutions, where omega r 



p is now completely in the spinor space; and we want to find a convenient basis to 

describe these 4 components. 

In the rest frame, you can just take the 4 values rather in a simple-minded fashion as just 

the 4 components: 1, 0, 0, 0; second one will be 0, 1, 0, 0; third one will be 0, 0, 1, 0; and 

fourth one will be 0, 0, 0, 1. And this basis is orthornormal. So, it is quite convenient; 

just 1’s and 0’s; nothing more complicated. And then in an arbitrary frame, we can 

obtain omega r with some p. Because of the conventions, we have chosen; and the 

description of the wave P 0 is always positive square root of p square plus m square. So, 

it does not matter whether you specify only the 3-momentum or a 4-momentum; they are 

equivalent. And all that happens is one has to apply the boost or rotation operation, 

which we discussed just before; which is the matrix demoted by S. So, this gives a 

complete specification. 

First, the rest frame is the frame of the little group in which we specified a complete 

basis. And then we can go to an arbitrary frame just as we discussed for generic one 

particle states in the classification of Lorentz group solution. In this particular case, it is 

just the operator S, which we need do that. This can be now constructed case by case, 

because we exactly know what the operator S is, we know what the generator sigma mu 

nu are; and the parameters omega mu nu will describe what is the rapidity for the boost 

or what is the angle for the rotation. The equations satisfied by these objects can also be 

written and they correspond to p slash minus epsilon r m c acting on omega r p equal to 

0. So, this is the Dirac equation after removing all the space-time derivatives in favor of 

the eigenvalues p mu. That is the effect of this phase factor in the solution. 

And, the epsilon r, which comes together with p mu – I have just multiplied it through 

and put it in front of the mass term. So, this is the Dirac equation. But, now we do not 

worry about the space-time; p’s are basically just some numbers; they are eigenvalues 

corresponding to the plane wave. The corresponding adjoint equation can now be easily 

obtained. But, now, we will use this notation omega bar; and that is useful for taking the 

adjoint, because gamma 0 is Hermitian, but gamma i are anti-Hermitian. And that extra 

sign is canceled by the gamma 0 buried inside this omega bar. So, the equation does take 

essentially similar looking form as the original equation; just the multiplication order is 

opposite. The equation for omega dagger would not have such a simple form. And that is 

why it is much more convenient to deal with these objects omega bar. This can be also 



directly solved to obtain omega and omega bar if desired, but it is generally more 

convenient to start with a rest frame basis and apply the necessary boost or rotation 

transformation. 

The point of doing all these exercises is that, one can now construct the orthogonal 

relations not in just the rest frame, where it is rather trivial, but in an arbitrary frame, 

which specifies basically just the fact that, you have a complete basis. That relations are 

orthogonality and completeness relations that, omega r bar with some momentum p and 

omega r prime with the same momentum p, is delta r r prime; which is fine, because 

omega transforms by S; the omega bar transform with S inverse and they cancel. And so 

the product will be the same as what it will be in the rest frame. But, in the rest frame, 

the product involves an extra gamma 0, which is buried in the definition of omega bar. 

And so you will get plus 1 or minus 1 depending on whether you are using upper 

component or the lower component. And that sign is precisely what is specified by 

epsilon r. And so this is an orthogonality relation of these general Lorentz spinors. 

And, one can now write down a completeness relation as well, which sums all the 4 

components and guarantees that you will get back the original objects. That can be now 

written as the same objects, but multiplied in an opposite order. And I will again include 

the factor of epsilon r, which is necessary to get rid of the extra contribution coming 

from gamma 0 part of omega bar. So, this relation is now given in terms of these indices 

not contracted. So, there is an overall matrix leftover. And the completeness says that, 

the matrix should be the identity. We can now construct this product and evaluate it 

explicitly. It is the contraction of S with some indices alpha gamma omega gamma with 

an index r of 0. Then omega bar has an opposite transformation rule S; now, it is inverse 

together with the indices delta and beta. 
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And, we have all the necessary machinery to evaluate this thing in a rather simple-

minded form. The completeness for the zeroth part already holds in a very simple 

fashion; it is identity, but this epsilon r is needed to cancel the gamma 0 buried inside it. 

Using that completeness in the rest frame, we will end up with S alpha gamma, then 

delta gamma delta, and S inverse delta beta, which is nothing but the Kronecker delta of 

alpha beta, which is what we need for the completeness relation to hold. So, this is a 

rather simple form; just because of this convention of putting epsilon r, we have to keep 

track of it. And every time we use omega bar, the corresponding factors of epsilon r will 

appear to cancel the sign buried inside gamma 0. So, this is a useful property. We have 

now a complete orthogonal basis; it is normalized and it also satisfies the completeness 

relations. Any arbitrary spinor can always be decomposed in terms of various 

components in this basis. 
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I also want to point out related forms, which do not involve omega bar, but involve only 

omega dagger. And one can actually derive them in a rather straightforward fashion with 

little algebra. They can be written now as the contraction of omega dagger with omega. 

And here it is necessary to put in these factors of epsilon together with p as they appear 

in the plane wave expansion directly. So, this specifies the actual momentum. And when 

you contract omega dagger with omega, there are no extra gamma 0 floating around 

anywhere. This then behaves not as a scalar, but this is the zeroth component of a 4–

vector.  

And so it will give a result, which is the transformation property of the zeroth component 

of 4-vector. And so it will have the value. Whatever value it had in the rest frame, 

multiply by this Lorentz contraction factor; and that is the orthogonality relation. It is 

still delta of r and r prime. But, a Lorentz contraction factor explicitly appears delta r and 

r prime just follows from the result in the rest frame. And this Lorentz contraction factor 

comes from the boost operators S. 

A similar exercise gives a relation for completeness. But, it again looks little different 

when only omega dagger is involved and not omega bar. Epsilon r always goes with p 

and will use here the same momentum to define the completeness. So, this object will 

have the transformation rule again with all the S and S dagger involved, but it is not a 

place. Whereas, S dagger will completely cancel out; it will still leave behind Lorentz 



contraction factor. In the rest frame, the answer is still same; then there is no Lorentz 

contraction factor. And in an arbitrary frame, this ((Refer Time: 42:42)) produces delta 

alpha beta, but multiplied by E by m c square. These relations are sometimes useful. And 

so it is worth remembering, where the deviation between the omega dagger and omega 

bar comes in. So, this is now a complete basis. 

Any given wave function can be projected on to components of this basis. And the 

reason for doing that is we can now assign specific meanings to what this basis means. 

The rest frame we have actually chosen very cleverly with all the 1’s and 0’s. So, the 

meaning in that rest frame was very clear. When the upper components were nonzero, 

they were the positive energy solution; and the lower components were nonzero, they 

were the negative energy solutions.  

On top of that, there are two upper components and the two lower components, but they 

can be identified by the eigenstates of sigma z or equivalently the third component of the 

spin; it is either up or down. So, we have the notations 1 and 2 of this frame, are denoted 

by spinors u. They correspond to some momentum. And the spin can be the Lorentz 

transformation of whatever is S z in the rest frame. And similarly, the lower components 

are denoted with the notation v, which has the same thing, but the convention is to flip 

the sign of this S mu z. 

One can interpret that flip of the sign as coming from factors of gamma 0. It is also 

related to the fact of how we are identifying the antiparticle and the particle modes. 

Antiparticle modes are going to be treated as absence of the particles modes that was the 

essence of the CPT theorem. And that absence label comes back here as flipping the sign 

of the spin. So, the two modes will have opposite signs of the spin. Here the definition of 

whatever is S mu z is nothing but the Lorentz transformation of the 4-vector in the rest 

frame, which denotes the positive spin.  

And, that is the vector we have chosen as z component equal to plus 1 in the rest frame. 

So, this then becomes the 4-basis vector 2 u 2 v; and each of the two components are 

labeled by plus or minus for the corresponding spin labels. Energy value picks up epsilon 

r or equivalently the choice of u or v; and spin value picks up up-down along z-axis in 

the rest frame. That is a convenient basis. 
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One can use this completeness and orthogonality relations to construct appropriate 

projection operators for these 4 choices. And we can do that now very easily. 
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Remember the properties of projection operators. Let me denote them by index i on some 

basis P i. And a complete set means that, all the projection operators should add up to 1. 

And the orthogonality statement says that, if I have two different projections, it should 

give me 0. But, if I project along the same direction, once again I should get back 

whatever was there at the time of the first projection. The second projections does not do 



anything. And that relation is expressed as P i P j is equal to delta i j times P i. We need 

operators, which specify this particular property.  

And, they can be more or less rid off from the completeness relation, because we have 

this set P I, which add up to 1. Completeness relation also adds 4 objects, which were 

adding up to 1. And we just have to convince ourselves about what were the correct 

objects. Again, they can be easily picked out in the rest frame, where we had nothing but 

1’s and 0’s. And then we can transform them to arbitrary Lorentz frame by using Lorentz 

covariance. 

So, what are the projection operators for energy? The structure which we had in the rest 

frame, the energy is just specified by the matrix gamma 0. Now, we have to write the 

matrix gamma 0 in a Lorentz covariant form. We can take advantage that, one can 

contract gamma 0 with the momentum. And in the rest frame, the momentum has only 

the time component. So, P 0 gamma 0 divided by m will give gamma 0 in the rest frame. 

And then to use that as a projector, that P 0 gamma 0 in arbitrary frame can be 

generalized to p slash. It has now 2 signs. The projection operator constructed for gamma 

0 is either 1 plus gamma 0, which corresponds to the upper two components or 1 minus 

gamma 0, which corresponds to the lower 2 components. 

What has become common place that, 1 plus gamma 0 and 1 minus gamma 0; one can 

now generalize to p plus m and minus p plus m. These are generalized from 1 plus or 

minus gamma 0 by 2 to m times 1 plus or minus gamma 0 by 2 m; and using the fact 

that, m is also value of p 0 in the rest frame. So, these are the projection operators for the 

energy. They have been made into the Lorentz covariant form by using this p slash. So, 

they will now work in any arbitrary frame. And similarly, for the spin, one has to start 

with an operator, which has the correct structure in the rest frame and then generalize it 

to an arbitrary frame. The rest frame structure is nothing but 1 plus or minus sigma z by 

2. But, now, one has to convert sigma z into a Lorentz covariant structure. Again one can 

insert the particular vector corresponding to the direction of measurement. And we have 

seen what that vector is little earlier. 

Let me write down the answer first and then explain. In the 4 by 4 matrix form, sigma 

has Pauli matrices on the diagonal. So, sigma z can be replaced by gamma 5 gamma z 

adopting the convention that, particle and antiparticle have opposite spins. Now, when 



the spin direction is Lorentz transformed from z-axis to general S mu, gamma z changes 

to S slash equal to gamma mu S mu. The spin remains orthogonal to the momentum 

vector S mu p mu equal to 0 and also space like S mu S mu equal to minus 1. That 

essentially, now gives a complete prescription of taking an arbitrary component in any 

frame and working out what the various parts are; which degree of freedom has which 

sign of energy; which degree of freedom has which sign of spin. 


