Relativistic Quantum Mechanics
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Indian Institute of Science, Bangalore

Lecture - 21
Finite Dimensional Representations of the Lorentz Group, Euclidean and Galilean
Groups

At the end of the last lecture, | stated that the 6 generators of the homogeneous Lorentz
group, 3 rotations and 3 boosts can be combined into new operators, which are
essentially J plus or minus i K; and I called them N such that the group factorizes in the
sense that, the N and N dagger are mutually commuting, and the two factors essentially

obey SU 2 or the angular momentum algebra by themselves.
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Now, this statement can be very easily proved. For instance, let me evaluate the
commutator N i and N j substituting these factors explicitly. We have four terms and we
know the commutation rules between J and K explicitly. In particular, J i times J j is
nothing but i times epsilon i j k J k. And K i, K j gives the same term with a minus sign,
but there is a minus in front of it. So, the two terms are actually identical. And the result
can be then written as i epsilon i j k J k. And the factor now reduces from quarter to half

because there are two terms.



Similarly, J i, K j gives i times epsilon i j k and together with the operator K k. And that
is equal to the third term as well, because epsilon i j k is antisymmetric i and j; and this
produces the same result. So, these two terms are identical; again, the quarter becomes
half. I can write this thing as plus i now is occurring twice epsilon i j k times K k. And
this now can be rewritten as factoring out common coefficients i times epsilon i j k times
J k plus i K k, which is nothing but i epsilon i j k N k. So, this shows that, the
components of N — there are three of them; they obey the same angular momentum

algebra.

Similarly, one can reduce the N i dagger, N j dagger to the same kind of structure. What
happens when one is N and the other is N dagger is that, one gets the same four terms all
right, but there are differences in signs, because N dagger will have minus i instead of
plus i. So, the last two terms, which | have written here, can be written with opposite
signs; and the first two terms of the same sign. But, we saw that, in this particular case,
the two terms added with the sign flips included that, two terms are exactly going to
cancel. So, N i, N j dagger actually produces 0. And | can just write for completeness
that, we have the angular momentum algebra again for N dagger operators. So, this is a
complete factorization or separation into 2 parts of the lee algebra of the homogeneous

Lorentz group.

And then one can identify all the representations by solving these two separated algebras
individually. We know the answer for all the representations of the angular momentum
algebra; and we will only concentrate on the finite dimensional representations. They are
given by all the integer values for the number of states belonging to that particular

representation.

And, in particular, if you look at the matrix dimensions, the matrix dimension starts with
1, which corresponds to the 0 angular momentum state and then it takes all the integers
values, which are basically 2 J plus 1 components. The way we can arrive at the same
algebra here in spite of the fact that these are not Hermitian operators anymore, is
because of the simple fact that, N can still construct from this algebra the operators,
which raise and lower the values of the third component of the angular momentum. So,
one can construct the raising and lowering operators for these algebras; and one can just

call them N plus or minus and N plus or minus dagger.



And, what these operators do when acting on specific states is the same kind of rules,
which are well-known in angular momentum, states that the raising and lowering
operators acting on specific angular momentum states produces a state with different
value of m. But, there is a normalization constant in front. And because of that, one can
obtain the finite dimensional representations when the allowed values of m go from
minus j to plus j in steps of 1. And that is possible when j is either an integer or a half

integer.
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So, we can state that, finite dimensional representations are then labelled by j equal to 0,
half, 1, 3-half, etcetera with dimensionality 2 j plus 1. So, there will be matrices of 2 |
plus 1 times 2 j plus 1 size. And the allowed values are all these various familiar
numbers. The same procedure can be repeated for this N, because we can construct this
raising and lowering operators that does not rely on the fact that, the generators are
Hermitian or not. In the case of angular momentum, the generators were Hermitian; in
the case of N and N dagger, the generators are not Hermitian. But, one can still get all the

finite dimensional representations.

These are unitary for rotation group. And the corresponding representations are not
unitary for N and N dagger, which are the components of the Lorentz group. But, there
are no finite dimensional unitary representations of the Lorentz group. This is a

peculiarity, but it is a consequence of the Minkowski metric, which we have to follow;



and that lead to all the signs; and in particular, the factors of i in the definitions of N and

N dagger.

We are happy to deal with these non-unitary finite dimension representations in many
situations. And | will quickly summarize them. But, before that, we can just write down
— these representations of the Lorentz group are denoted by a pair of numbers: n and m |
will call them; and the values obviously belong to the same set. So, that gives a complete
classification of all the finite dimensional representations of the Lorentz group, because
we already know what the finite dimensional representations of angular momentum
algebra were. It is a different group, but the algebra happens to be the same. So, one can

just take over the results.

Now, one can ask, what these non-unitary representations are useful for. And for that,
one can look at some of the properties of what happens to these operators — N and N
dagger under various operations, which we are familiar with. One reason is very easy to
see since the rotation operator is nothing but N plus N dagger. The total spin of the
representation is the sum of these two numbers. So, that is one useful criterion, which we

are familiar within non-relativistic physics.

What about the other property, which essentially can be interpreted as a difference
between N and N dagger? And that can be easily seen by looking at a transformation,
which can interchange N and N dagger. These transformations are again very easy to
construct. We know the properties of N and N dagger under the discrete symmetries.
Under parity, J does not change, but K changes its sign; it has only one space component

and one time component.

So, parity as well as charge conjugation, because charge conjugation interchanges N and
N dagger as well, because there is a complex conjugate operation, which is part of the
definition of what happens under charge conjugation. So, then one has the simple result
that, parity and charge conjugation — any one of them interchange N with N dagger. So,
one can take a particular representation and apply either P or C; and one gets a
representation, which is the same with the two labels interchange. So, this is the other
part, which can be of use to extract the meaning of this representation of the sum, which
is invariant under this interchange gives the spin. But, one can flip these indices if they

are two, are not equal using the parity or charge conjugation.
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So, when n is not equal to m, the representations are not parity or charge conjugation
eigenstates. So, this one | had to keep in mind, because there will be various theories,
where one uses different kind of representations depending on whether the parity is a
good symmetry or charge conjugation a good symmetry or not. And then one has to
restrict oneself to appropriate states of fields, which belong to specific representations.
Note that, the time reversal operation does not interchange N and N dagger, and keeps

the helicities the same. It is actually based to illustrate all these properties with simple
examples.
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And, I will just list them. The smallest representation is 0, 0. It is a scalar with no spin
and symmetric under parity and a charge conjugation. And this will define a field, which
can be called say the Klein-Gordon field. Remember that, the field operators in particular
— they will require a and a dagger of creation and annihilation operators are not
Hermitian. And so they do not have to belong to unitary representations of the Lorentz
group; and so one can easily use these non-unitary representations given by these two
indices to describe fields with finite number of degrees of freedom. That is a sense in
which these representations are getting labelled.

The next one is half, 0 and 0, half. Both are of the same dimensionality. They have two
degrees of freedom. And these are related to each other by parity or charge conjugation.
We have encountered these objects before. And they represent Weyl spinors; one of the
two can be called the left and another one is called right-handed; one can pick a
convention depending on the signs of j plus or minus i k. Say the first one is left-handed;

the other one will become right-handed.

So, these have two components and they belong to the Weyl representations of spin half
particles. The spin is half with the sum of these two. What about the Dirac spinors? We
constructed Weyl spinors by decomposing the Dirac spinor into two parts. In the special
case, mass equal to 0 and one can put those things back together. So, one has a
combination half, 0 plus 0, half, which will become a Dirac spinor. And this is actually a
sum of these two representations. So, it is a reducible representation of the Lorentz
group. It is not irreducible representation like the Weyl spinors are. So, this is the next

step in the hierarchy.

Now, one can go to representations of dimension 3. One can again construct two
different combinations, which can be called 1, 0 and 0, 1. The two are again related by
chirality and they represent objects with spin 1, but with definite chirality. So, these are
actually combinations of vector fields with specific helicity and they can be constructed
from the well-known electromagnetic fields. For example, these are vectors with specific
chirality. And those components we know from electromagnetic waves that, one can

have circular polarizations of the wave with specific chirality.

And, they can be described by the two pairs E plus or minus i B. This make up six

components. And by separating in these two particular parts, if one picks only one sign,



they will belong to say one part, which is 1, 0 — the left-handed or left circularly
polarized photon. And E minus i B will then become a right circularly polarized photon.
In nature, we have actually both of them together and they make up again a direct sum of
these two photons. And this has now 6 degrees of freedom. So, this is electromagnetic
field. These components can be put together in the structure F mu nu. It again is a
reducible representation; you can break it up into these two chiralities above. So, this

now is an object, which had 3 degrees of freedom and we put them together.

The next one available is the object with 4 degrees of freedom, which can be generated
by the two components: half and half. Now, this one is already has a symmetry under
parity and charge conjugation, because both these numbers are equal. In addition, it has
spin 1. So, this is also a vector field. But, now, it has four components. So, this is a 4-
vector and they can occur in various combinations. For example, the coordinates; or, one
can even have the electromagnetic potential. They belong to this representation half and
half. So, these are actually the most frequently encountered representations of the group.
The total dimensionality is product of the two factors: 2n plus 1 times 2m plus 1. And the
fields, which we have used, do not have to correspond to unitary representation.

So, we are completely comfortable labelling them in this particular fashion. This set is
actually the most useful part in discussing all the components of the standard model.
That is the major investigation in a quantum field theory. The one object, which is left
out, which is not inside is gravity; and gravity corresponds to fields of spin 2. Literally
speaking, it is not the Lorentz group, which is useful anymore, but one can look at the
Lorentz group as a tangent space, which is useful for describing weak gravitational

fields. And in particular, they can describe the quanta of gravity labelled as gravitons.
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So, the gravitons can be still incorporated in this Lorentz group language. They cover the
tangent space of the symmetric metric tensor G mu nu with 10 degrees of freedom. With
a little group algebra, we can construct the two index objects as tensor products of one
index objects. The tensor product of two half representations gives the symmetric 1
representation and antisymmetric O representation. The fully symmetric part with 10
components is 1, 1 plus 0, 0, which describes gravitons and a scalar respectively. The
fully antisymmetric part is 1, 0 plus O, 1, which can describe the electromagnetic field F
mu nu as mentioned above. The gravitons with spin 2 thus belong to the representation 1,
1 and are symmetric under parity and charge conjugation. We really do not need
gravitons to discuss the usual standard model, but Lorentz group is capable enough to
describe graviton as a useful degrees of freedom. So, this is all one can say about
working out the completely algebra and solving it to get all representations of the

Lorentz group.
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Now, | will mention some of the stuff related with the Lorentz group, which can be
obtained by slight extensions of the analyses, which we have already gone through. One
common technique used frequently is going to calculations in so-called Euclidean time,
where the coordinate x four is used as i times t. And in that particular case, the
Minkowski metric can be replaced by an identity matrix, which is much simpler to
handle; and the invariance of d x 1 square plus d x 2 square plus d x 3 square plus d x 4
square now does not have any negative sign. And that is described by the group SO 4.
And this is an orthogonal group acting on four components, and the norm of the vector is
preserved. This is @ much familiar or simpler version than the SO 3 comma 1, which we

analyse as the Lorentz group.

The Euclidean group can be easily separated the same way as the Lorentz group. The N
and N dagger, which we used, had J plus or minus i K. Now, the corresponding
Euclidean version will have the i missing. So, it will be just J plus or minus K. The
structure or the algebra completely reduces to two independent angular momentum

algebra with all the generators Hermitian, because i has disappeared.

So, this is equivalent to the group SU 2 cross SU 2 with all generators Hermitian and all
finite dimensional representations unitary. So, this is a so-called Euclidean space-time,
where things actually turn out to be simpler, because the group actually becomes a

standard lee group with finite dimensional unitary representation and it is much easier to



handle. That is also useful many time in studying quantum field theory, because for
various mathematical convenience, the time coordinate is extended to a complex plane
and one does calculations by rotating from real time to imaginary time. And in that
particular case, the symmetry algebra becomes that of the Euclidean group in 4
dimension. One can do the same analysis for this thing completely. There will be again
the same two indices: n and m; labelling them. And one can even describe the
eigenvalues in this particular case, which become Hermitian operators. They were not

Hermitian operators in case of Lorentz group.

The representations are again labelled by this pair of indices. There are various ways to
calculate the appropriate values of n and m; one of them is to count the degrees of
freedom as I did for various types of fields just listed on the last page. And the other way
is to algebraically calculate them. The relevant objects are eigenvalues for the operators,
which are the square of N and N daggers. These are the so-called Casimir operators N
dotted with N or N dagger dotted with N dagger. And one can evaluate the eigenvalues
of these operators as well to find out what are the values of n and m in a specific
representation. And we know what these values are. It is n times n plus 1 and m times m
plus 1. This statement about Casimir operators is true both for the Lorentz group as well
as the Euclidean version. The only thing is whether these operators are Hermitian or not,
that will depend on which group you are using. But, the fact that they will have this

particular eigenvalues is not a doubt. So, this is all one can say in case of Lorentz group.

To do the full analyses of the inhomogeneous Lorentz group or the Poincare group, now,
we have to act to this algebra — the commutation rules between translations and the
rotations and boost. We have done the two parts separately. That can be easily added,
because you already have all the necessary definitions. So, we need the extra
commutation rules between P and J and one can easily work them out. These are
nontrivial. The right-hand side is not 0. So, clearly, one cannot use all the generators

simultaneously to label physical states.



(Refer Slide Time: 41:20)

o' .H\’., ©) L »” 1 & F f’."/"‘f’fi’."
EEEpEEE .

SUQ) ® SUC2) WtTh ol FoRETsavs—Te=r P

onmd. oll imite dimen sional  representations unitary.

The kcpruu\xaﬁvw ot agesm Lok eded a'vj (n,m) .
— -4 —

The Casimir operators ,Q?-r\] or NUNT can be

Wsed to obtawn evgevalues n(n+) aNl_ ()

oS
In Princare grwp [P 7= i(8"P-9"7)
Dv\Lj o Cummu,t,\,“r cat, ot Qu&;tws st ructed
frow. {-Pr«} J-Er} can be wsed B g?aq’ﬁ CV«Avutum
sl ert (t PlﬂgiimL C}WMM stelio
C ov\)LJ need Ss,t_!;hc.luo{;i Prh omd Cogimir
\"' N ['\J’Jr omd, .

The only commuting set of operators constructed from P mu and J rho sigma can be used
to specify quantum numbers of physical states. So, we have to answer the question that,
which of these 10 things mutually commute and we can use them. The commonly used
set includes the four momentum operators, which mutually commute; no trouble in
simultaneously giving that eigenvalues. And in addition to that, these two Casimir
operators, which we constructed; and the corresponding operators, which we know from
non-relativistic quantum mechanics, which is j square. They are all so-called quadratic
Casimir operators, which are used to specify momentum and angular momentum values

for these various states.

And, the only thing, which is left for us to answer, is how far we can extend this sort of
operators to completely specify the state with where the maximal set of quantum
numbers? And we will have to answer that question by constructing the whole set of
mutually commuting operators. That we will do shortly in our next lecture. But, right
now, | want to digress to another interesting limit, which can be constructed from the

same Lorentz algebra.
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And, that is the algebra of the non-relativistic quantum mechanics and which is also
commonly called the Galilean group. So, this is the symmetry group of non-relativistic
space-time transformations. It has the same time generators. So, one can start out by
looking at what is happening in the Poincare group and take a particular limit, where the
velocity v is much smaller than the speed of light in magnitude. And in that particular
limit, what happens is some of the commutators simplify in the sense that, the right-hand
side may become of the order of v by c; and then one can equate that to 0. And so one
has a simplified algebra of the same 10 generators, which will describe the Galilean
group. And this technique of starting with a one group and taking a limit to obtain a
different algebra is a useful technique in the study of several continuous groups. This

limiting technique is called Inonu-Wigner contraction.

What it does is essentially power counting. You take all the commutation rules; scale all
the generators appropriately depending upon their magnitudes and basically throughout
all the terms, which are of lower order; keep only the leading order terms. And that gives
a new set of commutation rules. So, for that, 1 can write down again the various
commutation rules for J, K and P. The parts, which are different involves power counting

of various terms.

And, we can now give their various order of magnitudes in this particular case. The

power counting rules for the various generators are the 3-vector for the momentum is of



the order of m times v. The zeroth component, which is also the Hamiltonian, has two
terms M and W; where, M is the rest mass and W is the remaining part of the energy,
which will be of the order of m v square. This is m ¢ square. And that is suppressed
compared to the rest mass by 2 powers. This includes both the kinetic energy and the
potential energy, but both of them are of comparable magnitude much smaller than the

rest mass energy. So, this is how the momentum components are going to scale.

The angular momentum will just be of the same order 1. It is actually quantized in units
of Planck’s constant in quantum theories and has no dependence on the velocity of the
particle at all. 1 should say that, | have omitted Planck’s constant in all the discussion so
far, because what we are doing is pure mathematics; and in that, the algebra of J or P can
be written without referring to the Planck’s constant if one wants to bring those back to
go to physical units and all the labels for representations J, M, N — they all have to be

measured in units of Planck’s constant.

So far, | have written them as ordinary integers. But, these things are fairly easy to
understand and it is not difficult to reinsert factors of Planck’s constant or even factors of
speed of light whenever needed. So, the angular momentum actually does not scale in
this non-relativistic limit, but the boost operator does scale, because it involves a time
component and the scaling is important. It actually goes as 1 over the velocity. And this
is the place, which one has to pay attention to in doing the power counting and deciding
what terms to drop and what terms to keep. We will clearly see where this K scaling as 1

over v comes from.

And so now, we go back to the commutation rules which we wrote down for the Lorentz
group; and | can write it in this particular language of angular momenta and P. So, we
had these rules of commutator between P and J. These are just the subset of the Lorentz
group relations | wrote down earlier. And this produces P. The similar rule for P and K is
the P 0 component with a chronicle delta. And then there are the rules, which now
involve, commutates as P 0 with J and K. These are the only non-trivial ones. This is
rather trivially 0. One is a time component; another — the space components. And they do
not have any mixture, but the commutator with boost operators is still dependent on
momentum. So, these are rewritten commutators between P mu and J rho sigma, which |

wrote down earlier in the case of Poincare or inhomogeneous Lorentz group.



Now, we can see what happens if one does a power counting for this particular rules.
And that allows us to understand why K has to scale as 1 over v. The commutation
between P and J does not suffer any change as far as the power counting goes both sides
scale the same way. But, for the commutators involving P and K, we have a different
rule, because P is order of the velocity while P 0 is of the order of the rest mass. And to
cancel the scaling of v, one must take K of the order of 1 over v to maintain this
commutation rule, because P 0 is order 1, P is order v, and K has to be order 1 over v, so
that this relation is satisfied. The same way, the second relation P 0 is order 1 and K is

now order 1 over v.

And, one has to see what now is going to happen to this commutation rule to become
consistent. And what happens is that, there is a leading term in P 0, which a rest mass
term; that actually commutes with everything; it is just a constant. So, that leading term
in P 0 does not contribute to the commutator; what contributes is the sub-leading term,
which is order v square, the term written as W. And with that order v square and K
behaving as order 1 over v, one has the correct power counting for P, which is of order v.
So, this particular power counting is consistent, but it now simplifies the algebra in
writing down all the various commutation rules; and one can quickly summarize them. |

will list those things next time.



