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So, in the last lecture, I had introduced the Klein-Gordon equation and then written the 

current conservation relation which follows from the equation. 
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And we will continue the discussion of that result. The conservation can be related to the 

non-relativistic form by defining the two quantities - rho which is at density, and j which 

describes the current. And we obtained the form which look like what is there above. But 

in the four dimensional notation, which shows the Lorentz transformation procedure 

exactly; it is convenient to write down these things in terms of 4 vectors. And that 

expression will be now defined by a 4 current, these components are rho and the 3 

currents. It will satisfy the relation, which is now observes both these quantities into one 

equation using 4 derivatives, and it can be written as i h cross by 2m into psi star del by 

del x mu psi minus psi del by del x mu psi star equivalent to del mu j mu is equal to 0. 

So, this notation makes very clear that the 4 components of the currents are essentially 

defined by derivatives of the wave function and they obey a conservation law, which is 

invariant under Lorentz transformation. On the other hand, the components themselves 



are going to change when one applies a Lorentz transformation, just like the space and 

the time mix, in coordinate transformation, this is another 4 vector, and rho and j end up 

mixing when you go from one Lorentz frame to another.  

This however is different than the non-relativistic situation; and I have chosen the 

normalization, so that the 3 component of current looks exactly the same as what came 

out from Schrodinger’s equation. But, that time component is different. In case of non-

relativistic situation, rho was just absolute value of psi square. Here it is a different 

combination. The other feature is that, in non-relativistic situation, time is absolute. So, 

the value of rho did not depend on the frame in which one is working. But, here the value 

of rho is going to depend on the frame. And we have to now reconsider what do we mean 

by rho in terms of physical interpretation. In non-relativistic situation, it was quite easy 

to interpret rho as a probability density or a number density, which one integrated over 

all of space, was normalized to the number of particles and that probability or finding a 

particle in a whole space was fixed. And that was the interpretation assigned with this 

quantity Q; and Q was just a normalization constant. 

Here the rho is not going to be independent of the frame. And to see explicitly what 

happens, let us consider the simplistic situation, which is easy for the illustration 

purpose. That is the result for stationary states. In this case, the wave function has a very 

simple time dependence that, psi is e raise to minus i E t by h cross multiplied by some 

function of space. And if you now take in this particular time dependence and stick in to 

the expression of rho, it immediately comes out. And the time derivative is essentially 

acting only on this particular phase. And one can rewrite this whole expression as rho is 

equal to E times m c square psi star psi. And this now makes the connection with the 

non-relativistic situation explicit. We do obtain mod psi square, but there is an overall 

factor, which is E by m c square. If the velocity is of small, then the energy is indeed 

close to the rest mass energy, which is m c square. And in that case, we recover the non-

relativistic limit explicitly. But, in other cases, the value of rho is not the same as mod 

psi square. 

Now, there is a very simple interpretation of this overall factor, which is connected to the 

fact that, the space and time coordinates mix under Lorentz transformations. And so the 

overall objects, which are involved in say the definition of Q; they undergo certain 

transformations. And one famous result is that, there is a Lorentz contraction of the 



volume. And the contraction factor is precisely the ratio of E by m c square. What is 

happening in this particular case is that, the total integral, which defines the number or Q 

does not change; the volume factor d cube x shrinks by this particular factor; the density 

therefore, increases by the same factor; and density times the volume remains invariant.  

So, we have a simple understanding of why rho changes under Lorentz transformation 

for this particular type of stationary states. ((Refer Time: 07:36)) also shows the 

ambiguity of the overall square root, which gave the two solutions of energy: one with 

positive sign and one with negative sign. And so we can see that, depending on whether 

you choose a positive or a negative energy solution, the density will also be positive or a 

negative; and you must find an interpretation of what we mean by a negative density. 

And that takes us back to the business of reinterpreting the various quantities, which 

appear in relativistic theory. 
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In case of non-relativistic mechanics, we could label this rho as a density. But, that 

density could be either the number density or the probability or it could be also 

interpreted as a charge density for the particles. And both these objects are equal in non-

relativistic formulations; and one can use either as a physical realization of what we 

mean by this particular mathematical variable. On the other hand, it is going to be the 

case that, in relativistic theory, that these two objects in general do not coincide.  



And, the reason for that is once you introduce relativity, we will automatically have to 

deal with creation and annihilation of particles. This is a deep result, but experimentally, 

it is very well seen that, you can create particles out of vacuum by supplying enough 

energy equal to the two times the rest mass energy when there is a pair creation. And you 

can also annihilate particles, where 2m c square energy disappears into something else, 

which is radiation, photons or similar objects. So, this is a feature, which was seen later 

historically after all this mathematical formulation. But, that is our modern understanding 

that, once we allow the processes which create or destroy particles, the number is not 

going to be conserved. 

But, on the other hand, we can still have the charge conserved exactly by demanding 

that, when there is a pair creation and annihilation, it is always the particle together, 

which is antiparticle, which are created or annihilated. The particle and antiparticle have 

opposite values of charges. And so in this process, the charge is not violated. And so that 

is the interpretation, which we now assigned to the variables, which we have constructed 

from Klein-Gordon equations. So, the rho, which came out of the Klein-Gordon 

equations – it actually corresponds to charge density. And we have no restriction about 

the sign of the charge density; there could be positive charge; there could be negative 

charge; and either of them is perfectly physical and we have a conservation of charge as 

well. And that all fits into very well with all the mathematical formulation. So, that is one 

part of the story. 

One can also ask, what is the relation between the energy and the contribution to the 

charge density? This becomes obvious from the relation for the stationary states, which 

we discovered that, in some sense, whenever the energy is positive, it corresponds to 

particles with rho positive; and if energy is negative, that corresponds to antiparticles 

with rho less than 0. So, this interpretation now fits very well both with experimental 

observations and the mathematical formulation. And the details of this we will encounter 

in later when we study the Lorentz transformations and quantum mechanics in more 

detail in the sense that, how are the particles and antiparticles are related to each other by 

several discrete symmetries and the meaning of the negative energy solutions, and so on 

and so forth. 

But, meanwhile, one can also look at another aspect of this formulation. And that is the 

question that, why cannot we by hand restrict the solution space, so that only positive 



energy solutions are allowed? Because sometimes dealing with negatives energy 

solutions, where the energy is not bounded, it creates confusions. And so we can see that, 

there must be some limitation when you try to avoid solutions of one sign or the other. 

And this becomes very obvious when dealing with the solutions not in the position space, 

but in the Fourier space; what is the meaning of positive energy solution and the negative 

energy solutions or when one of them is required and when one can bypass the other one 

of them. So, let us look at the Fourier transform of the wave functions. Say we defined a 

particular wave function as a function of time by taking integral over energy. And in this 

notation, the standard Fourier integrals will say that, the limits of the integration are from 

minus infinity to plus infinity. 

Now, let us look at just the subspace of this energy region, where by hand, we say that, 

we want to change this integration limits from 0 to infinity. And that will put some 

restrictions on the property of the time dependence of this function, because the 

integration limits are changing. And there are certain kind of wave functions, which have 

trouble getting expressed when the integration limits are changed. For example, for 

localized wave functions in time, we would like a dependence, where phi of t is at some 

particular instance, t 0 defined by certain distribution. And so this mathematically is 

represented by this delta function.  

But, the Fourier transform of a delta function is a constant; and so in order to get 

localized functions in time, you must integrate with a flat measure all the way from 

minus infinity to plus infinity. If you just integrate from 0 to infinity, you will never get a 

delta function in time. And that can be interpreted as a limitation that, if you want to 

restrict the solutions only to certain subspace, you will not be able to obtain certain kind 

of localized wave functions. If you want localized wave functions, you must cover the 

whole energy space; and so must deal with antiparticles. And this can also be looked at 

in position space. 

In the position space, if you want to localize the particle to a region smaller than 

Compton wavelength solution with relativistic energy – and so E less than 0 – becomes 

necessary. In particular, we must include solutions with E less than 0. And this is a 

consequence of going to very short scales. If you want to probe very short distances or 

very short intervals in time, you must allow for negative energy solutions; or, in the other 

languages, you must have a flexibility to create particle-antiparticle pairs or annihilate 



them at very short scales. And this is indeed very well-confirmed experimentally in high 

energy probes; where, when you try to probe very short distances, immediately, there are 

states, which will either create or annihilate particles. And we have to accept that as a 

physical situation. So, E less than 0 is not unphysical; we just have to find a correct 

interpretation in terms of the connection between mathematical expressions and physical 

experimental situations. 
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So, let me come to the situations, where we can apply now to various possibilities. And 

the result is that, this Klein-Gordon equation describes charged scalar particles. These 

are not the fundamental particles of atoms like electrons and protons; but we do have 

other charged objects, which are created at high energy accelerators. For example, the 

charged pions, which appear as pi plus; and its antiparticle pi minus. These can be very 

well-described using Klein-Gordon equations.  

They have only the space-time degree of freedom. So, that is why they are labeled as 

scalars; they do not have any spin associated with them. But, they do have this particle-

antiparticle degree of freedom, which is associated with the value of the charge. There 

are other possibilities as well, which again follow from the same equation that, if for 

some reason, the wave function satisfying Klein-Gordon equation is real; then one can 

immediately see that, both the charge density as well as the current will vanish 



identically, because psi star is equal to psi. And this then describes neutral scalar 

particles. And an example of that is a neutral pion. 

Now, this neutral particles fall into a different category. And that is because the wave 

functions are real. And in particular, one does not have to worry too much about the 

ambiguity of the particle and antiparticle, because there is no opposite values of charge 

over here. And one can rephrase that things slightly differently that, these neutral 

particles are their own antiparticles. So, one can try to define a transformation going 

from particle to antiparticle. In the case of charged particles, it is nothing but complex 

conjugation if psi describes e raise to minus i E t by h cross kind of time dependence. Psi 

star will define that, time dependence of the same type, but with opposite signs of 

energy. And so if psi is a particle, psi star can be associated antiparticle wave function. In 

the neutral particles case, psi and psi star are equal or one can say that, the particles are 

antiparticle of themselves. 

And, one peculiarity of such neutral particles is that, they can be created or annihilated 

singly in some physical process of either scattering or collision or other kind of 

interactions. Because of the charged conservation for charge objects, one must create 

them in pairs. If one of them is a particle carrying one kind of charge, it must be always 

be accompanied by another object, which has opposite values of charge and which we 

interpret as antiparticle. And so the charge objects, which we see like electrons and 

positrons; one – if you want to create them or annihilate them, you will always get E plus 

and E minus appearing or disappearing together the same for proton and antiproton and 

the same for neutron and antineutron; neutrons do not have electromagnetic charge, but 

they can be assigned another charge, which is a baryon number. And that will again be 

opposite sign between neutron and antineutron. 

On the other hand, neutral particles like pi 0 – there is no problem in creating or 

annihilating them singly; the charge in the process is conserved; and no physical 

principle is violated. Another example of such a neutral particle, which can be created 

and annihilated singly is of course the very common photon, which will appear every 

time there is a transition between different atomic energy levels; either it is emitted or 

absorbed and that occurs basically with a single photon. So, this is our interpretation of 

how to deal with this Klein-Gordon equation and the solutions of opposite signs of 



energy associating those two kind of solutions with particle and antiparticle; and also, 

looking at the possibility of neutral particles in the same framework. 

Now, let me look at the same equation in a slightly different framework, where I am 

going to separate this particle and antiparticle degrees of freedom by hand. And that kind 

of mix something, is more obvious in the sense that, the connection between the 

relativistic framework and its non-relativistic limit is little bit easier to understand. And I 

will call this reformulation as a two component framework. And the two components, 

which we are going to deal with, are essentially the particle and antiparticle degrees of 

freedom. So, I define now the quantities. One of them is zeta; and it is a combination of 

psi and psi dot with a particular sign; and another quantity chi, which is a combination 

with opposite sign. 

The purpose of defining these auxiliary variables is that instead of having a second order 

equation in time, we want to construct a first order equation in time, which looks similar 

to the framework of Schrodinger equation. And these two components I have constructed 

with a particular coefficient in front of psi dot such that if I take one particular sign of 

energy, the solution will go one way or the other; and in this particular case, if I choose a 

free particle at rest; which means energy is equal to mc square; and then zeta is nothing 

but psi and chi equal to 0. In one case, the two things add; in other thing, the two things 

cancel. The side odd basically just produces the energy, which is m c square and the 2 

factor cancelled out.  

And, if I have a free antiparticle at rest, then E is equal to minus m c square; and then we 

have zeta is equal to 0 and chi is equal to psi. So, these variables are conveniently 

defined that, depending on the sign of the energy, you will have one variable of the 

other; and which is the reason for giving these labels of particle and antiparticle to this 

combination zeta and chi rather explicitly. So, now, let us work through the equation, 

which will explicitly be obeyed by these two variables. 
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So, let us now calculate what this object is; and I am going to stick with first derivative 

as in the case of Schrödinger’s equation. So, the derivative is rather easily calculated by 

just taking the definition. And it produces the combination of psi dot and psi double dot. 

But, now, we can use the various equations, which we know to rewrite this in a particular 

form. For example, i h cross times psi dot. So, this can be eliminated; i h cross psi dot by 

m c square is nothing but zeta minus chi. And to eliminate psi double dot, we can use the 

original Klein-Gordon equation by these two expressions. And of course, psi can be then 

eliminated completely by rewriting in terms of zeta and chi. 

So, with all these substitution in this equation, the first derivative form can be completely 

rewritten in terms of no time derivatives and the two variable zeta and chi. And the result 

is i h cross del zeta by del t is equal to minus h cross square by 2m del square zeta plus 

chi plus m square c zeta. And a similar equation for the second variable, where the signs 

are essentially the opposite – i h cross del chi by del t is equal to h cross square by 2m 

del square zeta plus chi minus m c square chi. And these two equations now look very 

similar to Schrodinger’s equation; there is a first order time derivative; there is a h cross 

square del square 2m operator, which represents the kinetic energy. And then this m c 

square essentially represents the rest mass energy, which can be added easily by hand 

into Schrödinger equation. 



What is different is the equation for zeta now involves an extra contribution from chi and 

vice versa. And this extra contribution can be interpreted as the contribution of 

relativistic corrections. In the Schrodinger equation, it was not there. And now, Klein-

Gordon equation gets that extra correction. And one can analyze the consequences of 

what that extra correction is and it also helps understand the particle-antiparticle 

interpretation little better.  

So, let me rewrite this equation in a two component notation; where, the two components 

are just written as a simple vector consisting of zeta and chi – h cross square by 2m into 

1, 1, minus 1, minus 1 del square zeta by chi plus m c square into 1, 0, 0, minus 1 into 

zeta, chi. And this equation can be now rewritten in various possible ways by choosing a 

suitable frame; and that frame will be corresponding a linear transformation on this 2 

component vector. In particular case, what can be done is you can go from a frame in 

which the particle is moving to one in which particle is at rest. 

And, by construction, we have defined the state, so that the identification of zeta and chi 

in the ((Refer Time: 36:04)) frame is very easy in terms of what charges they carry and 

which degree of freedom they correspond to particle or antiparticle. So, to be able to do 

that, we need to decouple these two equations, so that one will have one degree of 

freedom completely independent on the other, instead of the relativistic corrections here, 

which are mixing up the two degrees of freedom.  



And, in order to do that, we have to look at the various matrices, which appear over here 

and diagonalize them. What turns out to be easy to see is these matrices are simple 

combination of Pauli matrices. In particular, this 1, minus 1 on the diagonal is a sigma 3; 

while the matrix, which is appearing over here is sigma 3 plus i times sigma 2. And what 

we need to do is somehow rotate this particular matrix to its diagonal form without 

changing the diagonal form of the matrix, which goes with the rest mass term. And if 

you do that, the equations will decouple and then one part will call the particle and the 

other part will call the antiparticle. This can be done in terms of a general linear algebra 

problem, but it is kind of convenient to look at geometrical representation, which is kind 

of straight forward. 
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And so I will draw a little diagram, which represents these two particular terms, which 

we want to rotate by a linear transformation. So, this is a little right-angle triangle; one 

side is the coefficient coming from here, which in terms of various quantity involves 

coefficient of sigma 2; the other side is the coefficient of sigma 3. And we want to go to 

a frame, where these two objects are combined into a single diagonal matrix. Now, I 

have chosen to draw it a right-angle triangle, because in this 2 dimensional space, sigma 

2 and sigma 3 represent orthogonal coordinates. And one can indeed rotate them by 

performing a rotation about the direction, which is orthogonal to both of them; and which 

happens to be the direction corresponding to the third Pauli matrix sigma 1. 



So, if you perform a suitable rotation, what happens is, these 2 vectors get realigned in a 

direction, whose magnitude is given by the hypotenuse of this particular triangle. It is 

very easy to square these objects and find out what that length is. And indeed it is what 

we expect from the relativistic dispersion relation and there will be a certain angle of 

rotation. Typically, this rotation is written as 2 theta; that has to do with the 

representation of Pauli matrices in terms of half angles, but we will not worry about it. 

The important point is the rotation angle, which is specified about the third direction. 

And that comes out from this geometry as a tangent inverse of the ratio of these two 

terms. Because we are dealing with Lorentz transformation, it is not the trigonometric 

functions. But, what appears are the hyperbolic functions; and that is buried inside in this 

little factor that, there is i upcoming in sigma 2 and no i such in sigma 3. So, the angle of 

rotation is a hyperbolic tangent inverse of the ratio of these two particular sides. 

And, one can easily now define a transformation, which achieve this. So, the 

transformation is the prime component, are certain rotation matrix acting on this; where, 

now, this s specifying the rotation matrix is the matrix corresponding to sigma 1 and then 

the angle. It is connected with the fact that, we are dealing with Lorentz transformation; 

and so hyperbolic function that this matrix as is actually not a Hermitian matrix; it 

happens to be anti-Hermitian. And so e raise to i s is a Hermitian matrix. And if you 

want to explicitly denote that, s is equal to minus s dagger. 
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So, if one performs this particular transformation, then the result is equation is indeed of 

the form, which we wanted; which makes the separation of the two degrees of freedom 

very explicit. The total energy has two signs, which is essentially denoted with plus 1 

and minus 1; and the two solutions of opposite energies are what we called earlier 

particle and antiparticle. This transformation also illustrate another point, which we will 

encounter in more detail when dealing with the Dirac equation; and that is, how to 

construct observable quantities out of this particular object. It is very easy to see that, 

once you have got to the diagonal form, we can rewrite the current components 

encountered earlier in terms of these particular variables. 

And, to simplify the notation, let me define a symbol for this to component object, which 

I am just calling phi. And then the observables are bilinears in this quantity just like in 

the Schrödinger’s equation, there was a form, where you could write all observables at 

psi star, then some operator and then psi. In this particular case, we can write down the 

observable as a phi dagger. The dagger comes in because of this two component 

notation; then some operator and then phi. And one can now see what is a convenient 

notation to incorporate this Lorentz transformation property as well as this quantity or 

the physical observable. So, when we change the basis, that phi will go to s times phi. 

That is indeed what we did in going from prime frame to unprimed frame. The 

observables transform as O will go to e raise to i s O e raise to minus i s. There is a 

mistake here; this is a general transformation rule for linear algebra and it was 

constructed, so that various factors corresponding to this rotation of the basis cancelled 

out. 

But, now, it is kind of easy to see that, what are the bilinears, which are invariant under 

these transformations; and they are phi dagger eta O phi with eta is equal to 1, 0, 0, 

minus 1. And this is necessitated by the fact that, e raise to i s is Hermitian. And so if you 

construct this particular quantity, the various factor of e raise to i s and e raise to minus i 

s have to be cancelling each other to create an invariant object. On the right-hand part, O 

times phi e raise to i s and e raise to minus i s do cancel. But, on the other side, the phi 

dagger also produces e raise to i s. And that is because it happens to be Hermitian. And 

the O also provides e raise to i s. And to cancel them each other, we must flip the sign of 

the exponent of this transformation matrix here – s involved the Pauli matrix sigma 1 and 

by putting Pauli matrix sigma 3, which is denoted here by eta. One can anticommute it 



through it and cancel the sign on. And then the object which is appearing over here will 

not change as a value. 

And, this then becomes a prescription – so is various operators invariant observables are 

written in the form. Now, I will introduce another notation, which is common phi bar O 

phi; where, phi bar is identical to phi dagger eta. In particular, now, one can go back and 

look at the charge density, which we had dealt with earlier. The charge density 

corresponds to the rho corresponds to O just being the trivial identity operator. The 

opposite signs which were present in the expression are taken care of by this matrix eta, 

so that the upper component will contribute a positive term to rho; and the lower 

component will contribute a negative term to rho. And in general, all the other 

components; so various components of the so-called current – they can be mapped to the 

various operators, which I will label just as the Pauli matrices; where, sigma 0 is identity 

and sigma are Pauli matrices. So, this gives a prescription of how to construct various 

observable operators. 

And also, explicitly shows that, the plus 1 and minus 1 on the diagonal are very much 

part of the formulation and their opposite signs indeed are necessary to construct 

observables, which are invariant under Lorentz transformations. And that is a very 

important lesson, which keeps on appearing in relativistic formulation of field theory in 

many places. One must deal with opposite signs of solutions for energy and a 

corresponding interpretation of particles and antiparticles. There is one more thing, 

which I can point out at this particular stage; which helps this particle-antiparticle 

identification, is the fact of introduction of electromagnetic coupling in this particular 

formulation. 
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We will deal with the general formulation little bit later. And… But, the simplistic 

prescription needed right now is the electric field, is introduced in this differential 

equation by a very simple substitution; where, the momentum is replaced by p mu minus 

e by c times the gauge potential. And this prescription is called minimal coupling. We 

will deal with a more general situation with electromagnetic interaction little bit later. 

But, right now, this is enough. And this now tells us what will happen to the Klein-

Gordon equation if you do this particular substitution. And it is just replacing the 

gradient operator by particular potential. 
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And, what I am interested right now is just the electric potential. So, which is… It just 

modifies the time-derivative part in the equation. And equation, which you had in the 2 

component form with coefficient is identity. On the other hand, the coefficient of the rest 

mass term is the Pauli matrix sigma 3. And this says that, the 2 type of solutions behave 

differently in mass and in terms of charge. So, if you introduce electric field, the 

direction in which the energy moves is opposite. So, energy is shifted in opposite 

directions for E greater than 0 and E less than 0 solutions when electric potential is 

introduced.  

And, this indeed confirms the label, which we gave as particle and antiparticle having 

opposite charges. Positive energy solutions will be shifted one way in the sense that, the 

magnitude of the energy in one case will increase. But, in the other case, when the 

energy is negative, the magnitude of the energy in presence of the potential will 

decrease. These opposite shifts of the energy indeed confirm opposite values of charge 

for particles and antiparticles. So, these are the important interpretation problems of 

Klein-Gordon equations and their resolution. And, we will now deal with the solution of 

this Klein-Gordon equation in presence of electromagnetic field the next time. 


