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Yes, now we are ready to discuss various algebraic properties of the Lorentz group. 

Before starting on the explicit structure of the Lorentz group, I still want to give some 

general description of various features that arise in a group theory. When group theory is 

applied to quantum mechanics it requires only a specific type of representations to be 

physical.  
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The reason is that symmetry operations in quantum theory preserve the norm of physical 

states. This is just a statement of conservation of probability which cannot be destroyed 

by just applying some transformation or changing the basis. Now, this restriction implies 

that the corresponding transformation is unitary, and so when acting on physical quantum 

states we have to restrict ourselves to unitary representations of the group. And in other 

words the physical states of a quantum theory are classified in terms of unitary 

representations of whatever symmetry group that we are looking at, so physical. On the 

other hand there may be other objects in the quantum theory which are not physical 

states; in particular there can be several types of operators which transform states, and 



they do not necessarily preserve the norm. 

Example are the creation and annihilation operators which appear in field theory of many 

different types, and even in harmonic oscillators they are not Hermitian operators, and 

the transformations generated by them do not have to be unitary transformations. So, in 

such cases one may classify these operators according to representations which are more 

general; they do not have to be necessarily unitary. So, field operators may not be 

Hermitian and then do not belong to unitary representations, and in discussing Lorentz 

group, we will have an occasion to see both these properties. There will be field 

operators which do not belong to unitary representations, and there will be physical 

states which belong to unitary representations, and this is a generic feature which appears 

in quantum field theories in general. 

Another concept useful is the structure of the group when the parameters describing it 

form a continuum manifold, and this is a case for many continuous groups including 

translations and rotations and Lorentz group as well as various gauge theory groups, and 

so it is a subject of study all by itself, and in this particular situations one talks not about 

just the group elements but rather the parameters which describe a group manifold. So, 

for continuous groups it is convenient to talk in terms of parameters that cover the, and 

so this now generates a description of group elements as belonging to another space. The 

space will have some dimensions; the parameters may be linear may be non-linear all 

those kind of features appear, but the most convenient thing to do is to start the 

discussion of continuous groups in the neighborhood of the identity element. 

So, the elements in the neighborhood of identity can be described using Taylor 

expansion. The 0 s term is of course the identity itself, but the linear term then gives 

many directions in which the element can differ from identity, and the number of such 

directions becomes the dimension of the group manifold and the various vectors 

indicating the various directions on this manifold are called the generators of the group. 

So, generators of the group define the various directions in which one can move away 

from identity, and clearly the number of generators equals the dimension of the manifold 

and in defining the generators one just takes the linear term in the Taylor series. 
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For example, a general group element will be written as 1 plus sum over i some; in fact 

that is our parameters epsilon i times T i which represent the various generator directions 

plus the higher order terms, and these generators now form a vector space. So, T i form a 

and this is an important property satisfied by the generators one can make linear 

combinations of them as in any vector space, and these vector space is nothing but the 

tangent space to the group manifold at the location of the identity element. So, these 

generators actually are very useful concept, and it is quite convenient to take the 

generators according to useful conventions. 

So, in particular case of unitary group elements or unitary representations the generators 

are chosen to be Hermitian which is a standard mathematical convention that when one 

expands the unitary matrix about the identity one can write the expansion as 1 plus i 

times a Hermitian matrix, and it is convenient to take the generators to be Hermitian in 

this particular case. So, that is a nomenclature, but we will see that the matrices do not 

have to be always unitary, and in that particular case the generators will not be 

Hermitian. 
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So, now the generators and the linear space in which they act define a whole structure 

that is called the algebra of the group. The generators are linear operators by 

constructions, and they may or may not commute. What is required is that the 

commutation rules always give a closer property of the group which means that the 

commutator of two generators will be some linear combination of other generators, and 

that rule which will be different for different groups defines the so called algebra of the 

group, and this algebra in a sense contains most of the features of the group but not all. 

So, this algebra it completely defines the tangent space of the group manifold and what is 

left out is a global property which is often called the topology of the manifold. 

And in particular there can be instances where a single algebra can define a structure 

which can be combined with different topologies to give rise to different group 

manifolds. So, this much is a good enough definition. I should also mention that this 

particular type of groups which are completely defined by the unitary representations are 

called Lie groups, and the corresponding unitary representations are heavily used in the 

subject of high energy physics in particular quantum field theory of many different types, 

but those are only restricted to discussing unitary groups. The Lorentz group actually 

turns out to be not a unitary manifold, and we have to go beyond the machinery of the 

Lie groups to discuss Lorentz group. 

So, what happens in case of a Lorentz group is that Minkowski metric has both plus sign 



and minus sign, and that is not a positive definite metric, and because of the consolations 

between the signs you can have objects which have positive norm like d x mu d x mu as 

well as negative norm, and that is a departure from the topic of Lie groups where if we 

concepts norms of the generators in Lie groups all of them will have the same sign, and 

those groups are referred to as compact groups. So, when norms of the generators have 

the same sign; in particular when the convention is taken that the generators are 

Hermitians the sign is positive. The group is called compact; loosely speaking compact 

means that one will have the parameterization of the group manifold where the 

parameters go over a finite range. 

On the other hand if both plus and minus sign appear in calculation of the norms then the 

group is called non-compact, and in this particular case the parameters which describe 

the manifold will go over an infinite range. So, this is again some terminology, but it is 

useful to know, and in particular the Lorentz group acting on space time coordinates. Let 

us call them x mu is non-compact and is denoted by SO 3, 1 where this three and one 

refer to a metric with three signs of one type and one sign of the opposite type in the 

convention which I have used the time direction is the positive sign in the metric and the 

space is negative, and with this particular definition of the norm the group is orthogonal. 

In a strict sense orthogonal group will be where all the signs will be of the same type, but 

here the two different combinations of signs are listed as three and one, and the s in front 

of the notation denotes a spatial group which means that the transformation generated by 

this group will have determinant equal to one. 

It will preserve the norm of the state explicitly, and this is a nomenclature, but the 

various features which have gone into it are important to understand when we write 

down the algebra. The group is non-compact; the parameters will cover an infinite range. 

There will be plus and minus sign in defining the norms, and that will be reflected in the 

properties of the generators in particular some matrices will be unitary while some may 

not be or generators may be Hermitian in some cases and anti-Hermitian in some other 

cases. So, now let us go and discuss this various algebraic properties one by one.  



(Refer Slide Time: 24:13) 

 

So, the easiest part is to discuss the so called inhomogeneous part of the group which 

defines translations. So, this form a commutative group whose composition rule is 

addition; that is what we mean by translating an object from one location to another, take 

its position at some constant which characterizes the translation, and that will describe its 

new position. Now our group machinery is defined in terms of a composition rule which 

was multiplication. So, how do we convert this intuitive picture of translations being 

additions in the coordinates to representation which will be described by a multiplication 

rule; I will just put these coordinates in the exponents. So, when we multiply two 

exponentials the exponents add. 

So, in the exponents therefore, we can have the rule for translation, but the 

representations will be defined by the complete object, and they will be multiplied 

together. This is in a sense describing the famous transformation defined in terms of 

Fourier components for any description in a position space. So, the representations they 

multiply and hence are exponentials of the coordinates that is g which will be a function 

of k can be written as e raise to i k x. And so now these set of elements e raise to i k x 

where x covers the whole manifold of translations which we are dealing with defines 

unitary representation for translation labeled by the real parameter k and so for every 

value of k you have a new representations clearly it is a unitary. 

And all these representations are one dimensional; that is a necessity, because the group 



composition rule is commutative. So, if you have a general matrix matrices do not 

necessarily commute, and since we have to follow the composition rule it brings us down 

to representations which are all one dimensional, or other words the matrices are simple 

complex numbers. And now one can generalize this thing to any arbitrary dimension by a 

simple transformation where k x is just converted to k dot x. It is a linear vector space, 

and one can just add various components; they are all going to be commuting with each 

other. So, there is no problem in generalizing it in such a simple fashion, and the range of 

k now depends on the values of x which one is dealing with if the set of x is integers 

which is what happens when the points are all on a simple lattice. 

Then the set of allowed value k is the corresponding Brillouin zone. On the other hand if 

x is the whole real line then the set of k is also the real line. So, in very simple terms one 

has a complete description of all possible representations of the translation group just the 

Fourier coefficients e raise to i k dot x, and depending on the values available for x one 

can easily figure out what are the values available to k, and this algebra can also be 

written in terms of the momentum operator which is quite commonly used in a quantum 

mechanics, and that defines the role of the generator rather explicitly. 
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So, one can have a function say f of x and one wants to study it in the neighborhood of 

the point x, and that can be easily written as a Taylor series, but now I will write a Taylor 

series in a simple form as a exponential of the derivative operator. And that now acts on f 



of x, and one must evaluate these derivatives at the point x. and this definition can now 

be looked upon as an expansion of the function in the neighborhood of point x; what we 

need for translation is expansion about the identity element which corresponds to x equal 

to 0. And one can now easily look at the various terms as the various generators. 

There will be one generator for every direction of the translations, and these generators 

are nothing but these operators d by d x in an abstract language. So, the generators are 

the so called momentum operators which we define in quantum mechanics as the 

derivative operator, and then the arbitrary group elements can then be expressed as 

exponential of minus i a mu p mu, and this can now give an abstract definitions of the 

group. There is a generator; there is a prescription to give any unitary representation of 

the group in terms of exponential of the generator, and we have the simple commutation 

rule which is all these generators commute with each other. 

And that allows us to construct any group element in a general sense without referring to 

a specific choice of coordinates, but in practice we will always be picking up a 

coordinate system and all these things can be turned around to construct specific 

operations required for changing the coordinate system. So, this was the translation part 

of the group which is rather easy to deal with it. It is a commutative subgroup by 

subgroup I mean a subset of the Lorentz group which is a group by itself. The non-trivial 

part of the Lorentz group is actually the other set of transformations corresponding to 

rotations and boosts. 
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And that is what we have to turn next in terms of the algebra. This again are continuous 

transformations which can be described in terms of the generators, and now with the 

terminology already introduced for the translation group it is very easy to write down the 

group generators, and they are defined in an abstract senses J mu nu equal to i times x 

mu d nu minus x nu d mu, and this combination is nothing but a simple extension of the 

well known property of definition of the angular momentum as r cross p. In particular the 

antisymmetric structure buried inside here is nothing but that of a cross product and 

given this definition now it is very easy to work out the various commutation rules. 

So, the group algebra is given by the commutations rule, and this can be easily evaluated 

by just working out the derivatives acting on the coordinates and clearly because the 

derivative is first order coordinates also appear in the first order. So, the result basically 

produces the structure of the same type, and one can work it out explicitly to be of the 

form where if you figure out just the first term the rest of the term can be written 

following the total antisymmetry of the indices involved. So, this gives the commutators 

of J also proportional to J, and that is the property of the algebra ensuring that the whole 

machinery closes; one does not get anything new, and one has a complete description of 

the tangent space to the group manifold by these rules. 

Now keep in mind that the metric tensor appears all over the place in these calculations, 

and the signs will change depending on whether their index is up or down, and we have 



to keep track of it to be able to write down the transformations explicitly and not make 

any mistakes. So, given this structure now what we can do is look at the specific defining 

representations, how this generators become when they act on the coordinates explicitly 

in the defining representation which is also often referred to as the adjoint representation. 

The arbitrary change in the coordinate will be described as x prime alpha is exponential 

of i by 2 some parameters which indicate the amount of change multiply by the 

corresponding generator, and we have to keep track of the indices so that they are 

contracted properly. 

So, this particular operator will have to be defined with one index up and the other index 

down, and that is where all the caveats of the Minkowski metric will come in. And now 

one can look at what happens to the coordinates in our usual basis when there is a 

rotation and when there is a boost and from that looking at the infinitesimal 

transformation deduce an explicit structure of what this abstract operator J mu nu will 

look like in this adjoint representation, and that relation turns out to be a simple 

combinations of chronicle deltas in this particular scheme of writing, but if one needs to 

a raise or lower a tensor index, the matrix signs will automatically appear as this is 

required in writing down the transformation between x prime and x. 

And we know the well known situations, and I will give an illustration of the particular 

matrices described by the structure as two cases; one is a rotation around the z axis by an 

angle which in this notation will be called omega 12. And in this particular case the 

transformation matrix which is lambda in our notation with one index up and the other 

index down has the form of identity for the indices corresponding the time and the z 

coordinate while cosine theta and sin theta factors for the x and y coordinates which 

change in the rotation around the z axis. So, this is a familiar matrix from the rotation 

transformation and the normalizations have been chosen such that the angle is precisely 

this omega 12. The reason for one half appearing in the definition between x prime and x 

is this product omega mu nu J mu nu. 

Each combination gets counted twice mu nu in some particular order, and then nu mu in 

the opposite order contribute the same result, and that cancels the factor of two just a 

consequence of a simple antisymmetry of mu nu in the definition of both omega mu nu 

and J mu nu, and this is an orthogonal matrix. Orthogonal in particular means that it is 

real and unitary at the same time, and this is a familiar result known from the study of 



rotations that we have this particular structure. Since the matrix is unitary if one finds the 

corresponding generators for rotations for the infinitesimal transformations the 

generators are Hermitians. Generators are denoted now by a single index in our common 

terminology compared to this two index notation, and they are conveniently defined 

using this antisymmetric tensor epsilon i J k. 

Just take this two index tensor J j k and multiply by epsilon i J k to get a single index 

tensors J i. And these are now restricted where both J and k as well as i are only the space 

directions, and when dealing with space directions I will not make any distinction 

between upper indices and lower indices. Both of them will mean the same thing which 

means that it is a conventional to choose the lower and the upper indices to have the 

same value, because there is no mixture in the matrix signs of the space directions 

themselves. 
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So, this is the rotation part; one can now also write down the boost part again familiar 

from the Lorentz transformation characterized by the parameter eta, and now I will label 

it with this index omega 0 3, and the definition of eta is that hyperbolic tangent of eta is v 

over c where v is the boost velocity, and with this particular convention the matrix has 

the same form as in case of rotation except that the trigonometric functions are now 

replaced by hyperbolic functions. And the action of that boost along z axis mixes the 

time and z components while leaving the x and y components untouched; it is a 



completely complimentary subset of coordinates compared to a rotation around z axis, 

and the difference in the structure now appears explicitly that this matrix is not unitary 

anymore. 

They change from trigonometric to hyperbolic function essentially is responsible for the 

change in that behavior, and that change is essentially connected to the opposite sign in 

the Minkowski metric when time and space coordinates are mixed compared to when 

only two spatial coordinates are mixed. So, this lambda alpha beta is not unitary, but its 

determinant is still one, and if one attempts to parameterize it in terms of an infinitesimal 

transformation instead of getting Hermitian generators one gets anti-Hermitian 

generators coming out as an expansion with the same convention as in case of rotation. 

So, that is the standard form, and I should point out that it is quite convenient to describe 

boosts in terms of this quantity eta instead of the velocity, because this quantity eta 

which is also referred to as rapidity is an additive quantity. 

So, one can apply successive boost where eta will just add very similar to apply 

successive rotations where the angles will just add, and that is the reason for choosing 

this hyperbolic transformations, and it also keeps track of what is really going on in the 

transformations. One can see the non-compact nature of the group in this matrix as well, 

because these elements hyperbolic cosine and sine are essentially unbounded. They will 

go all the way till infinity for large values of eta and the parameterization in terms of eta 

in that sense is non-compact. So, it is this boosts which make the Lorentz group’s non-

compact nature quite explicit, and one can now write it is generators as well in a specific 

notations. The generators can be defined as two index notations with one of the index 

being the time direction, and that will give three different boosts and the conventional 

notation for that is a just one index tensor denoting the direction of boost. 

And these particular objects are Hermitian by their own definitions; what makes these 

matrices non unitary is actually using these generators with one upper and one lower 

index provided one treats both the indices of the same type one can have a definition 

which respects the Hermiticity property in the abstract sense which was present in the 

definitions of this J mu nu. It is explicitly constructed so that this is an algebraically 

Hermitian operator in the same way as momentum is a Hermitian operator for any value 

of the index. When it is acting on a particular state one can do integration by parts to 

make this act on the complementary state and corresponding sign flip is absorbed by i 



going to minus I; that is what proves that this a Hermitian operator. So, one now has a 

complete description of Lorentz group and its time generators. So, in total Poincare 

group has time generators which we have seen, and we will now work out the 

consequences of the algebra of these ten generators in the next lecture. 


