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Dirac equation structure of low energy graphene states, Relativistic signatures in 

graphene properties 
 

In the last lecture, I worked out the band structure of Graphene; and it showed that at the 

corners of the Brillouin zone, there are 0 energy excitations possible. So, this defines 

essentially the Fermi level for Graphene, where the corners of the Brillouin zone. 

Actually go exactly through the Fermi level while at a different point anywhere in the 

Brillouin zone the conduction and the valence band have a non zero separation. 
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And these points so called 6 corners of the Brillouin zone are given by the vectors 

explicitly listed here, but they can also be written in terms of the primitive translation 

vectors; the coordinates are essentially given by 4 pi by 9 t i. And at these points 

excitations can occur without energy gap or rather e equal to 0 as is dispersion relation 

shows automatically. 

And, now we would like to see the other excitations available at low energy; and for that 

reason we have to study the neighbourhood of these corners. And there are various 

identities one can easily workout one is that given these locations; one can easily see 



what the phases are. And if you will evaluate these dot products they produce 9 by 2 

delta i j minus 3 half. Then the phases which appear in the momentum space 

Hamiltonian essentially e raise to plus or minus i k dot b i become the 3 cube roots of 

unity. And that is what defines the Hamiltonian? Of course, when you some over the 3 

phase factors as they appear in the Hamiltonian you get 0. And that is why the energy 

gap is 0 at this particular point. So, in the neighbourhood the phases will now differ 

slightly from this value 1 omega and omega square. And we can explicitly perform our 

tailor series expansion to see what these corrections are? 
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And, so let us take a particular neighbourhood of the point k plus; and we define the 

departure as a vector l. And then one can do a Taylor expansion the zeroth order term 

vanishes. And one has a leading term which is linear in this vector l; and it can be written 

as omega to the i minus one l dot b i; where these omegas are various roots of unity. And 

by putting the explicit values one omega and omega square one can do this straight 

forward linear combination and that equals 3 half l x plus i l y. 

And, then for this low energy excitations; we have the effective Hamiltonian in this 

pseudo spin space not by A and B indices which is sigma dot l. It basically represents l x 

plus i l y on one side of the diagonal and l x minus i l y on the other side of the diagonal. 

So, this now becomes the description of the theory for low energy excitation; it is a 

essentially the structure of the Weyl Hamiltonian or rather Dirac Hamiltonian with mass 



equal to 0. And one can work out the other neighbourhood the point k minus. And then 

one has the same Hamiltonian; but with a opposite sign and that corresponds to the 

Chirality being opposite at the 2 points k plus and k minus. 

So, we have essentially now 4 degrees of freedom described in this low energy theory; 2 

degrees of freedom coming from this index of 2 dimensional matrices describing the 

pseudo spin. Essentially that is where this matrix sigma leaves. And the other 2 

possibilities coming from looking at these 2 points k plus and k minus which give the 

opposite sign of Chirality. And so the total theory does obey the symmetries of a parity 

and time reversal with both these chiral component being present. But if one specifically 

concentrates on only one component one can see the unusual feature of the while 

Hamiltonian corresponding to a single Chirality. So, this is the structure and so there are 

totally 8 degrees of freedom in the real Graphene system. 

And, they correspond to 2 for pseudo spin 2 for choosing either of this k plus or minus 

points. And the other 2 degrees of freedom which I have not mentioned at all is a usual 

spin of an electron; that spin essentially remains completely independent of these other 

degrees of freedom it can be treated as a extra index. And does not play any significant 

role in the low energy dynamics of graphene. So, this is the system and now we want to 

study some dynamical consequences; which follow from this particular structure of the 

Hamiltonian; one can actually represent this structure was a little light cone. 

So, one has this point say k plus; where the energy is 0 the Fermi level passes through 

this point for Undoped Graphene where there is only one pi electron per atom. And one 

can dope it to move this Fermi level up and down from this conical point. And this cone 

basically describes the sigma dot l dispersion relation around this particular point. So, it 

is actually a 2 dimensional system. So, one can actually draw the cone which describes 

this sigma dot l and the consequences which we have seen for Dirac equation. 

Now, follow modulo one particular change and that is that the velocity of light c is now 

replace by thus number 3 t by 2 and that is quite different. So, the velocity of light is 

replaced by 3 t by 2 which can be called the Fermi velocity. And experimentally the 

number corresponding to it is about a million meter per second. And so this is smaller 

than c by a factor of 300 and this change actually makes this system easily accessible. 

You do not have to study at very high speeds close to c. The speeds remain whatever is 



available in condensed matter systems. And you can still see effects described by Dirac 

equation; that now can be converted into many of the examples which we have studied 

before. But I can still point out certain features which are unusual one has this; so called 

linear dispersion relation instead of the usual quadratic dispersion relation. 
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Which describes band structures in many of the metal? In case of metals dispersion case 

is quadratic. And on top of that we have the charge conjugation symmetry; in other word 

electron hole symmetry which remains exact for this Dirac equation. So, electron and 

holes will have the same effective mass and the same mobility; that is also a property 

different from what is seen in case of metals or semiconductors. So, that is a generic 

feature those are the consequences of the Dirac equation one can also look at the value of 

the coupling involved together with this Hamiltonian. That again follows in terms of 

looking at the electromagnetic modification of this particular Hamiltonian. 
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All that happens is that the fine structure constant; now is different. And it can be written 

in the usual notation with c e d replaced by the Fermi velocity. And to be more precise 

one has to include a factor corresponding to the dielectric constant of the materials. And 

this number experimentally turns out to be approximately 1; where the dielectric constant 

epsilon is about 2.5 in case of Graphene. 

You remember in standard electrodynamics alpha was 1 over 137. So, its large value 

makes the dynamics non perturbative; even though the interaction is just 

electrodynamics. The standard QED as we study most of the time in high energy physics 

is perturbative. So, you have to do calculations keeping these large coupling constants in 

mind. And now I will list some of the well known consequences which follow from this 

structure of the Hamiltonian; as well as the quite different values of the effective 

parameters like speed of light and the fine structure constant. So, let me first look at what 

happens in case of a barrier. And this was a problem which we saw in case of Klein 

paradox; we can easily create a barrier in case of graphene by doping one can create a 

gate and put a voltage on it. So, that the electrons feel an extra potential in trying to go 

through a particular region. And the peculiarity now shows up that we not only have a 

Dirac Fermion; we have a mass less Dirac Fermion. 

So, this Mass less fermions are easily pair produced. In particular we do not have a need 

for a minimum height of the barrier as in case of Klein paradox; where we need a barrier 



height of the order of 2 m c square to see this effect. Here, the effect is seen for any 

particular potential, because the pair production is very straight forward. And so 

immediately we see the effect that there will be hole; which will just go through the 

barrier without any problem. And electron which will be going back. And that 

phenomena now take a particular form we have a Chirality is conserved; which means 

the particle which is left handed or in this particular system moving in one particular 

direction cannot reverse its motion. And the consequence of both those things are 

together; that there is a perfect transmission through the barrier; one can have a pair 

production process which is restricted to the domain of the barrier. But on the other side 

we will get perfect transmission there is no way the Chirality can flip. 

And, so there is no backward scattering which is the same thing as saying that the pseudo 

spin cannot flip with the Hamiltonian structure we have. So, this is an unusual feature 

that even though you put in a barrier the electrons essentially do not care about it. If you 

have a incident which is normal to the barrier it will just go through there does occur 

some reflection; if the incidence is not normal to the barrier that is possible in 2 

dimension. But scattering by 180 degree just does not occur. So, this is the analogue of 

Klein paradox. Another feature which we have seen for Dirac equation is the there was 

no way to localize the particle perfectly; there was always a Zitterbewegung oscillations; 

which were of the size of the Compton wavelength of the particular particle. 

So, we have absence of complete localization again there is a mass less particle. So, there 

is no real Compton wavelength. So, the wavelength which matters is actually the one 

given by the wave vector k and that dictates the scale of the problem. And because of 

this uncertainty given over the particular wavelength; one can have that what can be 

called as a percolation of states on neighbouring sites. And that produces non zero 

conductivity; even though the parameters may have been such that there are no free 

carriers available. And other way of saying this statement is the mean free path which 

describes the motion of the electrons in this material it has a lower bound. And that lower 

bound is just the electron wavelength; we would have an insulator if the mean free path 

actually become 0, but that is not really possible. 
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And, so even for 0 chemical potential and 0 temperature; which means there are no free 

carriers available; there is finite conductivity. And the value of this is specified by the 

fundamental constants of quantum theory. And which happens to be e square by h. And 

experimentally again this feature has been observed one can measure conductivity of this 

particular magnitude; the feature that there is no backward scattering in case of a barrier 

that also has been experimentally detected. 

So, these features are qualitative consequences of the Dirac equation. And they have 

indeed been seen if one literally wants to do detail calculation; one has to solve the 

problems in presence of this large electromagnetic coupling. And do a non perturbative 

calculation and that is a technical detail. But the features that we expect are easily seen 

without doing the complicated algebraic analysis. 
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Let us look at yet another feature which is well known in this condensed matter system. 

And that is quantum hall effect; this is a behaviour of a 2 dimensional gas of electrons 

subjected to a strong magnetic field. And that results in a particular behaviour of the 

conductivity. And one sees different features at different; so called filling fraction which 

describe how many electrons exist in the conduction band compared to a specific density 

given in terms of landau level physics. 

So, that spectrum and that calculation now has to be redone instead of using the 

Schrodinger equation we have to use the Dirac equation. And its landau level spectrum is 

now different. It is specified in terms of an integer and going from 0, 1, 2 etcetera. And 

the result is proportional to square root of B as well as square root of n plus half; and 

then extra plus or minus half; this arises from solving the equation. And it turns into a 

harmonic oscillator problem for a electron in a magnetic field.  

And, that is where this n plus half combination is coming from the extra plus or minus 

half is a contribution of the pseudo spin in this Dirac equation. And that is a novelty 

compared to the result in the case of Schrodinger equation. So, this is a spectrum in 

particular the smallest value is 0, but there is slightly different dependence on the 

quantum number n compared to all the other energy levels which are non 0. And that is 

that any other value for a different integer can be obtained in 2 separate ways. 



For example, the one can be obtained by 1 plus half minus half or it can be obtained also 

as 0 plus half plus half. So, there are 2 ways of reaching this value 1, but there is only 

one way of reaching the value 0 which has to be 0 plus half and minus half. And for that 

reason the degeneracy of the E equal to 0 level is half that of the degeneracy of non 0 

energy levels. And that give rise to a filling system where one starts with half integers 

instead of integers. So, in a normal quantum Hall Effect the so called conductance 

plateaus correspond to integer filling of the levels. But now we have the zeroth level at 

different degeneracy than all the other ones. And here they are shifted to half integer 

plateaus because E is equal to 0 level gives half. And then after that all the other ones 

add integers. 

So, we do have a quantum hall effect, but the Dirac structures shifts everything by half 

compared to the Schrodinger solution. And one can see this in experiment it has indeed 

been observed; and that is a confirmation of again the Dirac spectrum of this particular 

system; I should mention that the ordinary spin in this analysis is kind of frozen by large 

magnetic field. And does not play any role in the analysis of quantum hall effect. And 

the difference which arising here is coming from this pseudo spin contribution; which is 

shifting everything by value half. 

The regular spin does not play any role one can also say one more thing about this 0 

energy levels. And which is well known in the analysis of Dirac equations; and how the 

energy shifts when various levels are crossed. And there is something which is known as 

a index theorem; which describes how the energy level behave when certain properties 

change in a smooth way across the value E is equal to 0.  

So, the properties of this e equal to 0 level are topological. And this nature made them 

very easy to see, because it is not easy to perturb them by external disturbances. So, that 

is the feature of what is seen in quantum hall effect in Graphene; one can ask what are 

the wave function like the wave functions are not very different. I already say that the 

solution corresponded to a harmonic oscillator problem. And the scale of that particular 

problem is as usual. 
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That the wave functions are described on the scale which is the so called magnetic 

length. And that is the only scale which appears in the case of landau level analysis; even 

for the Schrodinger equation. So, this is one more feature of the Dirac equation and how 

it modifies the behaviour. 
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There are still a few more properties I would like to mention one of them is property of 

quantum field theory; which is known as vacuum polarization; this is an effect of 

creation and annihilation of virtual particle antiparticle pair. And by producing this 



virtual pairs as a cloud the charge basically gets screened. And this the feature which 

makes that the value of charge you see by an observation from outside depend on how 

far away you are from that charge many times this feature is also referred to as Debye 

screening. 

So, we have these charge impurities are screened by virtual particle antiparticle pairs; 

and that kind of facilitates transmission properties. Because even when you put some 

impurities into the system you do not see their full strength; how much this modification 

is requires some calculation. And in this particular case you have to work with a 

effective fine structure constant which is much larger, but one can make a model of it. 

And the potential of a charge impurity can be written as V 0 of r has z e square by 

epsilon r where epsilon is again the dielectric constant. And that is made smaller by a 

distance dependent function f is less than 1.  

But it depends on how far charge you are observing; to calculate F of r explicitly 1 needs 

to make certain approximations. Because it is a non Perturbative physics. And the one 

approximation which works reasonably well is the so called Thomas-Fermi model of 

many body systems in this particular case of electrons. And one get an answer for this 

function which can be approximately written as 1 plus Z Q log r by a; where a is a 

typical atomic scale. And this form is valid where one is quite far away from the atomic 

scale as well as this number Q; which depends on the various parameters of the material 

being equal to 2 it is related to the alpha effective. 

So, this is what one sees and in particular this kind of reduction of the charge; which are 

logarithmic scale in the denominator is seen in case of standard quantum 

electrodynamics; in particle physics the only things here are the parameters are different. 

The consequence is that impurity is not as efficient as a bare charge in terms of scattering 

the charge is now shielded. And one can see that in terms of mobility of the charge 

carriers is enhanced. And the full power of this can be seen only by doing this calculation 

involving the logarithm. Because if you do a standard perturbation theory the logarithm 

will not appear it is a consequence of so called running coupling in field theory.  

And, it is a stronger effect in the sense of summing up the renormalisation group process 

which modifies this power series expansion or Taylor series descriptions to these 

logarithms. And the standard power series expansion which if one does they are the so 



called Perturbative estimates. And this effect is actually stronger compared to those 

perturbative estimates; the net result is that the scattering is suppressed. And impurities 

do not do as much as naively one would have expected. 
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This separation of scattering can be seen again in a slightly different language; and that is 

just to take the standard quantum mechanic situation. And calculate the cross section for 

a particular potentials. And in this particular case one can take the simpler model than 

the full quantum electrodynamics just take so called hard shear repulsive potential or 

basically a short range barrier. And then one can do the calculations much more easily 

and what one sees that in 2 dimensions; which is what Graphenes corresponds to the 

scattering cross section is finite for Dirac equation. In particular it is proportional to R 

square where R is the range of this particular potential. 

And, the difference arises because in case of Schrodinger equation the same scattering 

cross section is log divergent; in particular it is proportional to log square of the Fermi 

momentum times the distance scale. And this behaviour is quite distinct the result is that 

even if you put a short range barriers or impurities inside this material. The separation of 

conductivity is much less than what one should have expected in case of Schrodinger 

equation or in other words the resistance which is proportional to the cross section is 

much smaller for Dirac equation than it is for Schrodinger equation. And one have a 

material with better transport properties. 
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Lastly I one make one more comment about the structure of the graphene has would be 

seen in a real finite temperatures set up. And there it is impossible to avoid distortions of 

the structure by the vibrations of the lattice sites. And those are described typically in 

terms of phonons; the distances are not going to remain equally spaced lattice points 

there will be certain movements. And they will contribute to the dynamics of the 

transport properties as well. And there is a strong theorem in case of 2 space dimensions 

that so called long range order cannot exist in 2 dimensions unlike the situation in 3 

dimension. And so one can have crystals which are periodically ordered to long range 

even infinite range there is no problem, but it is 2 dimension perfect crystals are not 

possible. 

And, because of that the phonons will inevitably leave its effect on structure. There is no 

way to get rid of them completely even at temperatures going to arbitrarily low values. 

This general theorem is so called the Mermin Wagner theorem; if you have heard about 

it. And the consequence of this thing is that the Graphene sheet is crumpled by long 

wavelength phonons; there will be a cut off on the crumpling at short distance it is 

provided by the lattice unit itself. But at long distances there will be so called wavy 

distortions. And this distortion now can be included in the band structure analysis; which 

I did again as some small perturbations on top of the regular behaviour. 



And, we again have to study what happens in the neighbourhood of these 2 particular 

points k plus or minus. And it turns out that this disturbance is equivalent to a so called 

Abelian gauge field corresponding to random magnetic field; the distortions are 

uncontrolled. And that is why the magnetic field does not have specified direction it can 

occur randomly. But the effect is having this extra random magnetic field at every point 

on the practice one has its effect on the Brillouin zone.  

And, the consequence of this one can now workout more rigorously by treating again this 

extra Abelian gauge field produced by the phonons. In addition to the gauge field 

corresponding to the electrodynamics as well and the net result is again these are 

fluctuation. And they end up suppressing effects which are called weak localizations. 

And this suppression further give rise to improvement in a transport properties of this 

particular material. 

So, that is a whole list of things which have now opened up to the experiments and 

theoretical analysis; in case of Graphene there are many features to be understood in 

terms of detail calculation. But Dirac equation does lead the way in predicting very 

unusual features compared to the usual behaviour in case of metals. 


