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So, in the last lecture I was talking about the Weyl equation. It is a special case for mass 

less fermions, and because the mass equal to 0 allows us to write down equation with one 

less number of anti commuting set of matrices. And then you can choose the matrices 

cleverly enough. So, that the 4 components can decouple into 2 sets of 2 components, 

and that produces the Weyl equation with 2 different Helicity. 
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Now, before going further I would like to explain a few more properties of these Weyl 

fermions. Last time I said that this equation is a good description of mass less neutrinos 

which have 2 Helicities possible. But in nature we observe only the left handed neutrino 

and the right handed antineutrino.  
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Now, one can see several other properties of the equation as well from the structure of 

the anti commuting matrices which we have used in particular in Weyl representation, 

both the matrices which is gamma 0 which is a transformation for parity; and gamma 2 



which is the matrix needed for charge conjugation transformation are off diagonal 

matrices. The charge conjugation retains the same structure for the transformation; 

because just as in the Dirac representation only gamma 2 is a matrix which is imaginary. 

And since the charge conjugation transforms involved a complex conjugate only that 

degree of freedom corresponding to gamma 2 transforming to minus gamma 2 star is 

important for charge conjugation. And so that transformation matrix remains gamma 2; 

now both these matrices are off diagonal matrices that means they couple left and R 

components of the Dirac Spinor or in other words the parity and charge conjugation 

cannot act completely on particles of a single Helicity. 

So, for Weyl Spinors, P and C are not good operations. In other words you cannot define 

if for a objects of a single Helicity to be more explicit if I take a left handed neutrino. 

And apply a parity transformation it produces a right handed neutrino or equivalently I 

take a left handed neutrino and apply the charge conjugation transformation; it produces 

left handed antineutrino neither of them actually exist in a pure description of a single 

Helicity Weyl equation. If you want to get a object which is completely defined for a 

single Weyl equation one can apply both these operations simultaneously. And since 

gamma 0 and gamma 2 are off diagonal the product of the 2 of them turns out to be a 

diagonal matrix. 

And, so one can have a combined operation which is commonly referred to as C P and 

that produces a right handed antineutrino; and that indeed is a solution of the Weyl 

equation with an opposite values of energy. So, it turns out that even though C and P 

cannot be individually defined for Weyl Spinor; C P is a well defined operation for Weyl 

Spinor which indeed couples the particle and the antiparticle degrees of freedom. There 

are other consequences also of the charge conjugation symmetry not being defined or 

one can also say that these symmetries are violated; that one cannot couple Weyl 

fermions to a interacting field which obeys charge conjugation symmetry. And the 

important example for such a interaction is the electromagnetic interaction.  

And, the electromagnetic coupling for that reason is something which cannot be properly 

defined, because this electromagnetic interaction respects C or the charge conjugation 

operation. In other words the Weyl fermions are electromagnetically or under any other 

interaction which respects charge conjugation it have to be neutral; they cannot carry that 

particular charge one can on the other hand have some interaction which violates charge 



conjugation. And then Weyl fermions are allowed to have that interaction and that is 

indeed realised in the standard model where the weak interactions are not charge 

conjugation symmetric; and they indeed couple to the neutrinos. So, these are called 

Chiral gauge interactions e g the weak; they are allowed for Weyl fermions. So, this 

much about the various kinds of interactions Weyl fermions can have depending on their 

properties of parity and the charge conjugation. The 2 component description actually 

also turns out to be very helpful in discussing various properties of the Dirac fermions as 

well. 
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And, that is possible either where the mass is very small or equivalently the fermions are 

highly relativistic. So, the energy is much bigger than m c square; and in that case we can 

neglect the contribution of the mass in the Dirac fermions behave as a pair of Weyl 

fermions. And that description is also very helpful in describing how the left handed and 

the right handed components behave? And one can straightaway mention a few 

properties one of them is something which is referred to as a chiral charge leading to a 

concept of chiral symmetry; it follows from the fact that the operator gamma 5 acting on 

this projection operators for the Helicities it just gives the plus or minus sign of the 

helicity operator.  

And, so if one wants to determine the plus or minus one can measure it just by measuring 

the expectation value of gamma 5 inside the state. And that operator then psi bar gamma 



5 psi measures the so called chiral charge of the Dirac fermion. And that will essentially 

tell us whether the particular component we are looking at it contributes as a left handed 

part or the right hand part. And one can then extend this use of the operator to a sort of 

symmetry which mixes the 2 components. 

And, that also can be done again in the case of Dirac fermions where one can define a 

transformation which is exponential of i theta gamma 5; where theta is some rotation 

angle this is a an exact symmetry for mass less Dirac fermion; for the simple reason that 

gamma 5 commutes with the matrices alpha they anticommute with the matrix beta. But 

beta is a matrix which drops out in the limit of the mass going to 0. So, under this 

transformation the equation remain unchanged. And that is called chiral symmetry; it 

plays a very important role in studying the so called strong interactions; where it is 

actually broken by a spontaneously generated mass for the Dirac Fermion. But that is 

getting too far ahead into the property of a field theory. 

But it is important that this is a certain symmetry and if there a mass term it will break 

this particular symmetry. And that is again a useful concept related to the 

transformations of left handed and right handed components. If one write downs the 

contribution of the mass it rather explicitly appears as a interaction it couples left handed 

and right handed degrees of freedom. And this can be physically understood as saying 

that if I have a massive particle I can boost to a frame which is moving faster than the 

particle in that frame the momentum will get reversed. But its spin will remain 

unchanged and the so helicity will change sign and it will transform a left handed particle 

into a right handed particle; such a transformation is not possible if the mass is exactly 0. 

So, a non zero mass indeed ends up coupling the left and right components. 

And, that is a way to understand the breaking of chiral symmetry which is produced by a 

mass term. The mass term may be explicitly present in the Dirac equation or it can be 

dynamically generated as in the case of strong interaction. So, these are the various 

properties of Weyl equation; and one can look at the clever choice made by choosing a 

particular set of anti-commuting matrices as a transformation on the basis of the gamma 

matrices satisfying the Clifford algebra. So, the Weyl and Dirac representations are 

related by a unitary transformation of the Clifford algebra and if one requires it can be 

easily constructed. So, then one can use the transformation to relate not just the basis 



matrices. But any arbitrary components of the speed as how do you go from one bases to 

another. 

So, this is 1 aspect of the convenience in choosing the bases of Clifford algebra. And it 

allows you to basically how the degrees of freedom of the Dirac equation; when the 

particle has no mass. There is another transformation again corresponding to a clever 

choice of the bases of the Clifford algebra that is possible. And which also ends up 

having the degrees of freedom of the Dirac Spinor and that is what I want to describe. 
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Next and that representation is called Majorana representation. And objects which follow 

this particular structure they are referred to as Majorana fermions; this Majorana is an 

Italian name. And the later j which is appearing in that here, in Latin it is actually 

pronounced as and that is how I am referring to the name. And what Majorana cleverly 

observed is that one can rewrite or rather choose a form of gamma matrices. So, that the 

Dirac equation instead of having a complex numbers becomes completely real. And this 

is a clever choice which is possible for the relativistic equations; such a choice actually is 

not possible for the Schrodinger equation there you are forced to introduce complex 

numbers. But in case of Dirac equation this is a clever trick. So, this is a choice where all 

gamma matrices are imaginary and the Dirac equation becomes real; which means half 

the number of degrees of freedom. 



And, it is very easy to see by just again a simple permutation on the various matrices 

which we have already used. And I will write down the representation which was defined 

by Majorana; and the Majorana matrices I am going to denote by a symbol hat on top of 

the object. So, alpha 1 hat is defined as minus alpha 1, alpha 2 hat is equal to beta alpha 3 

hat is equal to minus alpha 3 and beta hat is equal to alpha 2. And this implies that 

gamma mu hat star is equal to minus gamma mu hat; because beta is already one of the 

gamma matrices it is imaginary. And other ones which are products of beta and alpha all 

the alphas are real. And so alpha turns beta which are the gamma matrices also are 

imaginary. 

And, so one can now use this definition to rewrite the Dirac equation without any 

complex number. So, at the unit i and that structure looks like h cross del by del t plus h 

cross c alpha hat dotted with gradient plus i times beta hat m c square psi is equal to 0. 

And i has been multiplied throughout and i times beta hat is real and so are all the 

coefficients in front. And so this will have solution psi which also can be completely 

real; and then it will have only half the number of degrees of freedom compared to a full 

complex solution.  

So, one can have a this has a mathematical possibility; the question is what are the 

physical properties of a such a fermion? And that now one can try to infer from a this 

quantity; the parity transformation can still be defined its will be still defined as a matrix 

gamma 0 or in this particular case it is it will be defined by the matrix beat hat. And there 

is a choice available which is just i times beta hat; there is always a complete freedom in 

choosing the overall factor of the matrix; if you want to make it real choose a phase 

cleverly now for otherwise leave arbitrary it does not matter. There is no problem in 

defining such an operator for the case of Majorana fermion. But for a charge conjugation 

operation the relation was a transformation which converted gamma mu star to minus 

gamma mu. 

But that operation is already two for the gamma matrices in the Majorana bases. So, the 

transformation is essentially nothing but identity in the Spinor space and charge 

conjugation operation. Then is that psi c is equal to psi star and if we choose the solution 

psi to be real; that means, the charge conjugated solution is equal to the original solution 

that is a unusual case. But it means that the Majorana fermions are their own 

antiparticles; under charge conjugation they come back to themselves. And if you are 



going to interpret the charge conjugation as a object which goes to the antiparticle; which 

will have an opposite value of the charge. That indeed is not possible in case of Majorana 

fermions; you get the same solution back after applying the charge conjugation operation 

and this a unusual feature. 

So, the structure now is quite obvious what happened in the Weyl bases and what 

happened in the Majorana bases. In case of Weyl bases you reduce the 4 components to 2 

components by separating the 2 different values of the helicity or the spin degree of 

freedom. In case of Majorana representation we again separated the 4 Dirac components 

into 2 parts of 2 components each by separating the particle and antiparticle degrees of 

freedom. And so the spin part will remain inside the 2 component description of a 

Majorana fermion but there is no separate label for a particle and a antiparticle. 

Another way to look at it is to introduce the electromagnetic interaction into this 

Majorana structure of the Dirac equations. So, electromagnetic interactions which are 

introduced by taking the operator p and writing p minus A into the equation the p is i 

times the gradient. And so only tries to redefine the gradient by this particular 

transformation; it happens that one introduces back an imaginary operator which was 

carefully avoided in the other terms of the equation. So, if one wants to stick with the 

structure that I will only work with a real equation and a real operators it is not possible 

to introduce electromagnetic interaction. 
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So, Majorana fermions are therefore completely neutral; they cannot have any interaction 

of this p going to p minus A type. And that includes both electromagnetic type 

interactions and also the chiral type of interactions which are possible in the case of weak 

interactions none of them exist, because all of them will convert this gradient operator to 

an extra term which is imaginary.  

And, if you want to stick with the real bases one has to stick to a object which is 

completely neutral it does not carry charge under any type of interaction what so ever. 

And this is a rather strict constraint and it also makes Majorana fermions the very hard to 

detect. Because if they are not going to carry any charge; then how are you going 

observe them; they can be only observed through their space time effect. Because the 

Majorana fermions will carry spin even though they do not carry charge. And that is 

again a leads to a possibility that may be the neutrinos are Majorana particles. 

So, neutrinos can be Majorana not strictly Majorana particles; because they do have a 

weak interactions. So, more correctly a mixture of Weyl and Majorana particles that is 

again possible by choosing a bases; which is slightly rotated away from the Weyl bases 

in the direction which points towards Majorana fermions. And this remains an intriguing 

possibility that may be there is some property of neutrino; which has a Majorana 

characters. And the only property which will display this Majorana character is this 

identity between a particle and antiparticle if so there will be so called neutrino less 

double beta decay possible. 

And, this is the only clinching test which one can make to demonstrate a Majorana 

character of the neutrinos; that normally double beta decay will be one beta decay 

followed by another; in which case first one will emit a neutrino, the second will again 

emit a neutrino. But if the neutrinos have Majorana character it will allow a possibility 

where the 2 neutrinos can mutually annihilate and disappear into vacuum. And in that 

case there will not be any neutrino seen at all; and that is what is referred to as a 

neutrinos less double beta decay. And this is a unique property which will give a 

unambiguous signature that neutrino has a Majorana character or not. At present there 

have been lot of investment and efforts to study this particular property but the question 

is not yet answered. 



People have observed double beta decays but always corresponding to emission of 2 

neutrinos; the search for neutrino less double beta decay is on. But barring that reaction 

one can allow for a theoretically possibility that one has a Majorana component into the 

neutrinos. And that can be included in the Dirac equation by this mass term; which is 

quite a different possibility compared to the Dirac mass term. The Dirac mass term 

couples the left handed and the right handed neutrino modes while the so called 

Majorana mass term which appears in the Majorana equation; it will associate itself with 

a coupling a the particle and the antiparticle degrees of freedom. So, this is a different 

character and in theoretical models both these kinds of mass terms are investigated; 

whether the neutrinos has a Dirac mass or it has a Majorana mass and that question is 

important. 

(Refer Slide Time: 37:54) 

 

Because of the observation of neutrino mixing says that one must have coupling between 

the different components of the neutrino wave function; they can have Dirac or Majorana 

or both mass terms. And the models having these particular properties have been 

constructed and they are under investigation. And trying to figure out what the prediction 

are and what kind of a parameters will obey the experimentally observed consequences? 

So, this is a particular feature that Majorana fermions are their own antiparticles and that 

leads to it peculiar effects. It also leads to a feature that one can have a rather peculiar 

looking fermion statistics compared to the usual exclusion principle in case of a 



Majorana fermions. But let me first just say that Majorana fermions have this probability, 

density or current that is perfectly find. But no charge density or current on top of that 

the numbers of the Majorana fermion is conserved only module 2. Because 2 Majorana 

fermions can annihilate into the vacuum or there can be pair produced from the vacuum; 

just like a particle, antiparticle pair. 

Here the particle and the antiparticle are identified with each other. And the statistic 

which follows from this kind of rule is rather peculiar. The fermion statistics then obeys 

these are peculiar rule that if I define a C as a operator; which creates a particle acting on 

the state 0. In the second application of the same operator can take you back to the 

original state or equivalently C square is the identity operator; this is different. And the 

exclusion principle where fermion operator acting on the vacuum state; it will create a 

one fermion state. But if I apply a second fermion operator it will produce the number 0; 

it will annihilate the state completely not produce the 0 fermion state. So, this is different 

from the exclusion principle. 

And, that is a effect that the numbered in this statistics is only conserved modular 2; it 

does not have the more standard rule of Pauli exclusion principle where the number can 

be either 0 or 1but no other values. So, this is a different sort of story and roughly this 

operator behaves as a plus a dagger of the operators of Fermi Dirac statistics. And this 

particular super position that we have both a and a dagger combined together is again 

manifestation; that there is no distinction between a particle and a antiparticle. 

So, this is the feature of Majorana fermion which appears as a statistics in a many body 

theory; it is again little bit unusual. And one can ask whether these 2 different properties 

of reducing degrees of freedom of Dirac equation are they mutually compatible or not. 

And it turns out that in some situations which depend on the number of dimensions of 

the space; in which one is working the 2 properties can be compatible. And in some 

cases they are different. So, depending on dimensionality one might even have a 

situation where the fermions can be defined. So, that they have both Majorana and Weyl 

properties simultaneously. So, whether or not Weyl plus Majorana properties can be 

obeyed simultaneously that depends on the dimension of the theory. 

But in the or usual case 3 plus 1 dimensions, it is not possible; it is actually possible in a 

little bit of a simplistic scenario of 1 plus 1 dimension; there the matrices are the Pauli 



matrices. And one can play around with a trying to impose both these condition 

simultaneously and it works out. But I would leave that as an a exercise to be explored 

without going into further details. So, this is a consequence of playing around with the 

bases of a Clifford algebra and one can indeed find new features as we have seen. Now, I 

want to move on to discussion of another kind of symmetry and that is important 

together with a parity and charge conjugation. And it actually forms a triad of the 

discrete symmetries important for classification of particles and that is a concept of time 

reversal symmetry. 
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Now, this is a symmetry which is difficult to consider in practice because we know that 

indeed future and past are very different in our experience. So, there cannot be any 

symmetry which will equate future with past in any sense. But in mathematical 

formulation it turns out that many of the equations which we consider for many of the 

different kind of interactions; they do have this kind of symmetries. And through that 

equations we will not distinguish between past and future in a straight forward fashion. 

And then one it can indeed define a transformation which flips the arrow of time a 

simple example is the Newton’s second law; where the second derivative with respect to 

time which is the acceleration is related to the force. And if you change the arrow of time 

the second derivative with two flips of sign actually does not change its value. 



So, the Newton’s second law is symmetric with respect to this time reversal symmetry. 

And such considerations also exist in a relativistic theories and we want to study that 

particular situation a little bit in detail. So, this is a transformation it reverses the arrow 

of time and it can be a symmetry for some particular problem. And as I said e g m x 

double dot is equal to force in case of Newton’s equation of motion. But now let us 

define this particular transformation more accurately in the case of quantum mechanics.  

And, there we will define a general rule of what is a transformation which can be 

associated with the symmetry and quantum mechanics? And that is a analysis which is 

associated with the name of Wigner. And he gave a very general theorem which listed 

explicitly; what are the possibilities of various kind of symmetries in quantum 

mechanics? And the condition which one requires for the quantum theory to be 

symmetric is all the observables do not change under the symmetry transformations. And 

in quantum mechanics all the observables are the absolute squares of all the transition 

amplitudes one can construct. And that condition is very simply formulated as a 

condition between overlap of various kind of states which exist in the theory. 

And, that can be written as overlap of phi and psi mod square in one particular bases will 

be the same; after you have change the bases according to the symmetry transformation. 

And Wigner’s classification basically listed all the things that can be allow such a 

invariant of the transition probabilities. So, in general Wigner showed that any such 

transformation falls into 2 distinct possibility; one of them is called unitary and linear 

which means that phi prime is a unitary matrix acting on phi.  

And, it can be summarized as U phi U psi is equal to phi psi this is a condition of a 

unitary transformation. And the linearity means is that a acting on psi 1 plus psi 2 is the 

same as a times U psi 1 plus U times U psi 2. And most of the transformations which we 

have considered so far fall into this particular category; the translation, rotation etcetera 

they all correspond to changing a bases by certain unitarity transformation. 

But Wigner showed that there is a second possibility also available and that is called anti 

unitary and anti linear. And that is a little bit unusual situation where you have the 

change which not only applied as unitary transformation but it also flips the amplitude to 

its complex conjugate. And this is the transformation which Wigner labelled as anti 

unitary. And anti linearity is a property which goes along with this transformation; where 



the coefficients become complex conjugate. Based on this general classification we will 

discuss time reversal next time. 


