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Let us continue our discussion of rotational motion. In the last lecture, we saw the
relation between the angular velocity and angular momentum. And we sort of learnt that
there is a strange fact that angular momentum and angular velocity need not be in the
same direction. So, this is very different from the situation in the case of translational
motion where the linear momentum P is equal to mv is always in the same direction as
the linear velocity v. Today, our goal is to examine the cause of rotation. So, when we
discussed Newton's law of motion, so we said that the cause of motion is the, is the force.

So, that was a confusion for long time among people that the, what is the origin of
motion. Sometimes people thought that the origin of motion is the change in position. So,
the velocity is, if you have a velocity that means the, that is the cause of, so the force is
some external agent that causes the, some object to move and for long time people had
this misconception that force causes change in the position, that is velocity. But later
when the Newton's, after Newton's law of motion by the research of Galileo, Newton,
etc., it is now clear that force does not, that is the interaction between our system with its
surrounding causes acceleration, that is change in velocity, not change in position.

Now, today our goal is to look at what is the analogous situation for the rotation, what
causes rotation. Now this we have implicitly, we know that what causes rotation is the
torque. So, that is another consequence of force. So force on a, so if we take a system and
the system, so it is interacting with its surrounding, so there are some, these interactions
of the forces and this can cause our system to translate, but another consequence of the
force is the rotation.

It can also cause our system to rotate. This is why we not only need to mention the
magnitude and direction of the forces acting, but also the line of action of the force. So
this is what we learnt when we learnt how to draw the free body diagram correctly, that
you need to specify the line of action also, because the force can also cause rotation. So
today is our goal is to examine the relation between force and its rotating effect, which is
expressed by torque. So, what is the relation between angular momentum and torque? So
you know from your high school physics that the two things, that this torque is expressed
as the definition of torque is that this is the moment of force and this is expressed as a
cross product.



So let us say that we consider a single point mass and with respect to some particular
origin and this origin is fixed in space and this is our coordinate system. So, this vector R
is the position vector of this point mass and let us say some force is acting, let us say in
this direction. Then so this is the line of action of the force. Then the torque due to this
force about this point pivot point that is the origin is given by this definition rxA. And
you have also seen that this causes the effect of this force is to change the angular
momentum, which is analogous to the Newton's law that the cause of force is to change is
equal to the rate of change of linear momentum.

Point mass, fixed origin

So, our goal is today to critically examine this relation. So, remember that this relation we
also used implicitly when we talked about the statics problems when the objects are
motionless and we use this torque balance condition as one of the essential criteria for
statics or mechanical equilibrium. In that case we used this definition always that t=rxF.
Today we are going to see the relation between the angular momentum and the torque.
And specifically we are we want to discuss this question that under what condition
=rxF .



So, when I say torque I mean that some external agent that causing a change in the
angular momentum. So, let us work it out in some detail. So, let us say that we start with
our definition that for a point mass the angular momentum of this particle of mass m is
given by L=rxp. So then if we look at the rate of change of angular momentum that will
be the rate of change of this quantity. Then it has two terms, so I can apply the chain rule
of taking derivatives.

Now this is v and this is mv. So, the first term is a is basically a cross product of velocity
with respect to itself apart from the mass. That means this is 0 by definition of the cross
product. Hence we have the dL/dt which is equal to rx(dp/dt) which is the force as listed
here. So this is how we get this relation for a single point mass.

Now before proceeding further let me discuss a very interesting and very important
consequence of this particular case of a point mass. So, we are talking about the central
force motion. That is a particle is subjected to a central force. What is a central force? It
is a force such that if this is the particle, so let us say some particle is moving along the
origin and there is a force acting on this particle which is along the its position vector
always. So, this is the, so the direction of the central force is along the position vector.

So this is the definition of a central force, that is why it is called central. Now it can be
towards the origin or it can be away from the origin. So the F(r) can be positive or
negative, the magnitude of the force, but the direction is always along the position
vector. So, if this is the case then we can immediately see that a particle of moving in
such condition will have a constant angular momentum.

If a particle is subject to a central force only, then

Theorem 1: its angular momentum is conserved.
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Now if F is along the direction of position vector then this is 0. So, then if F «r, then
dL/dt=0, that means that L is conserved, that is the particle's angular momentum is a
constant. And geometrically if the angular momentum is constant that the only way it is
possible if the particle is moving in a plane which is perpendicular to the direction of the
angular momentum. That is the only way the angular momentum can remain constant.
You can check that.

Theorem 2: its motion takes placein a plane.

So here is a very, very important application of this simple concepts. So we take this
example of Kepler's laws of planetary motion. Using just this simple definition we can
understand Kepler's laws of planetary motion. So let us start with Kepler's second law.
So, what does it say? So, basically in this case the origin is for could be a massive particle
such as sun and this particle that is moving around the origin is let us say our earth or any
planet.

So, the Kepler's second law says that a line segment, so here there is a line segment. So,
the violet line joining the particle and the center that is the sun, sweeps out equal areas
during equal intervals of time. So, this is the blue shaded region. So, notice that the
particle is not moving in a constant speed. Sometimes it is moving fast, sometimes it is
moving slow and you can see that if you follow the blue shaded triangle sometimes it

becomes wider, sometimes it iS narrower.
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Why because this is showing that for equal amount of time if the speed is higher then it
will cover more angular earth. So, the blue shaded region will appear wider. Whereas if
the speed is small then the arc length will be narrow and the triangle will appear
narrower. But Kepler's law says that the area of this triangle of the blue shaded region for
equal amount of time At is always the same.


https://commons.wikimedia.org/w/index.php?curid=24871608
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So let us derive this. It is very easy to derive this. So, the blue shaded region, blue shaded
triangle, so let us draw some particular instant. Let us say it makes an angle, so this is our
sun and this is at the earth's position at t and this is the earth's position at t + At. And this
angle is A0 . Then the arc length, this arc length is r times, so r which is, so in general the
distance between sun and earth are different.
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So the r which is the distance between sun and earth is a function of 6 . And now you can,
if AO is very small then you can approximate this piece of the, this arc as a straight line so
that this is approximately a triangle. So you can use the formula for the area of a triangle
half into base into height. So, this is base and this is height and so this is r and you get the
half times r and dO , if the speed, angular speed is ® then the angle covered A9 is, so this
is your A8 will be wdt. So then if you take the rate of change then dA/dt will be (1/2)r r®
and ro is the tangential speed of the earth along the trajectory.
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So, this is basically the content of Kepler's second law. I also mentioned the nature of the
trajectory.

So, Kepler's first law. So, the first law says that the orbit of a planet is an ellipse with the
sun at one of the two foci. Now what from this simple analysis of the conservation of
momentum we can only say that the sun must move in the same plane.

So, in general it could have some complicated trajectory but no it always moves in the
same plane. So, this is consistent with Kepler's first law because ellipse is an orbit in a
plane. So, it basically shows that the center of the sun is always in a same plane. Now we



cannot from this analysis we can only say that the orbit is planar. So, Kepler's first law
contains more information, it in fact says that the orbit is ellipse.

So this is true only for a special case where the force law is « 1/r>. So note that here we
just mentioned that this is a some function of r. So when I say some function of r and it is
directed, we just assume that this force between sun and earth is directed along the line
joining sun and earth. But we do not know what is the magnitude. So, once we know the
magnitude, then like the using these Newton's laws of universal gravitation, then Newton
was able to prove that the law, this orbit, the planar motion is in fact an ellipse.

So, let us come back to our discussion of under what condition, the torque that is dL/dt is
equal to, so this I mean the change in, rate of change in angular momentum is equal to
rxF. So now we have, so we consider a single point mass. Now we generalize it to an
extended object. So, let us for simplicity we describe this extended object as a collection
of point mass. So, the first case that we consider will be where our origin is again fixed.
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So, like before this is our origin and this origin is fixed and there are sort of point mass
and for concreteness we have four point mass. Now in this case we have to calculate the
dL/dt. So, let us work it out. So, in this case L, the total angular momentum, so we can
compute it for each of this particle. So, for particle I, position is r; and its momentum is p;
and then we have to take a sum over all particles.

Then the rate of change of angular momentum is equal to,
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Here is the difference. So, for a, when we have a extended object, then suppose when we
write down this, the force on particle i, so we make a distinction between two kinds of
force. So, let us say this is our system, so this is our system and everything else is
surrounding. Then there will be interaction between the surrounding and the particles
inside the system, from surrounding interactions, surrounding from and system, but each
particle of the system can also have force from other particles, particles or parts of the
system. So we call this as external force or external interaction and this one as internal
force or internal interaction. So, then our Newton's law will be the total force, so this is
total force on particle i, so this will be as an external component and an internal
component.

The origins are different, the external component is coming from outside the surrounding,
from the surrounding and internal component comes from the other particles in the
system. So, let us say if I take this particle, then the force due to r;, r; and rs4 constitutes
the internal force on particle 2. So, we write it as,
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Extended mass, fixed origin

y [Take home exercise
Zero torque from internal forces: Given a collection of particles
with positions r;, let the force on the jth particle due to all the
others be F/"t, Assume that the force between any two particles is
directed along the line between them (central force). Use
* Newton’s third law to show that
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I showed is that all the internal force, the torque if you sum over all the forces, the torque
due to all the internal forces will be 0, so the only force that matters are the forces that are
coming from the surrounding. And if you recall the problems that we did, the examples
that we did, so when we talked about the torque on an object, it was always the torque
coming from the surrounding. For example, if I look at the torque due to earth's



interaction, so that is a force, if this is our system, then the, what causes the rotation is an
external force like the gravitational attraction due to earth, which is coming from the
surrounding. So, this is true even for an external force, but here comes the third case and
the most interesting case.

Extended mass, nonfixed origin

L = Z(Ti —ro) x m;(r; — o)
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Newton’s second law is valid only in

inertial frame. So we need an inertial
reference frame to write the equations.

So, in this case, we now consider our frame which is moving. So far in the two situations
that we considered, the frames where that is our origin was fixed in space. So, these are
what is called inertial frames, that is we assume that in frames, these frames, the
Newton's second law is valid, which means that I mean, in this is a frame in which
Newton's first law holds, that is if there is no other external interaction, then the particles
will move with a constant velocity. But now, let us assume that our origin itself is moving
with respect to some inertial frame, so and when I say moving, it can have, move with
constant velocity or it can have some acceleration, it can be an accelerating frame. So,
this is a very interesting situation, which we did not discuss more like earlier in our
course, and this is the only situation in which we will briefly mention this, but so this is,
this non-inertial or accelerating frame of reference. And suppose, if the question is, if we
take such kind of reference where the origin itself is moving, then can we write down the
torque is equal to rxF, this is an interesting case.

Now, because we cannot write, this is not guaranteed that in that frame, the Newton's law
will, Newton's laws of motion will hold. So, we need a second frame which is fixed, an
inertial frame. So, this is the frame which which we will call the lap frame. So, consider
that this is the origin of the lap frame, and this is the r, is the origin that is moving. The
position of the origin in the lap frame is ro, and in the lap frame, the position of all the
particles, so we have only two particles in this particular example is r; and r>.



Now, the position vector of the same particles with respect to this moving frame. So, this
is the moving frame, is 1;-1o and r>-1o. So, we want to calculate that what is the rate of
change of angular momentum of this system of two particles in the moving frame. So, the
first term is ri-ro, this is the position with respect to the moving frame, times the
momentum with respect to the moving frame of particle i. So, we have to calculate the
time derivative, and as before we get two terms, the first term will be the velocity times
momentum in the moving frame, so it is 0, and the second term is the interesting term,
which is the position of the particle i in the moving frame, times the derivative of the
momentum, and the derivative of the momentum now has two terms.
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Now, the Newton's law says the m; acceleration is equal to the total force on particle 1,
this note that you can write only in the fixed frame, it is guaranteed only in the fixed
frame, there is no way you can, it is guaranteed if the frame is moving. If the frame is
accelerating, this is definitely not true. So note that this is the real physical interaction
which obeys the Newton's third law, so we divide as before into external force and
internal force, so in this particular example the force on 1 by 2 is the internal force, and
everything else is in the surrounding, so this is our system, everything else is in the
surrounding.

So I am writing all the equation with respect to the fixed frame. Now as before you can
show that the first term is, so this is the sum over i all the external torque. The second

term with the same argument you can show by applying Newton's third law, this is going
to be 0.

Now the last term, so the last term is, in this case, if I recall the center of mass definition,
so this is nothing but the total mass of the system times the position of the center of mass.
So, we see that the dL/dt, this is not only the T external as before, but has some extra
term.
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And only if this extra term is 0, then we get this relation that dL/dt is equal to rxF. So,
this is the rxF term. So, under what condition the second term is 0. So, you see from
looking at the second term, that if this is the center of mass position. So, if the moving
point is the center of mass, that is the origin is the center of mass, then this term is 0, that
1S r=Ty.
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Or if this acceleration is 0, then also this term is 0, that the origin is moving, is not, can be
center of mass, can be different, but it is moving with a constant velocity, not accelerating
with respect to the fixed frame. Or the, this is the, the origin is different from center of
mass and is also accelerating. But for some reason, this difference is the parallel to the
acceleration. So, this is a very special and strange condition. If one of these three
conditions satisfies, then we see that this term can be 0, in that case the cross product
itself will be 0.

And we end up with the relation that the rate of change of angular momentum is equal to
the rate of the total external torque, that is rxF. So, this is something that is usually not
highlighted in textbooks, so I just wanted to mention it. So, to summarize, if you take a
inertial frame, then, so we looked at the relation between the rate of change of angular
momentum and torque, we found that in a inertial frame, the rate of change of angular



momentum is equal to rxF. But if we take a moving frame of reference, it is not true in
general and we discuss the conditions under which it is true. Thank you.

Extended mass, nonfixed origin L
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1. R = ry, that is, the origin is the CM.
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