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Welcome to the seventh week of this course on Newtonian mechanics with examples. We shall 
start this week by taking a few more examples of collision problems. In the last couple of lectures, 
we took some examples of collisions from our day-to-day life. However, I want to say that 
collision, which is also called scattering, is a very important problem, which in the last century 
was very instrumental in making fundamental progress in physics. So because these collisions 
were used as a probe to study the structure of the matter. What is the matter made of? So I will 
take one or a couple of examples from today's lecture to sort of tell you something about this 
fascinating topic. 
 
Our first example is something called Brownian motion. So this was discovered way back in 1827 
by a botanist called Robert Brown. So, as you can see in this GIF file, what he observed was that 
pollen grains in water, If you look at them and observe them under a microscope, you will see they 
are not at rest, but  They are moving something like that, as shown in this picture. So he observed, 
but he could not understand why they were not at rest but were moving. 
 
After almost 80 years, Einstein proposed a theory in 1905. So he realized that these pollen grains, 
which are very small microscopic particles, So, you cannot see them through naked eye, but you 
have to look at their micrometer-scaled objects. So, you will have to see them under a microscope. 
So they are not at rest because there are collisions between these pollen grains and the molecules 
of the liquid in which it is. So here is an animation of the same. 
 
So this is an animation, not a real experiment. So imagine this yellow sphere, which is a large 
object, so this represents pollen grain and These small black dots are the molecules or particles of 
the fluid. So these are small particles, so we cannot observe them directly with our naked eye, not 
even under a microscope. So the only thing we observe is the trajectory of the movement of the 
sphere. So, Einstein imagined that this is a picture where these fluid molecules are continuously 
hitting this yellow sphere and that is why we see this yellow sphere doing this kind of erratic 
apparently random movement in the fluid. 
 
So, this apparent random movement is very important in physics, so this is an important 
phenomena. Which is called diffusion, and this is technically called Brownian motion. So, after 
Einstein proposed that this is due to the atoms and collision with the atoms and molecules of the 
fluid, John Pera did an experiment in which he actually proved that this is indeed due to the atoms. 
How did he do that? Because he sort of proposed Einstein's theory, he measured the Avogadro 
number. So for this groundbreaking experiment, he won a Nobel Prize in physics. 
 
The significance of Einstein's theory and Pera's experiments is that this is the first direct 
experimental evidence that atoms and molecules exist. Even though it was proposed long before 
by chemists, physicists in the 19th century did not sort of believe that atoms really exist. They 



thought that this was just a useful mental picture to explain the chemist's experiments. But when 
Einstein and Pera proposed their explanation of Brownian motion, Physicists were forced to accept 
that matter is not continuous. In fact, it is made up of atoms and molecules. 
 
So in this context, so I will refer to you a particularly interesting website that I discovered when I 
preparing for this lectures, so which sort of gives you a more background about this fascinating 
topic of Brownian motion. Today instead, we are sort of look at this collision between this sphere 
and the particles and we are going to take an example in which we are going to look at and We are 
going to derive the expression for the drag force on a sphere. So remember in earlier week we 
derived an expression for the drag force by dimensional analysis. Today, our first goal is to derive 
an expression for this drag force on a sphere which is moving inside a viscous liquid from the 
collision picture which is the more physical picture. So the picture is the following: 
 

               
 
So suppose there is a sphere of mass m and radius r which is moving with a speed v. Through a 
region of space that contains particles of mass m that are at rest. So these particles of mass m are 
basically fluid particles. There are n of the particles per unit volume. So the number density of this 
fluid particles is small n and assume this is crucial. 
 
That small m is very, very smaller than this sphere. So the sphere is much bigger than the fluid 
molecules. So to give you some length scale, imagine that, now we know that the atoms and 
molecules are of the size of angstrom. So, they are like nanometer objects, whereas this sphere is 
at least 1000 times bigger. So they are like micrometer-sized objects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



And assume that the particles do not interact with each other. So, this is to simplify the calculation. 
So, then, the problem is to derive an expression for the drag force. So, we are going to divide this 
into two steps. So our physical idea is the following. 
 
So we have, imagine this is a sphere of radius r and this sphere is immersed in this fluid and let us 
say that this is a fluid particle of mass m. So this has a capital M; this has a mass small m. So this 
particle hits the sphere, and then it rebounds in this direction suppose. Now this angle is called 
theta. So, for simplicity, we are going to assume this is our x direction and this is our y direction. 
 
So this is v1, and this is after collision v2. So what happens is that? This m, when it hits the fluid 
particle, when it hits the sphere. It transfers some of the momentum to the sphere, and then it gets 
rebounded. So now this sphere is moving with a velocity v. So, we can also imagine in the 
following way that it is the, let us say, sphere at rest and then if you are sitting on the sphere, you 
will see that this is fluid particle is approaching the sphere with a velocity v in the opposite 
direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, this is going to be our assumption. So, this is a trick to make the calculation simple. And our 
first question is: how much is the change in momentum during one collision? So let us define. So 
our system is this sphere, and then this fluid particle is going to give a force on it. Now, from this 
picture, you can see that the fluid particles can hit the sphere at any position. 
 
So then you are going to see that first thing is that by symmetry, there is no change net momentum 
transfer in the y direction. Because if it hits from here, let us say it hits from here and gets rebound 
in this direction. Then this is a symmetrically opposite case as in the top picture. So, then the y 
component of the momentum of the fluid particle in this collision and versus this collision they are 
equal and opposite, so they will cancel. So all you need to consider is a net change in momentum 
in x direction only. 
 



So let us first look at the change in momentum of the particle. So let us, for the time being, say our 
system is temporarily one fluid particle. So, at the beginning of the collision and at the end of 
collision, the beginning of the collision, this is incoming with a speed the x component is mvx; 
this is totally x, and we are going to assume, so we are sitting on the sphere. So, we are going to 
assume that the sphere's initial momentum was 0. At the end of the collision, this rebounded fluid 
rebounds in this direction. 
 
So, the mv, then the x component, so this angle with the x axis is 2 theta, so then of the rebound 
velocity, so the x component is cos of 2 theta. So, the change. And this is in the minus direction, 
and this is in the plus direction. We can write down the y component, so the y component will be 
minus and we can simply write it as x because the x component is the initial velocity of the fluid 
particle, which is completely in the x direction. So similarly in the y direction, the initial was 0 and 
the final is mv sin 2 theta. 
 
But we are not going to consider this because they are going to cancel when we sum over all the 
collisions. So, let us look at the change in momentum of the fluid particle. Change in momentum 
in the x direction, so this is mv cos 2 theta minus minus mv, so this is mv 1 plus cos 2 theta. Now 
let us say that if we look at the fluid particle plus this sphere as our system, then there is no other 
external force, so we are going to ignore any gravity and anyway, gravity is not in the horizontal 
direction, so there is no external force on this particular system. That means the delta p of this 
system in this time interval must be 0, That means a change, so this is the change in the momentum 
of the fluid particle. 
 
So, that means the change in momentum of the sphere must be opposite of this  change in 
momentum of the fluid particle, which is, so this is the transfer of momentum to the sphere by the 
fluid particle as a result of the collision. And this is what this sphere will experience as a force, 
because, as we say that this is the impulse and if you divide by the time interval you get the average 
force. But before we estimate the average force, we need to estimate how many collisions are 
taking place. So here the picture is the following: so far we have considered just one collision. 
Now, there is a lot of particles inside this fluid and they are hitting the sphere from all sides, so the 
sphere is moving to the right with a speed v, which means if you are sitting on a sphere, the particles 
are approaching the sphere with some speed v. 
So, what is the net number of particles that are approaching? So, let us say that this angle is theta. 
Let us say that what is the surface? So we need to calculate this surface area. So if you take it,  let 
us make a bigger picture. So the number of particles that are hitting this ring, so imagine a ring on 
the sphere, So sphere is a 3D object, and now on this ring, all the particles are hitting the sphere 
with an angle theta, as shown in this particular figure. So they all have the same angle, theta. 
 
So how much is this area of the ring? So, the total number of collisions is the total number of 
particles hitting this area. So how much is this area? So this area, so the, it is kind of a making a 
ring with, so this is r, then with this radius is r sin theta. So we have a perimeter, which is 2 pi r 
sin theta times the width, which is r d theta. So this is the area of the shaded region. However, what 
we need is a slanted area. 
 



What we need is a projection in the vertical direction. Because this is what the particle will see as 
the area, these particles consist of a flux. So there is a flux of particles. So how much it will hit the 
sphere is determined by the cross-sectional area in the perpendicular direction. 
 
So this is the cross-sectional area. And in the cross-sectional area in the perpendicular direction, 
perpendicular direction to v direction, let us call it A c s will be, you can convince yourself that 
this will be the above area multiplied by the projection in this direction. Now imagine that there 
are n particles in some volume.  So now you are looking at a time interval delta t. In this time 
interval delta t, the particles move for, they are moving with, all the particles are moving with 
speed v. So they will be contained in a cylinder of length v delta t and a cross-sectional area  Acs. 
 
And so then the volume of the cylinder is equal to v times delta t into A c s and the number of 
particles in this cylinder is equal to v times delta t times the cross-sectional area into n, where n is 
the number density. So, all these particles are going to collide with this sphere in this particular 
time interval, delta t. So this is the number of collisions. So if I write it here, this number of 
collisions is equal to n v delta t times 2 pi r square sin theta cos theta d theta. Now we have 
estimated that one collision, the net transfer of momentum on the sphere is minus mv times 1 plus 
cos 2 theta. 
 
So total transfer of momentum in delta t time interval to the sphere. This is the change in 
momentum of the sphere, which is given by the transfer of momentum in one collision of this 
particular type into n v delta t times 2 pi r square sin theta cos theta d theta. So then this m times n 
is the mass density, so this is the mass density of fluid. So let us call it delta p. So this is equal to 
rho, we have v square, we have r square; and We have 2 pi times delta t times 2 pi times 1 plus cos 
2 theta sin theta cos theta d theta. 
 
So we are just rearranging the term. Then if I, now this theta can vary from 0 to pi by 2, so then 
we have to integrate over all possible values of theta, then we get. Now note that this integral, we 
do not need to know what the value of the integral is to get the force. Because now the force is 
given by the definition that If we now take the interval going to 0, which is very small, then the 
rate of change of momentum is given by this force. So then we get times some constants. So at this 
point, we do not need to know what the constant is; it is, in fact, If you calculate it, you will get 
that the constant will turn out to be pi. 
 
But the important point is that we get this dependence of v and we get back this v square 
dependence is sort of derived based on dimensional analysis and we get some r square, So, it is 
some length scale times square, which represent the dimension of the cross-sectional area. And 
this drag force, so I am only considering the magnitude, is again proportional to the density of the 
fluid. So, this was the conclusion before, when we based it on the dimensional analysis. Now we 
arrive at the same conclusion based on the actual physical picture of collision between the fluids 
on the sphere. 
 
So this is how the drag force originates. Now one more thing: we have considered a sphere, but it 
need not be a sphere. It can be of any other shape and all it will change is the value of this integral, 
so The details will be changed, but this dependence on v. The fact that this force will be 
proportional to the density of the fluid, proportional to the velocity square of the object and 



proportional to the cross-sectional area, so some linear dimension of the object square, these facts 
will remain the same. In the next example, we are going to consider collisions at a much smaller 
scale, at atomic and subatomic length scales. So let me remind you that you have read about these 
examples in other courses, such as modern physics or quantum mechanics. 
 
So for example, here we mention this famous alpha particle experiment by Rutherford. Which 
shows that most of the matter is actually empty space. So, from a mechanics point of view, this is 
an experiment in which there is a collision between the alpha particles and the nucleus of the atoms 
in the gold plate. So, this is called, in physics terms, the example of scattering, which is another 
word for collision. Now we are going to take another example, which is called Compton scattering. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, which is another sort of extremely fundamental experiment in physics. So you have also seen, 
and I am sure you have seen some of you who has taken courses in modern physics or quantum 
mechanics, you have come across this example in those courses. So, instead of alpha particle, you 
send X-ray beams, which are also made of light particles, or photons, and there is a scattering of 
those photons by the atoms in the crystalline matter. So, this experiment proved that the photons 
of light not only carry energy, but they also carry momentum. So, here, I show the schematic of 
the setup of the original experiment. 
 
So, this example we are going to, this experiment we are going to consider a little bit in more 
detail. Now this is a course on Newtonian mechanics, but this example, I am going to differ. And 
we are going to take some steps outside of Newtonian mechanics in two ways. First of all, these 
atoms and the photons are no longer classical particles that obey Newton's laws of motion. In order 
to analyze this example, we really need quantum mechanics; they are quantum particles. 
 
The second thing is that the photons move at the speed of light. So in our course so far, all the 
velocities are much smaller than the speed of light. This is no longer true here. So, here we must 
use the relativistic expressions for momentum. So, my reason for showing this example is to show 
you that the conservation of momentum and energy, so this has a much broader scope of 
applicability beyond Newtonian mechanics. 
 



You do not need the particles to follow Newton's laws of motion for the conservation laws to be 
valid. Here is an example where the particles follow quantum laws of motion and relativistic speeds 
and still the conservation laws are valid. So in this case, we can use the same setup of our strategy 
that we are using so far to analyze this example. So, I am going to quickly go through this example. 
So, at the very basic level, this is a simple two-body collision picture. 
 
So, this is an incident photon of X-ray, and this is a target electron inside an atom inside the matter. 
So, when the photon is carried, it has some energy E, which is equal to Planck's constant time is 
its frequency, so this is by the De Broglie relation and it has momentum. We know that the energy-
momentum relation is E by C, so the momentum is E by C. So this is the relativistic expression for 
the momentum of a particle. So note that the concept of momentum is now generalized to include 
photons, which are massless particles. 
 
So, we cannot use momentum to be mass times velocity because photons carry no mass. So, it 
carries energy, and you can write the momentum in terms of the energy. In the second part of this 
relativistic, it hits a target electron. As a result, it scatters in a different direction, and this scattered 
photon. So you see that scattered photons wavelength is now bigger than the incident photon, 
which means its frequency, which is inversely proportional to wavelength lambda is now also 
changed. 
 
So after collision, let us say the frequency of the photon is nu prime and It goes to a direction 
which makes an angle phi with the original direction and the electron also moves in a different 
direction, making an angle theta such that these two body systems of incident photon and the target 
electron keep the photon plus electron, the total momentum of this system remains conserved. So 
before collision, so if we write down the expression for momentum in the x direction, So, this is 
the momentum of the photon which was completely in the x direction and We are going to assume 
that the electron was at rest. So, this is the momentum of the electron before collision. After 
collision, the photon moves in a different direction, so it is a different photon now with a different 
frequency. It moves in this direction, so its x component is h nu prime divided by c times cosine 
of phi and the component of the electron's momentum in x direction, so this is my x direction. 
 
This is my y direction, so this is x, and this is y, given by p cos theta. And similarly, before 
collision, there was no momentum of either the 90th of photon nor the electron has any momentum 
in the y direction, so before collision, the net momentum is 0. After collision, the y component of 
the momentum of the photon is h nu prime by c. Which comes from this relation, sine phi minus 
p sine theta. So, they sort of must cancel each other, so this represents the conservation of 
momentum. 
 
So, this is also what I said just now; it is also explained vectorially in this picture. And the energy, 
Now look at the energy, so before collision, The energy of the photon was h times nu, nu is the 
frequency, so let me write it down. Nu prime is the frequency after collision. Now the photon and 
the electron are at rest, but here is the relativistic formula that still it has some energy, which is 
given by m c square, E is equal to m c square, Where m is the rest, called the rest mass of the 
electron. So this is a concept that, in relativistic concept, is that mass is a function of velocity 
speed. 
 



So, that we cannot go into detail, so you have to start to assume that This is the relativistic 
expression for energy. And after collision, the energy of the photon is h nu prime and the energy 
of the electron is E. So, this is the kinetic energy of the electron, but this is no longer p square by 
2m. But it is given by this relativistic expression. So conceptually, there are lot of new things in 
this example, however, in terms of mathematics. 
 
The rest of the analysis is pretty straight forward and simple, so you have these equations and then 
you have to solve these equations and calculate. So what are the unknowns here? So, the 
unknowns, so the known, are this: the frequency of the incident photon. During the experiment, 
we know what the frequency of the x-rays is that we are sending to hit our target electron in this 
crystal. And we can also measure the angle phi directly in the experiment by looking at the 
direction in which this scattered x-ray is collected. But theta is unknown, so theta is unknown; the 
other unknown is the momentum of the electron after collision, so which is the energy of the 
electron after collision, because  We do not know what happens to the electron inside; we cannot 
directly track the properties of the electron. 
 
So, what we can do is eliminate, so note that there are three. There is another unknown, which is 
the frequency of the scattered x-ray. Now you have three unknowns and three equations, so you 
can exactly solve them and get an expression for the frequency. So, this is something that I am not 
going to show you in detail. But I will leave it as a take-home exercise to solve this set of three 
equations and calculate the frequency after collision.  So I will outline the strategy that you should 
use, and I can give you a hint. 
 
So what you do is that you try to eliminate theta, so in order to eliminate theta, what you can do 
is. Let us say if I take the first equation and multiply both side by C, what we get is P cos theta is 
equal to, so let us say P C cos theta is equal to h nu minus h nu prime cos phi.  
 
And then on the other hand, the P sin and P C sin theta are equal to h nu prime sin phi. So, you can 
use this identity, cos square theta plus sin square theta equal to 1, to eliminate theta from these two 
equations. And then you eliminate E; after that, in the next step, you eliminate E from the third, 
using the third equation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Then finally, you arrive at a expression, so which is shown here in terms of the wavelength instead 
of the frequency, so this wavelength after of the scattered photon is given by C by nu prime, where 
C is the speed of light. So, work through the algebra and show that the change in the wavelength 
of this x-ray due to the collision with the electron is given by this particular expression. Which is 
known as Compton formula. So, there is a typo in this equation, so this should be a cos phi. So, 
this is the Compton formula for which to do this experiment and to show that the photons and this 
experiment proves that the photons carry momentum. 
 
So, I will let you work through this algebra and derive this very famous problem. So, this is an 
example to sort of get a flavor of how collisions are very fundamental to the progress of physics. 
This is an example of light-matter interaction, where matter is interacting with light. So, this is a 
topic of great fundamental interest in frontier cutting-edge research in physics even today. 
 
So with this, we are sort of completing our discussion of the collision problem. So, next, we are 
going to look at another new topic, which is the translation and rotation of rigid bodies. Thank 
you. 
 
 


