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Hello everyone, welcome to the class. Today we will talk about diffraction from rectangular 

aperture.  
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Now in module 9 we talked about Fresnel half-period zone and then I introduced you a very 

nice graphical method, which is called vibration curve. And then we implemented this 

knowledge of vibration curve in circular obstacle. And then we discussed about zone plates. 

Now proceeding ahead today we will deal rectangular aperture from this graphical perspective.  
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Now this rectangular aperture as you already know, since we are in the Fresnel diffraction 

regime we will deal this rectangular aperture through vibration curve. And we will also talk 

about Fresnel integrals. Now the rectangular aperture is shown here in this right figure 

schematically and associated with this 𝛴 plane of the aperture is coordinate system and the y 

axis of the coordinate system is pointing in this direction, while the z axis is pointing in the 

vertical direction.  

The origin is situated right at the center of the rectangular aperture. Now the rectangular 

aperture in horizontal direction is extending from point 𝑦1 to point 𝑦2 while in the vertical 

direction its extent is from point 𝑧1 to point 𝑧2. A source which is at a distance 𝜌0 is illuminating 

this aperture and the point of observation P is situated at a distance 𝑟0 from point O, the origin, 

which is at the center of the aperture.  

Now we here we also consider area element dS which is situated at some arbitrary point A and 

the coordinate of this arbitrary point A is (y, z) as shown here in this figure. Now the 

disturbance which would be regarded at point P, it will come from the point sources, the 

secondary sources, which are situated at the area element dS. And we know how to calculate 

this disturbance, we have done it many times in our previous lecture.  

This disturbance will be given by equation number 45, where 𝑑𝐸𝑝 represents the disturbance 

observed at point of observation P due to the area element dS. K(θ) is obliquity factor, 𝜖𝐴 is the 

strength per unit area of aperture source, r is the distance which is shown here. The r is the 



separation between the point A and the point of observation P. And 𝜌 + 𝑟 is the separation 

between the source and the point of observation P.  

The light is coming from S to A and then it is going to P, therefore with K we have 𝜌 + 𝑟. And 

𝜖𝐴 is the source strength per unit area, therefore we will have to multiply it with dS to get the 

complete strength, the right strength of the source. And thus, equation number 45 represents 

the optical disturbance at P due to the area element dS or due to the secondary sources situated 

at area element dS.  
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Now from the last lecture we know that 𝜖𝐴𝜌𝜆 = 𝜖0. This we studied while studying vibration 

curve. This is the relation which we found from there. Now if you substitute the 𝜖𝐴 in previous 

expression using this equation, then the field get modified like this. Sorry, its 𝑑𝐸𝑝.  

Now in the case where the dimensions of the aperture are small in comparison to 𝜌0 and 𝑟0 then 

we can safely substitute K(θ) is equal to n. Why? Because if this aperture dimension is very 

small as compared to the aperture observation point distance, then the angle subtended by the 

point sources situated at the aperture on the point of observation P it would be almost equal to 

0.  

And under this assumptions K(θ), the obliquity factor would be 1. And we also assume that  

1/𝜌𝑟 = 1/𝜌0𝑟0, which is the correct assumption. But make it a point that this assumption is 

only true as long as this replacement is happening only in the amplitude part, not in the phase 

part. And thus, if we do this replacement in the amplitude coefficient the field would be almost 

unaffected.  

Now consider two triangles, triangles SOA and POA. This is the SOA triangle, this is the first 

triangle and this is the second triangle POA. And these two triangle, we just apply the 

Pythagoras theorem and we can write this relation where y and z is the coordinate of point A 

situated on the aperture.  
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And 𝑟 = √𝑟0
2 + 𝑦2 + 𝑧2. Now we exercise binomial expansion with these 2 expressions, the 

expression 47 and 48, and then add them up. And the addition gives equation number 49. Now 

you see that in equation 46 we have 𝜌 + 𝑟 in the phase part. Now with this 𝜌 + 𝑟 we can replace 

with equation number 49.  

Now apart from this, in the amplitude part we have 𝜌𝑟 which can be replaced by 𝜌0𝑟0 which is 

a constant term. And this is what we did here. Now if we want to calculate the field due to 

whole area of the aperture we have to perform integration. Since its the aperture has some area, 

therefore we will perform double integration, one along y and the other long z. And 𝜌 + 𝑟 

would be replaced by equation number 49.  
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Now after the replacement we introduce 2 new variables u and v, and these are defined by 

equation number 51 and 52. Now after substituting 51 and 52 back into equation 50, we get 

this big expression. Now here u dependent term r in this integration and the v dependent on r 

terms are there in this integration and make it a point u is related to y while v is related to z.  

And if you go in the first figure you see you see that z is the vertical axis and y is the horizontal 

axis. Therefore, u is in the horizontal direction while v would be in the vertical direction. Now 

with this we will have to evaluate equation number 53 and the major difficulty in evaluating 

equation number 53 is solving these 2 integrals.  
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Now the terms in front of the integral in equation 53 represents the unobstructed disturbance 

at P divided by 2, here this term if you look it closely then you see that it is nothing but the 

field due to an unobstructed disturbance, which is situated at a distance 𝜌0 + 𝑟0 from the point 

of observation.  

We have a point source S here and we have observer here and if this distance is 𝜌0 + 𝑟0 the 

field at P would be given by 𝑒𝑖(𝑘(𝜌0+𝑟0)−𝜔𝑡), this is the phase part and here it is the field strength 

by 𝜌0 + 𝑟0. This is the field due to unobstructed source, which is at a distance 𝜌0 + 𝑟0 from 

point of observation P.  

And this field is halved here. You are seeing that we have, let us say that it is 𝐸𝑢 and we have 

an extra term in the denominator which is 2. Therefore, we call it 𝐸̃𝑢/2. The amplitude part in 



the previous expression which is a field due to unobstructed point source. Now the difficulty 

solving the integrals. The integrals itself can be evaluated using 2 functions.  

Now we introduce 2 functions, first is ζ  which is function of w and second function is  fwhich 

is function of again w, where w represents either u or v, u and v are introduced in equation 

number 51 and 52. Now here we have 2 integrals one is u dependent other is v dependent and 

to solve this integral we are introducing 2 new functions 𝜁 and f, which are functions of w and 

w is nothing but it is either u or v.  

Now these quantities which are known as Fresnel integrals are defined by this relation, equation 

number 54 and equation number 55. These are called Fresnel integrals. Now you see that in 

this expression we have integration of 𝑐𝑜𝑠(𝜋𝑤′2/2)𝑑𝑤′ where the limit of integration varies 

from 0 to w. And if you compare it with this expression then you see that these integrals are 

nothing but complex representation of equation number 54 or equation number 55.  
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In 54 we have cosine term while in 55 we have sin term and this is the only difference between 

ζ  and f. Now both functions have been extensively studied and their numerical values are well 

tabulated. And you can find the numerical values of these 2 functions in table 10.3 in a book 

by E. Hecht and A. R. Ganesan and the title of the book is Optics.  

Now their interest to us at this point derives from the fact that this function can be or this 

integral can be written as ζ + if. The integral which is here in equation number 53, they can be 

expressed, since you see that here in the exponent you have i, it is a complex function. 

Therefore, the solution will be complex. If you solve this integral you will have a complex 

number.  

And the complex number will have a real part and imaginary part, and let us assume that we 

will have a real part and imaginary part as ζ  and f function of this integral. And this is how this 

ζ and f are defined. ζ is real part of this integral, therefore in ζ you have cos term, while f is 

imaginary part, therefore you have sin term here in f, in the expression of f, sin comes here and 

cosine comes here.  

Therefore, 𝑐𝑜𝑠(𝜋𝑤′2/2) will be embedded here in ζ function and simply the sin will be here 

in f function, which is quite obvious and therefore, the equation 53 can be rewritten in terms of 

these 2 new functions, ζ and f. And if you remove this integral which are there in equation 

number 53 with ζ and f, you get new expression for the disturbance at P, which is written here, 

where 𝑢1 and 𝑢2 and 𝑣1 and 𝑣2 are limits of the 2 integrals respectively.  



In the first bracket we have ζ and f fwhich are functions of u, while in the second bracket this 

are functions of v. We will have to just you evaluate ζ and f in equation 57 to get the expression 

for field 𝐸𝑝.  
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Now the equation 57, the previous equation can be evaluated using tabulated value of ζ(𝑢1) 

ζ(𝑢2) and 𝑓(𝑢1) 𝑓(𝑢2) and so on. And this tabulated values are given in, as I said before in the 

book Optics by E. Hecht and A. R. Ganesan and the table number is 10.3. And these are very 

standard integrals and ζ and f are very standard integral and you can see them in any standard 

book.  

The mathematics becomes rather involved if we compute the disturbance at all points of the 

plane of observation. Because till now we have calculated, we have an aperture plane and we 

have a screen plane and we are calculating the field at some point in the screen plane, but if 

you want to calculate the field at all the points in the screen plane, then the mathematics would 

be very much involved.  

It will impose too much difficulty. Now instead what people do is that they fix they axis, the 

source is here, the origin O is situated at the center of the aperture and the P is a point on the 

observation plane and what people do is that they fix this SOP line and then they imagine that 

instead of moving point P in the screen plane they move the aperture through small 

displacements in aperture plane.  



They only move the aperture and therefore the value of the field or irradiance at the point of 

observation which is fixed in the screen plane, it will change. It is like scanning the aperture 

and once you scan the aperture you will come to know the off axis field and this has the effect 

of translating the origin O with respect to the fixed aperture and therefore, by scanning the 

pattern over the point P.  

And this approach therefore is more appropriate to the incident plane waves because the plane 

wave illuminates the irradiance uniformly. Well, if you launch a spherical wave then there 

would be a phased difference on illumination, the center part of the aperture would be 

illuminated earlier because if this is the aperture and this is the wave, which is illuminating the 

aperture, then this part will be illuminated earlier.  

While this part would be later, because there is a difference, there is a time difference between 

the illumination of the central part and this part because of the curvature of the wave front. 

Therefore, this approach is more suited for plane wave illumination.  
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Now assume that 𝐸0 is the amplitude of the incoming plane. We have now assumed that we 

are launching the plane wave with amplitude 𝐸0 on the aperture and therefore, the equation 1 

which we studied in our previous lectures, which evaluates the field contribution due to the 

elementary area dS now becomes this 𝑑𝐸𝑝 = 𝐸0𝐾(𝜃)/𝑟𝜆(𝑐𝑜𝑠(𝑘𝑟 − 𝜔𝑡))𝑑𝑆.  

Since the illumination is by plane wave you see that here with k we are getting only r, no 𝜌, 

because for a plane wave we know 𝜌 is infinity. And 𝐸0/𝜆 is source strength, 𝜖𝐴. Here too, we 

get a new expression for the variable u and v which are given by equation number 59, and this 

new expression we got from this these two expression, equation number 51 and 52. In equation 

51 and 52, the illumination was due to a wave coming from a point source.  

Now in this second case there are plane waves which are illuminating the aperture, therefore 

what we will do is that we will divide equation number 51 as well as 52 by 𝜌0 and after division 

we will equate 𝜌0 to infinity. Now you can see here if you divide 51 with, both numerator and 

denominator of 51 by 𝜌0, then you get this 𝑦(2(1 + 𝑟0/𝜌0)/𝜆𝑟0)1/2 here in the numerator.  

And here you will get this. And if you now say that 𝜌0 is infinity that is for plane wave then 

this term would be equal to 0. And what you are left with is 𝑦√2/𝜆𝑟0. And this is what you see 

here in equation number 59, both u and v reduces to these new expressions. Now we will 

calculate the total field at point of observation P due to the whole aperture. 
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And once this is done then we calculate irradiance at P. The irradiance would be given by 

𝐸̃𝑝𝐸̃𝑝
∗/2. And once the expression for 𝐸̃𝑝 is known, we can say clearly easily write the 

expression for 𝐼𝑝 that is a radiance at P which is given by equation number 60. Now if you go 

back then here it is the expression for 𝐸̃𝑝. Now in this expression 57 only the expression for u 

and v are modified because the illumination is now plane wave.  

If you take the complex conjugate of 𝐸̃𝑝 and then multiply the 𝐸̃𝑝 with its complex conjugate 

you get this, you get expression 60. And here 𝐼𝑢 is the unobstructed irradiance at point of 

observation P, which is nothing but in equation 57 𝐸̃𝑢, is |𝐸̃𝑢|
2
. Now we can approach the 

limiting case of free space propagation by allowing the aperture dimensions to increase 

indefinitely.  



If we keep increasing the aperture dimension then it would be like unobstructed illumination. 

For this you will have to increase the values of u and v or you have to extend 𝑢2 to +∞ and 𝑢1 

to −∞. Similarly, you have to extend 𝑣2 to +∞ and 𝑣1 to −∞.  
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Now making use of the fact that ζ((∞) = 𝑓(∞) = 1/2 while ζ(−∞) = 𝑓(−∞) = −1/2. 

These are the tabulated value as I said earlier. At +∞, both ζ = 𝑓 = 1/2 while at −∞ both ζ 

= 𝑓 = −1/2. With this we can calculate the irradiance at P using equation 60.  

And this will give us the irradiance due to unobstructed source and if you substitute these value 

back here in equation 60, then you see that you will get this value would be replaced by half, 

this value will be replaced by -1/2, similarly this +1/2, this -1/2 and this -1/2, minus of minus 



half will give you 1, similarly this bracket will also give you 1, similarly this bracket will give 

you 1 and this bracket will also give you 1. 

And if you add them up you will get 1, 2, 3, 4, you will get 4𝐼𝑢/4, which is equal to 𝐼𝑢 and this 

is what is written here 𝐼𝑝 = 𝐼𝑢. It means things are calculated very well, things are moving in 

a proper direction, in a correct direction because once we extended the boundaries of the 

aperture to infinity then we get irradiance at point P due to unobstructed point source and since 

these two expressions are matching we are in a correct line.  

Now we need not to be very concerned about restricting the actual aperture size. Why? The 

contributions from wavefront regions remote from O must be quite small, a condition 

attributable to the obliquity factor and the inverse r dependence of the amplitude of the 

secondary wavelets. This statement says that the aperture size does not play a very important 

role in calculating the irradiance value at the point of observation P.  

Because if the aperture is a little big then as you increase the aperture size the θ values goes 

up, and therefore, the irradiance goes down, therefore the contributions from portions which 

are very far from the origin in aperture plane that contribution is very small, very little and in 

addition as the wave propagate r is there in the denominator if we consider the wave to be 

spherical.  

And therefore, the amplitude of the secondary wave decays down very rapidly. And therefore, 

the shape of the wave, the actual aperture shape or actual aperture size does not play a major 

role. It should not be of too much of concern.  
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Now this is all about the rectangular aperture. Although we solve equation 16 in a limiting case 

but what if 𝑢1, 𝑢2 or 𝑣1, 𝑣2 are not equal to +∞ or −∞, then how to solve it. For this we will 

have to go to some tabulated values of these functions. But there is a very nice graphical method 

to solve these integrals or to have these values and what is this graphical method?  

This graphical method is called Cornu spiral. Marie Alfred Cornu devised elegant geometrical 

depiction of the Fresnel integral, and this geometrical interpretation is almost similar to that of 

vibration curve. Cornu spiral is a plot of points 𝐵̃(𝑤) which is equal to 𝜁(𝑤) + 𝑖𝑓(𝑤). As w 

takes on all possible values from 0 to ±∞. And this function we have already seen in our 

previous slides.  

This is nothing but this integral, equation number 56, you see 𝜁(𝑤) + 𝑖𝑓(𝑤) and the only our 

motto of introducing 𝜁 and 𝑓 was to solve this integration. Now this integration here in Cornu 

spiral is represented by this function 𝐵̃. And here the independent variable w it is allowed to 

take any possible values between 0 to ±∞. This just means that we plot 𝜁(𝑤) on horizontal our 

real axis and 𝑓(𝑤) on vertical or imaginary axis.  

In Cornu spiral as is said here that it is a plot of 𝐵̃ and B is a complex number. So how to plot 

a complex number? In horizontal direction plot real part of this complex number while in the 

vertical direction plot imaginary part of this complex number or in other words on horizontal 

axis plot 𝜁, while on the vertical axis plot 𝑓 and with this you get a set of points.  

Just with this set of points you can draw a curve which would be nothing but Cornu spiral. Now 

say that you have some spiral here, and say that there is a length element 𝑑𝑙 on this spiral. Now 

this length element 𝑑𝑙 = √𝑑𝜁2 + 𝑑𝑓2, 𝑑𝑙 is a length element which is measured along the 

curve and this length element would be equal to √𝑑𝜁2 + 𝑑𝑓2 which is very much obvious.  

Now let us substitute the values of 𝑑𝜁 and 𝑑𝑓 because we know what is the expression of 𝜁 and 

𝑓. 𝜁 and 𝑓 are given here in our previous slide by equation number 54 and equation number 

55. Therefore, once 𝜁 and 𝑓 are given we will have to just differentiate them to get 𝑑𝜁 and 𝑑𝑓.  
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Now with differentiation the integral sign will go away and we will have this expression 

(𝑐𝑜𝑠2𝜋𝑑𝑤2/2 + 𝑐𝑜𝑠2𝜋𝑑𝑤2/2)𝑑𝑤2, this is what we will get on the right hand side of this after 

substitution in equation number 62. What we did is that we substituted for 𝑑𝜁2 and 𝑑𝑓2. We 

know 𝜁 is equal to integration of some parameter since we are difference integral integration 

the integral sign will go away and we will be left with these 2 terms.  

Now we know that 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1, then therefore, this term would be equal to 1 and 

therefore 𝑑𝑙 = 𝑑𝑤. which means the values of w on the Cornu spiral will correspond to the arc 

length. Now this is a representative figure of Cornu spiral. How Cornu spiral look like? On the 

horizontal axis 𝜁 is plotted while in the vertical axis 𝑓 is plotted.  



𝜁 is the real part of 𝐵̃ while 𝑓 is imaginary part of 𝐵̃, here on the vertical axis its imaginary 

part, it is an imaginary axis, while the horizontal one is the real axis. Now the values which 

you are seeing on the spiral it is w, make it a point, on the spiral we are plotting w. And the w 

values are marked by this dash line, you can see here the value of w is 0.5, the value of w here 

is 1, here it is √2, here it is 1.5, similarly on the other side.  

These are the values of w and the spiral is going in this direction in the first quadrant, while it 

is going in this direction in the third quadrant. Now as the value approaches ±∞ you see that 

values of w is increasing in positive direction along this axis, along this spiral, while the values 

of w are increasing in negative direction in along this axis. Now when w approaches ±∞ the 

curve is spirals into its limiting value.  

And what is its limiting value? We know the limiting value because when w is equal to either 

+∞ or −∞ we know both 𝜁 and 𝑓, they become equal, when 𝑤 = +∞, 𝜁(∞) = 1/2 as well 

as 𝑓(∞) = 1/2. Similarly, when 𝑤 = −∞, 𝜁(−∞) = −1/2 and 𝑤 = −1/2.  

Let me write it here, 𝜁(+∞) = 1/2, 𝜁(−∞) = −1/2, whenever I am saying half it is plus half. 

Similarly,  𝑓(+∞) = 1/2 and 𝑓(−∞) = −1/2. Sorry, it should be plus half here. Sorry minus 

half here, these 2 terms are minus while these 2 terms are plus.  

And we know that 𝐵̃ = 𝜁 + 𝑖𝑓, therefore at 𝑤(+∞) or at 𝑤(−∞) we can write the expression 

of 𝐵̃. Now at 𝑤(+∞)𝐵̃ value is given by 𝐵̃+, this is at 𝑤(+∞). And since this is equal to 𝜁 +

𝑖𝑓 and 𝜁 at ∞ is 1/2 as well as 𝑓 at +∞ is +1/2, therefore this would be the expression for 𝐵̃+ 

at 𝑤 = +∞.  

Similarly, at 𝑤 = −∞ 𝐵̃ is given by 𝐵̃− and its value is given by −1/2 − 𝑖/2. Since these are 

the maximum or minimum possible values of function 𝐵̃, therefore the upper spiral when it 

rounds, the ultimate value is 𝐵+ which is here, and the ultimate value is 𝐵− which is shown 

here. All these spirals ends here. This value is 𝐵̃+ plus here and this value is 𝐵̃−.  

These are the limiting values 𝐵̃ function, it is a 𝐵̃ is the limiting value and the limiting values 

are given by these 2 expressions. Now if w increases in the positive direction this is how the B 

evolves, this is how B increases and after a while it spirals around and ultimately it reaches to 

𝐵̃+. Similarly, if w increases in minus direction, then this is how the B evolves and it spirals 

and it ultimately reaches to 𝐵̃−.  



The values of 𝜁 and 𝑓 are expressed on the horizontal and vertical axes respectively.  
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Now, let us now calculate the slope of this spiral. The slope would be given by 𝑑𝑓/𝑑𝜁. We 

know the expression for 𝑑𝑓 and 𝑑𝜁 which are used here, substitute them here and this gives the 

slope, 𝑡𝑎𝑛(𝜋𝑤2/2). This is the slope. Once the slope is given then the angle between the 

tangent to the spiral at any point and the 𝜁 axis would be given by 𝜋𝑤2/2. This is shown here 

in this figure.  

If you draw a tangent here then this angle would be 𝛽 which is the slope, which is coming here 

while calculating the slope 𝜋𝑤2/2. This is why it is said that the angle between the tangent to 



the spiral at any point and the 𝜁 axis, the horizontal axis, is 𝛽 which is given by 𝜋𝑤2/2, which 

we calculate here, calculated here in expression 63. Now let us consider some realistic example.  

Let us consider the problem of a 2 nanometer square hole, where this hole is illuminated by a 

light of wavelength 500 nanometer, 𝑟0 is 4 nanometer and the illumination is done with a plane 

wave. 𝑟0 means the point of observation P is at a distance 4 nanometer from the square hole. 

Now what is the motto? We wish to find the irradiance at P directly opposite the aperture center 

where in this case 𝑢1 = −1 and 𝑢2 = +1. Why 𝑢1 = −1 and 𝑢2 = +1?  
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Now if this is our aperture, this is our square aperture, this is our z axis and this is our y axis. 

Now if you go back and see the definition of y and 𝑢1 and 𝑢2, then if you remember I said u is 

in the horizontal direction and v is in the vertical direction. Why? Because v is related to z and 

u is related to y. Therefore, you would be pointing in this direction, this would be the u direction 

and this would be the v direction.  

Now its origin is at the center of this square aperture and we know that this square aperture is 

having sides which are equal to 2 nanometer, therefore, this whole length would be 2, but if we 

want to write the coordinate then it would be -1, it would be +1 here in y direction. The y value 

here would be -1 and the y value here would correspond to equivalent to be  +1.  

Now let us again go back and see that if it is a plane of illumination then this is how the u and 

v are calculated and with this calculation we found that in this particular example 𝑢1 = −1 and 

𝑢2 = +1. If you put the value of λ, if you substitute the value of 𝑟0 in the expression which we 

just talked about, I mean this expression, expression number 59, if you substitute the value of 

𝑟0, substitute the value of λ.  

And the extremities of the square aperture, then you will get a values of 𝑢1, 𝑢2 and 𝑣1, 𝑣2 which 

would be given by  -1 and  +1. This is why I say that y correspond to  -1 here and y correspond 

to  +1 here or you can write 𝑢1 = −1 for this point and for this point, it is equal to  +1. And we 

call these two extremities as 𝑢1 and 𝑢2.  

Now as you saw before in the Cornu spiral, the variable u are the variable w was being 

measured along the curve, now w was a generalized variable. Now since we are dealing with 



u here only we will say that u is varying along the curve. The variable u is measured along the 

arc. And here what we have done we have replaced w by u on the spiral. Right now we are just 

talking about the horizontal axis, y axis.  

And therefore we are just talking about the extremities which are here, extremities of the 

aperture which are in the horizontal direction. The left most extremity is at point 𝑢1 = −1 

while the right most extremity is at a point where 𝑢2 = +1. Now once the values of 𝑢1 and 𝑢2 

are known we can put these values, we can mark these values on the Cornu spiral.  

Therefore, we will place two points on the spiral at distances from the center of this spiral, 

which is OS and which distances would be equal to 𝑢1 and 𝑢2. Now you see that in this aperture 

O which is origin is center of the aperture and therefore 𝑢1 and 𝑢2 are at a same distance, they 

are situated at a same distance from the origin. Therefore, 𝑢1 we can mark here and this distance 

represents the length of 𝑢1.  

And similarly, we can mark 𝑢2 and this distance represents the length of 𝑢2 and since |𝑢1| is 

|𝑢2| therefore these two distances would be equal. Do make it a point that u is varying along 

the curve, along this arc. Once these points are placed, having known the values of 𝑢1, we can 

mark 𝑢1 and this arc length would be equal to the length of 𝑢1. Similarly, this arc length would 

be equal to length of 𝑢2.  

𝑢1 was on the left hand side or on the negative side of, since 𝑢1 was on the negative side of the 

origin O, therefore we are marking 𝑢1 in third coordinate. It is going down. And the positive 

value of u which is 𝑢2 is marked in first quadrant, because positive values of u are here, 

measured in the first quadrant. The u is 0 at the center and it is increasing in this direction and 

it is increasing in negatively in the other direction.  

This we have already talked about. Now we label these two points as 𝐵̃1 and 𝐵̃2, because once 

𝑢1 and 𝑢2 values are known we can calculate the values value of 𝐵̃1 and 𝐵̃2 which was 

introduced here in this slide because Cornu spiral is a plot of these points 𝐵̃. Now once w is 

known, we can mark this two points, w here is replaced by u, we already said. And these 

marking are shown in this figure 𝐵̃1(𝑢) is marked here while 𝐵̃2(𝑢) is marked here.  
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Having done this, we will now have to calculate the phasor 𝐵̃12. How to calculate phasor 𝐵̃12? 

To calculate phasor 𝐵̃12 we draw a line starting from 𝐵̃1 and then extending till 𝐵̃2. Let us pick 

a different color for better clarity. This phasor will represent 𝐵̃12 and it is drawn from 𝐵̃1 to 𝐵̃2 

and it is nothing but a complex number and this complex number is 𝐵̃2 − 𝐵̃1 and 𝐵̃12 = 𝜁(𝑢 +

𝑖𝑓).  

Where the limits is varying from 𝑢1 to 𝑢2. This is the compressed expression of  𝐵̃2 − 𝐵̃1. And 

this exactly equation number 64 is first term in equation 53 where we were calculating the total 

field. Let us go to equation 53. Now you see here in equation 53 this term is nothing but it is 

𝐵̃12 which is function of u. And through Cornu spiral we just saw that just by drawing a phasor 

𝐵̃12 we calculated this integral.  

The first part in equation 53. We will repeat the same thing for the second integral also and 

there we will replace u by v. And this is what is done next. Similarly till now this was our 

aperture and this was the origin, u was extending in this direction and v was extending in this 

direction u was varying from  -1 to  +1, while v, on the other hand, it also varies from  -1 to  

+1. 

v is varying from  -1 to  +1 also, therefore the values of 𝑣1 and 𝑣2 would be  -1 and + 1. 

Similarly for these two values, we can calculate 𝑣̃2 − 𝑣̃1 on Cornu spiral we will draw the same 

Cornu spiral but here the variable u would be replaced by variable v. With that Cornu spiral we 

will again draw phasor 𝐵̃12 which now will be function of v and that phasor will give you the 

second integral in equation number 53.  

Once the length of the 2 phasors are measured the 2 integrals are solved and therefore, from 53 

we can calculate the resultant field at the point of observation P. The magnitude of these 2 

complex numbers 𝐵̃12(𝑢) and 𝐵̃12(𝑣) they are just the length of appropriate 𝐵̃12 phasors in the 

Cornu spiral.  
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Therefore, from equation 53, the irradiance can simply be written as 𝐼𝑝 = (𝐼𝑢/

4)|𝐵̃12(𝑢)|
2

|𝐵̃12(𝑣)|
2

(, . And here 𝐼𝑢 is the irradiance due to unobstructed source. Notice that 

the arc length along the spiral are proportional to the apertures overall dimension in yz 

direction.  

Now the arc lengths are given translated in u and v terms and u and v are given by  +1 and  -1. 

Because these u and v were calculated from these values. The square of 2 nanometer size hole 

wavelength 𝑟0. Now if you change the size of the square the u and v values will change and 

therefore arc lengths which we drew on the Cornu spiral that will also change.  

And that will effectively change the irradiance observed at the point of observation P or 

irradiance to be observed at the point of observation P. The arc lengths are therefore constant, 



if the square size is fixed, if the aperture size is fixed then the arc lengths are constant regardless 

of the position of P in the plane of observation. You see that this arc lengths are function of 

size of the aperture only.   

They are not the function of position of point P, on the other hand the phasor 𝐵̃12 which is a 

function of u or phasor 𝐵̃12 which is a function of v which spans the arc length are not constant. 

And they do depend upon the location of P. 𝐵̃12 the phasor do depend upon the location of P. 

Why do they depend upon the location of P? Because in 𝐵̃12 definition you see here we have 𝜁 

and 𝑓.  

𝐵̃12 = 𝜁 + 𝑖𝑓. And what are 𝜁 and 𝑓? Let us go back again just to remind you 𝜁 and 𝑓 are given 

by equation 54 and 55 and here you see that there are variables w which are involved here. And 

this w varies between the limits of this integrals. And therefore, if you change the position of 

P, the value of phasor will change. The 𝐵̃12, because I will reiterate it.  

This u and v, 𝐵̃12 is function of u and v and in u and v we have y and z, these are 2 variables. 

Now if we shift the aperture in aperture plane under plane wave evolution or if we shift the 

origin in the aperture plane the values of u and v will shift and why do we shift the u and v 

values or why do we shift the origin because to measure the off axis irradiance the location of 

P is varied.  

And therefore u and v will vary, and therefore the phasor will vary. But with the size of the 

aperture the arc length which is the difference between u values and v values are constant. 

Therefore, ∆𝑢 and ∆𝑣, which are the difference between 𝑢1, 𝑢2 and difference between 𝑣1, 𝑣2 

respectively, which represents the arc length in the Cornu spiral they are independent of the 

position of P.  

While this phasors, they do depend on the location of P. And we will see it in the next slide 

how do they depend.  
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Now this is the Cornu spiral for this aperture. Now initially suppose that the aperture is very 

small. Now slowly what we do is that we slowly increase the size of the aperture, it is a square 

aperture and we slowly increasing the size of the aperture. Now once suppose we started with 

this size, with this size we know what are the value of 𝑢1 here, what is the value of 𝑢2 here, 

similarly we know what is the value of 𝑣1 here and what is the value of 𝑣2 here.  

And depending upon these values of 𝑢1, 𝑢2 and 𝑣1, 𝑣2, we can draw 2 such spirals. This spiral 

is drawn for u, a similar spiral can be drawn for v because we are calculating 2 integrals and 1 

spiral is drawn for one integral and the second spiral is done for the second integral. Now for 

u we represent 𝑢1 here and 𝑢2 here and then we draw this phasor and this phasor is nothing but 

the value of the integral.  

Now if you increase the size of this square aperture slowly, then what will happen is that this 

point 𝑢2, this will move in anticlockwise direction along this spiral. Similarly, the point 𝑢1 will 

also move in anticlockwise direction along this spiral. They both will move, they move in 

anticlockwise direction with the increasing size of the aperture. Why they will move in such a 

way?  

Because with increasing size of the aperture the arc length will increase and what is arc length, 

let me pick different color, this is our arc length, the blue color in this figure represents the arc 

length. And this arc length is proportional to the size of the aperture. Now in the horizontal 

direction where we are use measuring u this is ∆𝑢, ∆𝑢  is difference between 𝑢1 and 𝑢2.  



Now if you increase the size, this ∆𝑢 will increase and therefore, this arc length will increase, 

the blue one, it will slowly go move towards the 𝐵̃+ and 𝐵̃− values which are shown here. 𝐵̃− 

is here 𝐵̃+ is here, which are the limiting values of Cornu spiral. Now you see that the length 

of the phasor is this much here, but if the arc length has increased, then the length of the phasor 

has now increased.  

What will happen if the arc is increased such that the 𝑢1 has reached here and 𝑢2 has reached 

here, in this case the arc length will be this. Now this arc length is much smaller than the other 

2 arc lengths. Now with this anti-clockwise rotation of 𝑢1 and 𝑢2 or with increasing arc length 

the 𝑢1 and 𝑢2 will spiral around this Cornu and the length of the phasor therefore will vary.  

And this length of phasor will go through a series of maxima and minima, and therefore, at the 

point of observation P with increasing size of the aperture we will see sometimes less intensity 

and sometimes a more, a series of maxima and minima will appear at the point of observation. 

And if the aperture is opened so widely that it reaches to infinity then in that particular case we 

will get a phasor which will be given by this line.  

It will start from point 𝐵̃− and it will reach to the limiting point 𝐵̃+. This green line represents 

the phasor for unobstructed source where the aperture has open till infinity. And the green line 

it starts here at point 𝐵̃− and it ends here at point 𝐵̃+. And we know at infinity this value of 𝐵̃+ 

is 0.5 here and 0.5 here and here it is -0.5, again it is -0.5.  

And this is a line which is making an angle of 45 degree with the horizontal axis, with the 𝜁 

axis. This was all about the widening of the aperture. The point of observation P was directly 

behind the center O, the origin O, it was directly behind this origin O and from there if you 

open up the aperture, then you see that a series of maxima and minima appear at P. But what 

will happen if we scan the aperture of access points?  

Question is we know the intensity fluctuations on axis points but what will happen if P is shifted 

to some off axis points.  
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Let us also think about this, now say that we have a Cornu spiral and P is shifted on some off 

axis point and say that shift is along y axis. P is along y axis and this shift is in this direction. 

As we said before, shifting P is very complex mathematically, therefore, instead of shifting P 

on the left hand side people prefer to shift the whole aperture on the right hand side and 

therefore the new origin would be here.  

This would be new origin, with the shift of the aperture the new origin would be shifted on the 

left hand side. Therefore, this point would be closer to the origin while this point would be 

farther to the origin. This 𝑢1 would be closer to the origin and 𝑢2 would be farther to the origin. 

With this understood initially this was our Cornu’s spiral. And this was the arc length which 

we were getting with symmetric O.  

Now when O is shifted towards left, along y axis, then 𝑢1 has reduced, you see the value of 

new 𝑢1, it got reduced, therefore, since this value of 𝑢1 got reduced, the new 𝑢1 will appear in 

a shorter distance from the origin OS here, this is the new origin new 𝑢1, while new 𝑢2 will 

appear here because the distance of 𝑢2 got increased. This 𝑢2 is now larger, therefore 𝑢2 would 

be here.  

And therefore this arc with the shift of origin towards left, this arc will shift up. If you shift the 

origin even more, say the new origin now is here, this is the new origin, with this what will 

happen is that 𝑢2 will be shifted more towards the higher side and your 𝑢1 would be shifted 

towards this direction. And therefore, when origin O is exactly at the edge of the aperture the 

𝑢1 would be here and 𝑢2 would be here.  



And then the new arc would be like this. Now if you shift the origin in the shadow region then 

this arc will keep shifting along this Cornu’s spiral and a situation will come when everything 

will be very close to the 𝐵̃+ point and if you go very far in the shadow you will not get any 

intensity, the arc length, it will keep rotating and suppose ultimately when we are far in the 

shadow region, then this would be the arc length.  

𝑢1 would be this and 𝑢2 would be this point and then if you draw the phasor, the phasor will 

look something like this, this would be the phasor. And this size of the phasor is very small. 

Then therefore, if you keep shifting in the shadow the phasor size will keep reducing and 

ultimately you will get negligible radiance at the point of observation P. Similarly if you go 

move the origin in this direction too, you will get the similar pattern.  

And this arc will shift here in this direction. Now the arc will spiral around this spiral, the lower 

one and the same case will also happen if you move up or down in this aperture and there 

instead of plotting u, we will plot v.  
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Now if the aperture is completely opened out revealing an unobstructed wave then we already 

know 𝑢1 = 𝑣1 and that would be equal to −∞ and then 𝐵̃1(𝑢) would be 𝐵̃1(𝑣) which would 

be equal to 𝐵̃−. And similarly, 𝐵̃2(𝑢) = 𝐵̃2(𝑣) = 𝐵̃+, it means in this case this would be our 

points when the aperture is wide opened and this would be the final phasor.  

Now this phasor, let me write again. Now this point is our 𝐵̃+ and this point is 𝐵̃−. Now this 

phasor for an unobstructed source will start from 𝐵̃− point and it will end at 𝐵̃+ point. And it 

will pass through the center of course here, it will pass through the center OS. Now what would 

be the length of this phasor and what would be the orientation of this phasor?  

We know that this point and this point they are at 0.5 unit away from the origin, similarly this 

point is at  -0.5 and this point is  -0.5. And from the geometry we can see that the orientation 

is 45 degree with the horizontal axis, and you can also calculate the length and length is equal 

to √2. Because this length would be equal to √0.5, this length, the lower part length, will again 

be equal to √0.5.  

If you add them up then you will get √2. This would be the overall length of this phasor. 

Therefore, the expression for the phasor would be √2, which is the amplitude and the phase 

part 𝑒𝑖𝜋/4. This is foru dependent phasor, for v dependent phasor that is in other direction, this 

would again be equal to √2𝑒𝑖𝜋/4.  

These phasors are for aperture which is extended till ∞ that is equivalent to an unobstructed 

source. And from here if you substitute them back to equation number 57 the resultant field 



would be (𝑢/2)√2𝑒𝑖𝜋/4√2𝑒𝑖𝜋/4, after multiplication you get 𝑒𝑖𝜋/2. Now if you want to see 

equation number 57, let us go back and see this is the equation number 57.  

Now with this if you want to calculate the irradiance, then irradiance would be equal to 𝐸̃𝑝𝐸̃𝑝
∗/2. 

And we will have the unobstructed amplitude except for a 𝜋/2 phase discrepancy. Because we 

know in the Fresnel formulism we always get this 𝜋/2 phase discrepancy because everything 

here is being calculated from secondary sources.  

And we know that the in Fresnel formulism there is a 𝜋/2 phase difference between primary 

wave and secondary wave and apart from this discrepancy everything is on line and the  

intensity at point of observation P would be equal to the intensity which we usually calculate 

from the unobstructed source. With this I ends today's lecture. Thank you for bearing with me. 

Hope you are getting the concepts and see you in the next class. 

 


