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Hello everyone, welcome to my class, today we will start the new topic in Module 9 and this 

topic is vibration curve, this is a relatively new concept, but before moving ahead, let us revise 

what we started in the last class. In the last class, we started with Fresnel diffraction, wherein, 

we try to find the disturbance at point of observation P due to a point source. 
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To do this what we did is that we considered a spherical wavefront of radius 𝜌 and then the 

point of observation P which is at a distance 𝜌 + 𝑟0 here we measured the disturbance due to 

this point source. Now to do this we divided this spherical wavefront into multiple half period 

zone or Fresnel zone and the distance of each this zone or this annular ring from the point of 

observation P is such that this one is 𝑟0 + 𝜆/2, this is 𝑟0 + 𝜆, this is 𝑟0 + 3𝜆/2 and so on and 

so forth. 

Now you can see that the difference between all these distances is 𝜆/2 the constitutive distances 

or the adjacent distances are differ by 𝜆/2 and this annular rings are created by assuming a 

bigger sphere which is centered at P and these distances which are 𝑟0 + 𝜆/2, 𝑟0 + 𝜆, 𝑟0 + 3𝜆/2, 

these are the radii of these sphere which is centered at point P and this is how we created all 

these annular rings. And then we calculated the disturbance at point P due to the point sources 

which are situated at one of these annular rings or annular region and then we integrated overall 

these annular regions and this gave us the total disturbance at point of observation P which 

came out to be |𝐸1|/2, where |𝐸1| is the contribution from the central or polar region. 
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With this we will now study about or we will talk about vibration curve. This is a graphical 

method where we will study the diffraction pattern of mostly circularly symmetric diffracting 

element and this is a qualitative method. Now to start with, let us first imagine a polar Fresnel 

zone, polar means the first Fresnel zone which is shaded here this is called first Fresnel zone 

or polar Fresnel zone. Now this Fresnel zone is divided into N subzones, how to divide into it 

N subzones? Suppose this is our biggest sphere and this is the first zone or polar zone then we 

divide it into smaller strips smaller annular region. And thereby we are creating and more 

annular regions within the first Fresnel zone. 

Now if we create these new regions then the distances of these annular region from the point 

of observation P are the spheres which are centered at point P will have their respective radii 

which are equal to 𝑟0 + 𝜆/2𝑁, then 𝑟0 + 𝜆/𝑁, and so on and so forth and the biggest radius 

would be equal to 𝑟0 + 𝜆/2. We are having one zone and then with centered at P we are now 

drawing so many spheres and it is cutting this zone into N subzones and this subzones are 

designated by these radii which are the radii of a sphere centered at point P. 

Now each subzone contribute to the disturbance at P because now each subzones will have lot 

many point sources and these points sources will emit some fields which will reach at P and 

then the resultant would be calculated at point of observation P. Now we know that, if we take 

into account all the subzones then we will get a total field which would be equal to 𝐸1 because 

the first zone is contributing 𝐸1 disturbance at point of observation P and we also know that 

the adjacent zones are out of phase, they are out of phase by 𝜋 and since the phase differences 

across the entire zone from point O to its edge is 𝜋 radian. Because we know that when we 

have this original Fresnel zone, then each zone has their own phase and adjacent zone differ by 



𝜋. Therefore, if we go from center to the periphery, the phase difference is 𝜋 radian, which 

correspond to a path difference of 𝜆/2. 

And therefore, what we can assume is that, each sub annular ring or each subzone which are 

now created from the first zone each will be sifted by 𝜋/𝑁 radian, the whole zone has a 𝜋 

radian shift and since we are dividing this one zone into N subzone, therefore, the contribution 

from each subzone would be 𝜋/𝑁 radian, each subzone will therefore be shifted by 𝜋/𝑁 radian. 
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Now in this figure we depict a vector addition of subzones phasers. We know that in each 

subzone there are points sources and they are contributing some field at point of observation P 

and this field are vector quantity therefore, we can replace the contribution from each of these 

subzones by a vector field and therefore, we can adopt the phaser addition. Now say that this 

first zone is divided into N into 10 subzones therefore, we will have 10 such fields which would 

be added vectorially at the point of observation P. 

Now you can see that in this figure, we start with some point OS and then the contribution from 

the first subzones is depicted by this arrow, the next contribution is this arrow, the next comes 

like this and this way we reach at this point. Here we added all the 10 electric field vectors 

which owes their origin in 10 different subzones. Now you see that the chain of phasers deviates 

very slightly from the circle, this is the circle and you see that the vector addition give us a 

curve which is almost looking like a circle but there is a slight deviation. And this deviation 

owes its origin in obliquity factor, because, we know that obliquity factor is the 𝜃 dependent 

parameter, the obliquity factor 𝐾(𝜃) = (1 + 𝑐𝑜𝑠𝜃)/2. 



Now as we move up as we go into a higher subzone, the angle 𝜃 will increase and with increase 

of 𝜃, the 𝐾(𝜃) will go down. Therefore, the contribution from successive higher number of 

subzones will reduce down therefore, as you go up in subzone number, the deviation from the 

circle will increase, here you see the deviation  is smaller while the deviation is larger here and 

even larger here at this point. 

And when the number of subzones is increased to infinity here, we assume that the number of 

subzones is 10 and therefore, you are seeing some discreteness here, but if the number of 

subzone is increased to infinity, the polygon of vector blends into a segment of a smooth spiral. 

Therefore, instead of this discrete addition you will get a very smooth spiral, and this is spiral 

we name it as vibration curve and since it is a graphical therefore this method is called graphical 

method and this a spiral is called vibration curve which represents the resultant field or the field 

variation at a point of observation P due to different zones and subzones. 
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Now we can now derive a few points from this analysis and these points are listed here, the 

first point is that for each additional Fresnel zone the vibration curve swings through one half 

turn and a phase of π as it spirals inward. This point can be understood here in this figure, the 

first subzone is out of phase with respect to the second subzone and if you move from the center 

to the periphery of the first zone, first zone is this zone here we are talking now about this zone 

and this is our second zone. 

Now the here the phase is π and here this there would be again a π phase difference therefore, 

phase would be 2π. Now this is our horizontal axis and with respect to this axis we measure 

angle. Now you see that we divided the first Fresnel zone in subzone and then we added all the 

contribution and then ultimately we reached to this point, this is our ultimate point which we 

reached after adding all subzones in first Fresnel zone and this is what said here and this phase 

is π, it means is that everything is following properly. 

Now if we go to next Fresnel zone, the next Fresnel zone is this edge of the next Fresnel zone 

is again phase shifted by π degree. It means if we go from here to here, the phase difference 

would be π, but if we go from center to here, that phase difference would be 2π from center to 

this extremity phase difference is 2π, but from the edge of first Fresnel zone to the edge of 

second Fresnel zone the phase difference is π. Therefore, if we create a vibration curve for the 

second Fresnel zone, then we will again get a spiral and it will come to almost the original 

position, you see that if you include the second Fresnel zone this curve completes full circle it 

means the rotation is by 360 degree. And therefore, from center the overall deviation is 2π, but 

if you compare it with respect to the edge of first Fresnel zone, then you again see there is a π 

phase shift. 



Now you see that the vibration curve due to the second Fresnel zone it is not touching the OS 

point, the point where from the first vibration curves started, why? Because again the obliquity 

factor is reducing the contributions from the higher order zones as we increase θ the 

contribution reduces, the contribution from successive zones reduces and this is why there is a 

difference here, you see a gap here at this point. Now the second point is that the radius of each 

zone is proportional to the square root of its numerical designation. It means the radius of mth 

vibration curve would be proportional to √𝑚. I will derive it at the end of today's lecture, but 

for now, assume that this is true. 

It says that for the first Fresnel zone the radius would be 𝑅1 would be √1, for the second 𝑅2 

would be √2, for the 100th 𝑅𝑚 would be √100, which would be equal to 10, here it would be 

equal to 1, here will be equal to 1.414. It means that as you increase as you move up with the 

zone number, this curve will shrink, they will come closer and closer as you increase m or as 

you increase the zone number. Therefore, initially the angle θ increases rapidly and thereafter 

it gradually slows down as m becomes larger, which is very much obvious because of this 

relation this is not a linear relation it is a parabolic relation. 

Now the 4th point is accordingly K(θ) decreases rapidly only for first few zones, for first few 

zones K(θ) decreases rapidly but if we go to the higher order zones then the reduction in K(θ) 

is smaller, the rate gets slowed down. And the last point is that as the spiral circulates around 

with increasing m it becomes tighter and tighter and this is what I said a minute before, 

deviating from a circle by a smaller amount for each revolution if you increase m, the 

circulations become tighter. Initially it started from here and then it goes like this and then you 

see a denser vibration curve here around the center. And the one point which is to be noted is 

that the deviation from the ideal circle becomes less if you go higher in m, the variation will be 

more close to a circle they would be almost mimicking a circular pattern. 
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Now with this introduction, let us see how do this vibration curve look like and this is a 

schematic diagram which shows the features of vibration curve. You see here that OS is a point 

and OS is nothing but it correspond to point O which we consider that the center of the first 

Fresnel zone, O is the center of first Fresnel zone, P is the point of observation and 𝑟0 is the 

separation between O and P and this is the spherical wavefront which is generated from point 

source S. Now if you extend the line joining O and P then it will come out of this sphere from 

point 𝑂′, do make it a point, point 𝑂′ is sitting exactly behind point O, the O and O’ are on the 

same diagonal, they are diagonally opposite points. 

Now the O corresponds to Os in the vibration curve. Similarly, 𝑂′ corresponds to 𝑂𝑠
′, O’ 

correspond to 𝑂𝑠
′ and O correspond to Os in vibration curve. The first zone is this outer line 

outer curve and phase is π, the second zone is this. Now 𝑍𝑠1, this point on the first Fresnel zone 

the extremity here where the first vibration curve in, this is sitting here, the 𝑍1 on the Fresnel 

zone correspond to 𝑍𝑠1 here. Similarly point 𝑍2 correspond to 𝑍𝑠2 here and so on and so forth. 

Now if there is no obstruction in the last lecture, we calculated that a point source will 

contribute a total field which would be equal to 𝐸1/2 at the point of observation P and what is 

𝐸1? 𝐸1 is the contribution from the first zone and which is clearly depicted in the vibration 

curve 2. See that contribution from the first zone is this vector, if you draw a vector then this 

is the contribution from the first zone, the first zone starts from here we are adding up all the 

vectors and then we are ultimately getting to point 𝑍𝑠1 and the resultant the vector addition 

would be 𝑂𝑠1, 𝑍𝑠1, this line would be the resultant of all this vector addition, this is nothing but 



𝐸1, this is the contribution from the first Fresnel zone. And in this figure 𝑂𝑠1 and 𝑂𝑠
′ represents 

O and O’ of the actual figure. 

Now if you keep drawing the zones then the last zones, say 𝑚𝑡ℎ zones, is covering 𝑂′ point, 

𝑂′ would be center of the last zone, say the last zone is 𝑚𝑡ℎ zone. Now we know that K (θ) is 

0 for the last zone, because K is (1 + 𝑐𝑜𝑠𝜃)/2 and 𝜃 is π degree there and therefore, the last 

zone will not contribute to the vibration curve and therefore, the ending point of a vibration 

curve will never touch 𝑂𝑠
′  here in this figure since the last zone is not contributing. Therefore, 

before reaching 𝑂𝑠
′  the vibration curve must end and this is what exactly is happening here it 

is not touching 𝑂𝑠
′. 

Now if we want to calculate the total disturbance at point P due to all zones which is shown in 

figure 4(a) then this would be equal to this vector, you will have to just join Os with 𝑂𝑠
′ , this 

vector is the resultant due to the point source situated at certain distance from point P. Now 

you can see from this figure that this blue vector is just half of the red vector, what I mean to 

say is that Os 𝑂𝑠
′= Os Zs1/2  which is nothing, it means the resultant which is Os , 𝑂𝑠

′  the resultant 

would be Os 𝑍𝑠1/2  and Os 𝑍𝑠1 = 𝐸1 is even, the field the contribution from the first zone by 2 

and this is what we derived in our last class. 

You can see now there is one to one correspondence, for deriving this we had to resort to a 

very complex mathematics which involve lot many terms. And now using this graphical 

method you can clearly see that you can predict the resultant field at a point of observation P 

just by looking at these figures. Now the 2 important points which can be derived through this 

analysis are listed here, the amplitude Os𝑂𝑠
′  is just one half the contribution from the first zone 

which is very much clear and well explained and Os𝑂𝑠
′ has a phase of 90 degree with respect to 

the wave arriving at P from O, which is also clear this is 90 degree. 

But, in the last class, we saw that if you write the expression of disturbance at point of 

observation P due to a point source which is at a certain distance from P then we get some 

amplitude and then 𝑠𝑖𝑛𝜔𝑡 and some phase part, but if we do it using a Fresnel way, then we 

found that instead of getting 𝑠𝑖𝑛𝜃 we were getting 𝑐𝑜𝑠𝜃, cos into some phase term. And there 

we said that if we assume that the secondary wavelets are out of phase by 90 degree with respect 

to the primary one then there is a one to one correspondence. 

But here too what you see is that the Os𝑂𝑠
′ has a phase of 90 degree with respect to the wave 

arriving at P from O and this 90 degree here. And but this is not exactly the case when you do 



it directly and this is one of the shortcomings of the Fresnel formulation that introduces a phase 

shift of 90 degree between primary and secondary waves. 
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Now each points 𝑍𝑠1, 𝑍𝑠2, 𝑍𝑠3 and 𝑍𝑠𝑚, which are shown here these points is separated by half 

turn, which is very much clearer you have to just move one half turn here you reach 𝑍𝑠1, then 

again move half turn here you reached at to 𝑍𝑠2, keep rotating by half turn and you reach next 

𝑍𝑠1 and there is also a phase shift of 90 degree between adjacent vibration curves. Now the 

angle made by the tangent to the vibration curve at point OS and AS is 𝛽 here, there is a point 

OS and if you draw a tangent here, then this tangent will be directed in this direction and say 

there is some point on the vibration curve and you draw a tangent at this point, then if you 

extend it by then you see that these two tangent meet here and the angle between them is 𝛽 

here and this is the relative phase between any two disturbances at P. And these disturbances 

are coming from two points on the wavefront, say, O and A. 

Let us try to understand in a deeper way. Now this is a part of the spherical wavefront which 

we considered here in this figure, I just picked this part and then put it in this here. Now 𝑂𝑠 is 

the point which is joining with P and 𝑍1 is at the periphery of the first Fresnel zone. Now in 

this Fresnel zone we randomly pick a point A, and with A chosen the question is what would 

be the contribution of this shaded part at in the disturbance which is observed at point of 

observation P, the contribution due to this shaded part at point of observation P, this is the 

question. 



Now to answer this first we will have to draw this point on the vibration curve and say A is 

mapped here we just mapped this A on the vibration curve and A is mapped at this point which 

is 𝐴𝑠 here. Once 𝐴𝑠 is mapped then we draw a tangent at 𝐴𝑠 and say the origin 𝑂𝑠, if we want 

to measure things with respect to origin then only we will have to consider origin, if there are 

some other points with respect to which we want to perform the measurement then we can pick 

any other point on this vibration curve accordingly.  

But the crux of the matter is that to calculate the relative phase difference between the two we 

will have to draw a tangent at those two chosen points and once you draw the tangent these 

tangent will meet somewhere and from there you can calculate the angle between the two. And 

this angle will tell the relative phase between the 2 points between any 2 disturbance which is 

reaching a point of observation P. In this case the 2 points is 𝑂𝑠 and 𝐴𝑠, here we drew 2 tangents 

and these tangents are crossing here and here the angle is 𝛽 and this beta tells the relative phase 

difference or the phase difference between point 𝑂𝑠 and point A. 

Now if phase is known what would be the magnitude of the disturbance which is observed at 

point of observation P? The resultant at P from whole region, this all shaded region, would be 

equal to this vector just join 𝑂𝑠 and 𝐴𝑠 and the length of this vector will give you the resultant 

contribution from this whole region, the contribution from this whole region will be given by 

this vector, 𝑂𝑠𝐴𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, this vector we call it a phasor, and this phasor is oriented at angle 𝛿 this angle 

is here.  

It means that once we have this vibration curve just by looking at this vibration curve we can 

calculate the disturbance at point of observation P, we can calculate the phase, we will have to 

just image the corresponding point from the Fresnel zone to this vibration curve and pick some 

point in the Fresnel zone and then image it here and then calculate the phase between the two, 

calculate directly the amplitude the resultant at P from the whole region, it will be quite easy. 
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Now with this information at hand we will implement this in circular apertures. Till now, we 

were just considering point sources which were unobstructed and then we were measuring the 

field or we were measuring the disturbance at point of observation P. Now we will implement 

this knowledge in case of circular aperture, for this in vision that we have a monochromatic 

spherical wave which is impinging on screen and which has very small circular aperture or 

circular hole. And assume that the sensor at P, instead of detector we are calling now sensor, 

the sensor at P sees an integral number of zones, this is just an assumption. 

We have a screen and in this screen we have a circular aperture or circular hole and the point 

of observation P is here and the camera here is or the sensor here is seeing integer number of 

zones because there is a point source here and it is emitting a spherical wavefront, and this 

spherical wave fronts are divided into lot many Fresnel’s zones or annular rings and this annular 

zones are being observed from point of observation P. Now the point of observation P is 

situated such that it is saying integer number of zones and assume that this integer is equal to 

m. 

Now there are 2 cases, the first case is when m is even. Now in this particular case since we 

are seeing a part of zones we are not seeing all zones, we are seeing a part of zones, because 

whole circle is like this, the whole wavefront is a spherical and the part of the wave fronts are 

visible from the point of observation P because aperture is only allowing a part of this 

wavefront letting through this opening and the rest of them are getting blocked. Therefore, the 

majority of course, the last zones are not visible they are not passing through this circular 

aperture. 



Therefore, the obliquity factor for the last zone which is visible from point of observation P 

would not be equal to 0, because last zone in our case would be m, which are the maximum 

value of zone which is getting through this circular aperture. Initial m zones are only allowed 

to pass through this circular aperture and for this initial m zones do not include the last zones 

which are here in this spherical wavefront. And because for this only zone K (θ)=0 therefore, 

for zones which are visible from point of observation P, 𝐾𝑚 would not be equal to 0. With this, 

we can for the visible zones, we can calculate the resultant disturbance at the point of 

observation P, for this we will add up all the contributions from visible zones. 

Now we will add up the contributions from all m visible zones, this is how we added them up. 

Now this is also clear to us that adjacent zones are out of phase by π degree therefore, we have 

a positive sign before 𝐸1, while negative sign before 𝐸2 , positive sign before 𝐸3, while negative 

sign before 𝐸4, and we clubbed them in pairs. And in addition, we also  know that these zones 

are adjacent and they contribute nearly equally therefore, 𝐸1 would be almost equal to 𝐸2, 

similarly 𝐸3 would be almost equal to 𝐸4 and therefore, we can clearly see that the resultant E 

would be almost equal to 0, we will not see anything at the point of observation P, if the circular 

aperture allows only even number of zones. And therefore, the resultant intensity would also 

be equal to 0. 
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Now let us go to the next case where m is odd. Now here again we are doing the same thing, 

but now the clubbing is a started from the second contribution the 𝐸2, 𝐸2 and 𝐸3 are here 



clubbed, 𝐸4 and 𝐸5 are clubbed and last two zones are clubbed here. Why did we that with 𝐸2, 

𝐸1 and 𝐸2 because as you increase θ the contributions from the successive zone reduces. 

Therefore, the contribution from the last zones would be smallest and the contributions from 

the first two zones it would be biggest but the difference between contributions from the initial 

zones would also be very different, the difference between 𝐸1 and 𝐸2 would be larger than the 

difference between the last two contributions and therefore the clubbing is done this way. With 

this too, this term would be equal to 0, this term would be equal to 0, this term would be equal 

to 0, and here we get a nonzero resultant which is equal to |𝐸1| that is equal to the contribution 

from the first zone. 

Now this is roughly twice the amplitude of the unobstructed wave. In the last class, what we 

saw is that we have a point source and here it is the point of observation P, the point source is 

contributing a disturbance at a point of observation P in such a way that the resultant 

disturbance at P is equal to 𝐸1/2, but now here what we are doing is that, we are covering a 

part of the point source, we are covering a part of the spherical wavefront which is emitted 

from the point source and now the resultant disturbance at point of observation P is increased, 

it became twice.  

And this is what is written here by inserting a screen in the path of the wave thereby blocking 

out most of the wavefront, we have blocked most of the wavefront and still we have increased 

the irradiance at P by a factor of four, because in earlier case, in case of unobstructed wave, the 

radiance was (𝐸1/2)
2 that is 𝐸1

2/4 and here the radiances |𝐸1|
2, there is a difference of a factor 

of 4 now. 

Now because of the complete symmetry of the setup, we can expect a circular ring pattern. 

Now see the beauty of this vibration curve analysis, things are very much simpler now. Now 

since the aperture is circular we expect that there would be a circularly symmetric pattern and 

most probably it would be concentric ring pattern, how to know this? We will again analyze it 

we will see how do we get a concentric circular ring pattern using this vibration curve. 
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Now if we have considered the two cases, in the first m was even, in the second m is odd, but 

what if m is in between, if m is not an integer, the irradiance at P is somewhere between 0 and 

its maximum value, it would take a mid-value between 0 and its maximum value. Now consider 

the case where we assume that the circular aperture radius is increasing slowly it is expanding 

smoothly and it is assumed that initially the radius was nearly equal to 0 and then it is getting 

bigger and bigger slowly, then what will happen? The amplitude at point P can be determined 

from the vibration curve. 

Now if you increase the radius, now see suppose this is the aperture and you were initially 

seeing, say, first Fresnel zone and the second Fresnel zone, now if you increase the radius then 

this Fresnel zones will keep increasing, the number of visible Fresnel zone will keep increasing. 

Now suppose you are just seeing the first Fresnel zone partially then you will see some 

intensity. 

Now if you see first Fresnel zone plus second Fresnel zone then the field of one will cancel the 

field of the other and therefore, you will see you 0, no intensity would be there on the point of 

observation P. Again, increase it the third Fresnel zone will now be in the field of view again 

some intensity, again increase it four Fresnel zone again 0 intensity, it means with the increase 

of the radius of the circular aperture you will see several maxima and minima and whose 

amplitude slowly will fade away. 
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Now this is what is shown here in figure 6(a), initially when only first zone is visible partially 

then you will have this resultant, if you keep opening the circular aperture the resultant will 

increase, a full aperture is visible then this would be the resultant. And if you keep increasing 

the radius then this arrow will rotate anti-clockwise, this arrow will rotate in an anti-clockwise 

direction and you will see that sometimes the magnitude of this arrow is large and sometimes 

it reduces down to almost 0 and then it again increases, we will see something like this, this is 

the intensity pattern, which you will observe if you slowly expand the circular aperture. 

Now let us see what will happen if we not only move along the OP direction along the axis, let 

us go in the lateral direction then what will happen. In the lateral direction, now initially we 

were at point P, let us suppose that we are at point P and we are observing some fringes and 

assume that zone 1 and zone 2 is visible as shown here in this picture, this is your aperture 

plane, this is the circular aperture and within this aperture we are able to see zone number 1 

and number 2. 

In this particular case the contribution from zone 1 will cancel the contribution of zone 2 

because they are out of phase, you will not see anything at point of P. Now if you go to point 

𝑃1 with this the light is coming from 𝑂1 and then it is going to point 𝑃1. Now since we have 

shifted laterally in the transverse direction, this is zone 2 and this is zone 1, the part of zone 2 

is now eclipsed, it is not visible, but a part of zone 3 is now visible from here. It means there 

would not be complete darkness due to partial hiding of zone 2 and partial opening of zone 3, 

we will not have perfect cancellation and we will see some intensity. 



Similarly if you move to point 𝑃2 the zone two will be more behind this aperture and it would 

not be visible and this is your zone 3 which will be here and zone 4 will also start peeking in 

and therefore, again that we will see some distribution which will evolve you will have minima 

and then more intense point thickness you will see a periodic variation in intensity if you 

transversely move in this direction and this is symmetric. The same thing will appear if you 

move either in this direction or in this direction therefore, a circle is drawn whatever intensity 

is measured at point 𝑃3 it would be measured all along this circle. 

Similarly, with 𝑃2 too, you will see the intensities all along the circle the same intensity what 

is observed with 𝑃2, similarly with 𝑃1. It means that we will get a concentric ring pattern here, 

this type of pattern would be seen due to circular aperture. And now you can see that we can 

guess it very easily just by looking at the aperture and applying the knowledge of vibration 

curve we can draw whole diffraction pattern here without touching any mathematics. 
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Now let us calculate the area of each zone, for this we integrate equation number 8 with biggest 

elementary area which we picked while analyzing the unobstructed point source and if you 

integrate this ds over particular zone say it is integration is from (𝑙 − 1) -  to 𝑙, then we get the 

area of this zone, this is the rough expression, the integration gives us the area of a particular 

zone which is (𝜌/(𝜌 + 𝑟0))𝜋𝑟0𝜆. The areas of the Fresnel zones are almost equal, they do 

increase very slightly as their radii increases, but they are roughly the same. 

Now if the circular aperture has radius R, good approximation of the number of zones within 

it is simply equal to this, this is our circular aperture which has radius R and we know from 



equation number 13, the area of a single Fresnel zone then once we know the area of aperture 

and area for single Fresnel’s zone then we can calculate the total number of Fresnel zone which 

will fill the area of this circular aperture and this number is represented by 𝑁𝐹 and is given by 

this expression, these two expression. 𝜋𝑅2 is the area of the circular aperture and A is the area 

of a single Fresnel zone if you substitute for A then you get equation number 31. And this says 

the total number of Fresnel zone which will approximately fall in the area of the circular 

aperture. 
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Now this quantity 𝑁𝐹 is referred as Fresnel number. Now what will happen if we increase both 

𝜌 and 𝑟0, if both 𝜌 and 𝑟0 increased to a point where only a small fraction of zone appear, small 

fraction of zone means within only single zone, the first zone, we are now able to see a little 



portion of it only. And if we are only see of the first zone partially, then only we see that 𝜌 and 

𝑟0 are very high. And with this, you see here 𝜌 and 𝑟0 are increased sufficiently and in the 

numerator, we have 𝜌 + 𝑟0 while in the denominator we have 𝜌 × 𝑟0 and since both 𝜌 and 𝑟0 

are a big number, the denominator will be very huge as compared to the numerator and 

therefore 𝑁𝐹 would be much-much smaller than one unity and this is what is shown here. 

When both 𝜌 and 𝑟0 are increased to the point where only a small fraction of a zone appears in 

the aperture, then 𝑁𝐹 is much-much less than 1. And then we traveled to the Fraunhofer regime 

and there we see Fraunhofer diffraction pattern, this the value of 𝑁𝐹 decides whether we are in 

the Fresnel regime or in Fraunhofer regime, the condition from the Fraunhofer is that the 

Fresnel number 𝑁𝐹 must be must be much-much smaller than unity. 

Now as P, the point of observation moves in either direction along the central axis that is if you 

see this figure if P move along this axis, the OP line, the number of uncovered zones whether 

increasing or decreasing oscillates between odd and even integers, which is very much obvious, 

we have aperture and then we are moving along this line if we go close to this aperture we will 

see more number of zones, if we are away from the aperture we will see less number of zones, 

the number of zone will vary and it will oscillate between even and odd integer. When it is an 

even integer then intensity or irradiance will go down, if it is odd integer the irradians will go 

up, it means that irradiance goes through a series of maxima and minima it means we know 

what is exactly happening on the axis and we also know what is happening across the axis on 

the lateral or transverse direction. 

Now clearly, this does not occur in the Fraunhofer configuration, because in Fraunhofer 

configuration, if you move along the axis, the shape remains intact, it is the size of the pattern 

which changes, this we have realized. If it is your aperture, then the shape of the pattern, 

suppose this is the some shape of your pattern, this shape will increase if you move away from 

the diffracting element and if this happens only when you are in the Fraunhofer regime, while 

in the Fresnel regime, you see that the maxima-minima condition is varying along the axis, this 

is characteristic of Fresnel and this does not occur in the Fraunhofer regime. 

Why this does not occur in the Fraunhofer regime? Because in the Fraunhofer regime, we say 

that screen and the diffracting element, they are almost at infinity, and since the separation is 

very huge, then if you look into a circular aperture from the Fraunhofer regime, then you will 

see only a small part of first Fresnel zone, you will barely see a very little part of the first 



Fresnel zone from that big distance. And since we are seeing only a small part of the first 

Fresnel zone, we will see only intensity which has certain distribution, but due to the divergence 

we see the increase in the size, but the shape remains intact. 

Now with this, let us now move to the case where the circular aperture is illuminated with the 

plane wave, instead of spherical wavefront, we are assuming the wavefront which is falling on  

this circular aperture is plane. This happens in case when the separation between the point 

source and the defecting element is huge. In this particular case, we can approximate the large 

radius spherical wavefront with a plane wavefront. 
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Now in this figure you see this is a circular aperture of radius 𝑅𝑚 and these are the wave fronts 

which are falling on this circular aperture. Now here we derive an expression for the radius of 

mth  zone, and we assumed this radius is 𝑅𝑚. Now from the figure 𝑟𝑚 = 𝑟0 + 𝑚𝜆/2. Now here 

we have different zones inside which are visible from point of observation P and we know that 

zones are defined in such a way that 𝑅𝑚 is equal to 𝑟0 plus integral multiple of 𝜆/2. Now since 

we are talking about mth therefore, 𝑅𝑚 in this particular case would be 𝑟0 + 𝑚𝜆/2 here for mth 

zone, the integer values m here. Once 𝑅𝑚 is known and 𝑟0 is known, we can calculate 𝑅𝑚  

which would be given by equation number 32, where we have used the Pythagoras theorem. 
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Now here in 𝑅𝑚 can be expressed like this, why 𝑅𝑚 can be expressed like this, you just expand 

it and then 𝑟0
2 from this expression will go away and we will be left with the equation number 

33, the right hand side of equation number 33. Now this term 𝜆 is very small quantity and 

therefore 𝜆2 would be even smaller and therefore, the second term on the right hand side of 

equation number 33 can easily be neglected, unless m is very huge. 

And therefore, 𝑅𝑚
2 = 𝑚𝑟0𝜆 . And from equation 34, we can clearly see that radii are 

proportional to the square root of integer, 𝑅𝑚 is proportional to √𝑚, which is what I wrote in 

my initial slides, probably second or third slide. I said that I will prove it at the end of this slide 

or end of this lecture. And therefore, it is proved here it is very much clear that 𝑅𝑚 would be 

proportional to √𝑚, the number of zone, where m is an integer. With this I end my lecture, 

thank you for joining me. See you in the next class. 

 


