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Fresnel Half Period Zones 

Hello everyone, welcome to the class, today we will start module number 9. 
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In this module we have several topics, the first one is Fresnel half period zone and thereafter 

we will talk about vibration curves that would be followed by zone plates. And then we will 

discuss about diffraction at a straight edge then diffraction of a plane wave by a long narrow 

slit and at last we will see how the Fresnel diffraction return make transit to the Fraunhofer 

region. Since this is the first lecture on the diffraction therefore, we must revisit what we studied 

or what are the conditions in Fraunhofer region.  
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In Fraunhofer domain, the diffracting system was relatively small, relatively small means its 

size was smaller than the distance between screen plane and source plane and the point of 

observation was very distant, this is what is the point or let me say it like this, in Fraunhofer 

configuration, the diffracting system was relatively small and the point of observation was very 

distant. Because in the very first class of diffraction, where we introduce phenol and Fraunhofer 

categories, we discussed that in Fraunhofer domain both the source and the point of observation 

on observation plane they must be at infinity from the diffracting plane or from the diffracting 

element, this was the condition which was imposed by Fraunhofer diffraction. 

While in Fresnel domain, we deal with the near field region which extend right up to the 

diffracting element itself and any approximation would therefore be inappropriate. The 

approximation which we considered in Fraunhofer diffraction was that the distances of the 

source and the screen from the aperture pin must be infinity, but in Fresnel domain, we will not 

rely on this approximation, we may even go much closer to the diffracting element. Now, with 

this we will also have to revisit the concept introduced by Huygens Fresnel principle. 
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Now, what are the points which need to be reexamined? At any stand every point on the primary 

wavefront is envisioned as a continuous emitter of spherical secondary wavelets, that was the 

basic principle or basic statement proposed by Huygens. Now, Huygens again said that each 

wavelet radiated uniformly in all directions in addition to generating an ongoing wave, there 

would also be a reverse wave travelling back towards the source. And this is something which 

we do not see in our daily life here, because suppose, we have a wavefront and each point on 

the wavefront it emits a spherical wavefront. 

Now, having said that, we just draw an envelope on the secondary wavefront and this envelop 

will give a new position of the wavefront. But since the wave emitted by this point sources on 

the primary wavefront, they are also propagating in the backward direction and therefore, if 

you draw an envelop here and you will see that the back the wave is propagating in forward 

direction as well as in the backward direction, this is quite contrary to the usual observation 

because we know that the waves propagate in the forward direction. 

Therefore, this point is a point of concern because no such wave is found experimentally. So, 

we must somehow modify of the radiation pattern after secondary emitter and this modification 

was introduced by Fresnel and the new principle is called Huygens-Fresnel principle, where 

Fresnel introduce that this emitting wave they propagate in the forward direction only and he 

also said that they interfere and therefore, the Huygens-Fresnel principle is now can explain 

diffraction. But exact mathematical formulation came quite later and it was given by 

Kirchhoff’s. 
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Now, Kirchhoff’s, what he said is that he mathematically formulated a function which is called 

obliquity or inclination factor, K (θ) is called obliquity or inclination factor and it is defined as 

1/2(1+cosθ) or (1+cosθ)/2 as is given by equation number 1. And this obliquity factor dictates 

the direction of propagation of wave. Now, here the angle θ is the angle made with the normal 

to the primary wavefront �⃗� . Suppose this is our wavefront and this is the �⃗�  vector direction and 

this is the point of observation P, then this angle is θ. 

And of course, from expression 1 we can easily see that this has a maximum value when θ= 0 

and when θ= 0, we have K (0) = 1, it means all the energy will propagate in the forward 

direction. But if you see the propagation in backward direction then what you find is that when 

θ=π then K (π)= 0, it means nothing is propagating in the backward direction this was the 

corrections which were introduced later in the Huygens principle and limitations which the 

Huygens principle had it was removed just by introduction of this obliquity or inclination 

factor. Now, we will examine the free propagation of a spherical monochromatic wave emitted 

from a point source. 
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But before that, let us see how does this obliquity factor look like? Here in this figure you see 

that we have a point source and then these are the spherical wave fronts which are being emitted 

through this point source. Now to decide the shape or the direction of propagation of the wave 

and the shape of the new wavefront following Huygens principle we take large number of 

secondary point sources on a wavefront and this from these secondary point sources, we 

assumed that new wavelets are being generated. And then we draw common envelop on these 

all secondary wavelets and this is how the waves propagate. 

Now, this is the direction of �⃗�  which is perpendicular to the wavefront and P is the point of 

observation and the angle between this line and the �⃗�  direction is θ angle and this shaded region 

shows the part of the energy which will go in different direction which will go in different θ 

directions. Now, if you plot K (θ) with respect to θ then you see this kind of variation and then 

obliquity factor show this type of variation. And now you see that in the forward direction its 

value is 1 while in the backward direction its value is 0, it means that most of the energy will 

propagate in the forward direction, a part will go in other θ direction but in the backward 

direction no energy will propagate, the wave will not propagate in the backward direction. 
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Now, we will consider a wave propagation in free space. Now, if the Huygens-Fresnel principle 

is correct, we should be able to add up the secondary wavelets arriving at point P. We have a 

source here and from this source wave is being emitted and at the point of observation P it is 

being recorded, it is being observed. Now, the principle says that we should be able to add up 

the secondary wavelets arriving at point of observation P, the spherical surface corresponds to 

the primary wavefront at some arbitrary time t’ after it has been emitted from S at time t is 

equal to 0. 

It means that suppose we have a point source which is emitting a spherical wavefront and this 

wavefront is recorded at time t’ and since it takes some time for wave to reach at this position 

therefore, it must have started at some earlier time and we assume the wave start from point 

source S at time t=0 and then it reaches to this position at time t=t’. With this, the disturbance 

having radius ρ, say this radius of the spherical wavefront is ρ this can be represented by 

equation number 2, which says that field 𝐸 = 𝜖0/𝜌(𝑐𝑜𝑠𝜔𝑡′ − 𝐾𝜌), ρ is the radius of this 

wavefront. 
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Now what we do is that, suppose we have a point of observation P here and we divide the 

wavefront in a number of annular regions, how to do this? This is clearly depicted in this figure. 

Now, in this figure you see we have a point source S and at a time t’ the point source has this 

wavefront and the radius of this sphere is ρ, this is the radius. Now what we do is that from the 

point of observation P we draw various spheres of radius 𝑟0 + 𝜆/2 and then 𝑟0 + 𝜆 and then 

𝑟0 + 3𝜆/2 and so on. From point P we now draw various spheres of these radius and these radii 

are varying by λ/2 at each step. The constitutive or at the adjacent sphere which are centered at 

P they vary by λ/2 in their radii. 

Now, when we draw the spheres they will cut this spherical wavefront in different annular 

regions which are depicted here. The first sphere will generate this shaded region which we 

name as Z1, the second sphere will generate this less shaded region which we name as Z2 the 

third sphere will generate this dark shaded region which we call Z3 , and this point is the nearest 

point on the wavefront from point of observation P which is at a distance 𝑟0. The boundaries 

of the various reason correspond to intersections of the wavefront with a series of spheres 

centered at P of radius 𝑟0 + 𝜆/2, 𝑟0 + 𝜆, 𝑟0 + 3𝜆/2, and so forth. 

And these regions are known as Fresnel or half period zone, the word half period comes from 

the 𝜆/2 difference in the radii of adjacent sphere, because 𝜆/2 is half of the period, it is the full 

period the full wavelength is 𝜆 but half period is 𝜆/2 therefore, these zones are called half 

period zone or Fresnel zones. Now, what we do is that, we pick some l-th zone, say there is n 

number of zones starting from 1 and we pick one of these zones and say this zone is a l-th zone. 



Now, 𝑙𝑡ℎ zone is situated between (𝑙 − 1)𝑡ℎ zone and (𝑙 + 1)𝑡ℎ zone, it is between l - 1 and l 

+ 1 zone, this is in between these 2 zones. Now, we assume that this zone has boundaries which 

are, let me explain it here. Suppose this is the zone which we are interested in, I am shading 

this zone and the area of this zone is dS, as this point, which is point O which is the nearest 

point from the point of observation is at a distance r0 , we assume that this annular ring, the 

lower portion of this annular ring at this point particularly is at a distance r from point of 

observation P while the upper point here is at a distance r + ∆ r from point of observation P. 

Now, this distance of course would be ρ, this distance would be ρ, this angle say is 𝜑 and this 

angle is d𝜑. Now, I can redraw this figure because it is too much now in this figure, let me 

redraw it. Now say this is our point S and this is our point P and annular region is somewhere 

here, this is the annular region which we are interested in and this annular reason has area dS. 

Of course, this distance is ρ which is the center O and this distance is r0  as depicted in the 

figure. Now say this distance is r and from the upper portion of this annular region it is r + dr 

and this is ρ because this whole of these annular region is on the surface of the sphere therefore, 

all points of the annular region would be a distance ρ from the source because source is the 

center of this sphere. 

Now say this angle is 𝜑 and this angle is d𝜑, with this we can easily calculate the area element 

dS. And one more point this is wave vector �⃗�  direction therefore, this angle would be the angle 

θ. Now, hope this picture is quite clear to you all now in this picture you can see that the source 

S is effectively at a distance 𝜌 + 𝑟0  from the point of observation P. Therefore, what we did is 

that we defined a ring shape differential area element dS and all the points sources within dS 

are coherent, since the area element dS is very thin therefore, we assume that all the points 

sources which are situated on this area element they are coherent. 

And we also assume that each of these points sources radiates in phase with the primary wave, 

this is our primary wave and the sources are here in this small area element and it is also here, 

and since the thickness is very small we are imposing 2 conditions or we are assuming that 

they are coherently emitting, whatever they are emitting everything is in phase with the primary 

wave. The secondary wavelets, secondary wavelengths emits the emission which are coming 

from the point sources sitting on this area element. The secondary wavelets travelling a distance 

r to reach at P which is very much clear from this figure you see that, let me pick a different 

color you see that this distance is r and therefore, the secondary wavelets which are being 



emitted from point sources sitting on this area element they travelled a distance a r to reach at 

point P. 
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Now, we also assume by the time they reach there it is time t, made this as statement that all 

the point sources on the area element is coherent and they are radiating in phase. Therefore, all 

the wave or all the light which reach out point P from this area element would be in same phase. 

And how to calculate this phase? This phase would be (𝜔𝑡 − 𝑘) × total distance travelled, and 

what is the distance travel here? Distance travel would be this distance. And what is this 

distance? it is 𝜌 + 𝑟0, is it but this distance is the horizontal distance but our area element is a 

bit shifted it is a annular ring which is away from point O which is sitting at the center therefore, 



the new distance is r and the overall phases therefore would be 𝜔𝑡 − 𝑘(𝜌 + 𝑟), this should be 

the phases of all the wave reaching at point of observation P. 

And this is what is written here, therefore, for all these wavelets arrive at point P with phase 

𝜔𝑡 − 𝑘(𝜌 + 𝑟), where r will vary, if you keep varying the annular ring, r will vary. And the 

amplitude of the primary wave at a distance 𝜌 from S is given by 𝜖0/𝜌, this we have already 

studied because in case of spherical wave the distance comes in the denominator of the 

amplitude. Therefore, we define source strength per unit area here too and the source of strength 

per unit area of the secondary emitters on dS therefore, will be equal to Q 𝜖0/𝜌. 

But 𝜖0/𝜌 is the amplitude of the primary wave which is at a distance 𝜌 from the source, we are 

just modifying this amplitude by some multiplication factor Q and which we do not define at 

this point, we assume that the amplitude of the primary wave would be modified in case of 

secondary emitters. But let us assume that this modification is taken care of by this 

multiplication factor Q, where Q is some constant. 
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Now, we will move ahead with this, the contribution to the optical disturbance at point P from 

the secondary source on dS is therefore, be equal to 𝐾𝜖𝐴/𝑟, 𝜖𝐴 is defined here in equation 

number 3 which is source strength per unit area and then the phase part 𝑐𝑜𝑠(𝜔𝑡 − 𝑘(𝜌 + 𝑟))𝑑𝑆, 

𝜖𝐴 is source of strength per unit area, but for area dS we will have to multiply 𝜖𝐴 with dS to get 

the complete source in strength information. K is obliquity factor here and which dictates the 

variation of dE with 𝜃, because the wave propagate in all possible direction then it decides 

what amplitude goes in which direction therefore, we have multiplied it following Huygens-

Fresnel principle. 

The obliquity factor must vary slowly and may be assumed to be constant over a single Fresnel 

zone, why? Because Fresnel zone is very thin, each Fresnel zone, the Fresnel zone is defined 

by some annular ring and this annular ring, the inner circle is at a distance, say r’ and outer 



circle is that distance 𝑟′ + 𝜆/2  therefore, the effective difference between the 2 distances is 

λ/2. And this says that the width of this ring would be very small and therefore, we may assume 

that θ  does not vary over a single Fresnel zone or over a single annular ring. And if θ does not 

vary, then K also remains constant, therefore, we can assume that obliquity factor Q is almost 

constant, its vary-very slowly. 

Now we calculate the area element, the area element from this figure can easily be calculated. 

The periphery is 2𝜋 r and r is this distance and this distance is nothing but 𝜌𝑠𝑖𝑛𝜑. Once 𝜌𝑠𝑖𝑛𝜑 

is known, then the area would be equal to 2𝜋 r, r is 𝜌𝑠𝑖𝑛𝜑 and then the width of this strip the 

width of this annular region, what would be the width? It would be angle × radius, angle is 

here 𝑑𝜑 and radius is 𝜌. And this is how the area of the annular region is calculated, this is 

what exactly is written here. 𝑑𝜑 × 𝜌 is the width of the annular portion and 2𝜋𝜌𝑠𝑖𝑛𝜑 is the 

periphery of the circle. 

Now with this we will also do some mathematics in this triangle. Now, suppose this is a triangle 

here, as a bigger triangle, say it is A, this is point B and this is point C in triangle ABC let us 

redefine A, let us pick a smaller triangle here now, we pick a triangle which is starting from 

here it goes to point source S and then point P and then coming back to this. The tip of the 

triangle is at the inner circle say this is point A here it is point S and here it is point P. Now in 

triangle ASP, sorry ASP, from triangle ASP using very basic trigonometry you can write 

equation number 6, where r2 which is this AP distance, this is point A, AP is r then this triangle 

r2 would be 𝜌2. 

I will rewrite here, this is A, S, P, this distance is 𝜌 + 𝑟0, this distance is 𝜌, and this distance is 

your r, and this is our 𝜑 angle. Now, in this ASP triangle, we can use basic trigonometry and 

get this relation between all the sides of the triangle, this triangle all the sides are given and one 

angle is given. Therefore, r2 would be 𝜌2 + (𝜌 + 𝑟0)
2 − 2𝜌 (𝜌 + 𝑟0)𝑐𝑜𝑠𝜑. 
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Now, if you differentiate this relation, this equation number 6, if you differentiate it then you 

get this 2𝑟𝑑𝑟 = 2𝜌(𝜌 + 𝑟0)𝑠𝑖𝑛𝜑𝑑𝜑, where 𝑟0 and 𝜌 are held constant because they are fixed 

numbers. Now, from here we can calculate the expression of 𝑑𝜑 and with this 𝑑𝜑 is then 

substituted back in equation number 5 here we will substitute for 𝑑𝜑 which is given in equation 

number 7 and from the using equation 7, equation 5 takes this form, this is from equation 5 and 

we substitute this value of dS in the expression of the field. 

Now, the expression of the field is given here equation number 4. Now the value of dS is 

substituted in equation number 4 and equation number 4 is written for some area element dS. 

Now, we assume this area element as I said before is 𝑙𝑡ℎ zone 𝑙𝑡ℎ Fresnel zone, 𝑙𝑡ℎ half period 

zone. Then to consider all the points sources in this 𝑙𝑡ℎ half period zone, we integrate the 

equation from 𝑟𝑙−1 to 𝑟𝑙, because if this is the half period zone, the shaded region which we are 

considering in our discussion and we named this as a 𝑙𝑡ℎ zone then say this is point of 

observation P then these distances  𝑟0 and this is a 𝑙𝑡ℎ zone, for this distance would be 𝑟0 +

𝜆/2 × (𝑙 − 1) and this distance would be 𝑟0 + 𝜆/2 × 𝑙. And we name these distances as 𝑟𝑙 and 

𝑟𝑙−1. With this, we can safely put these 2 limits in this integral in equation number 9. 

And then after integration we get equation number 10, where 𝑟𝑙−1 as I said before is equal to 

𝑟0 + (𝑙 − 1)𝜆/2 and 𝑟𝑙 is 𝑟0 + 𝑙𝜆/2, which is what I wrote here. Now with this substitution, 

equation number 10 reduces to equation number 11 and here you see that we get (−1)𝑙+1. It 

means if you vary 𝑙, the sign of 𝐸𝑙 also varies, the amplitude of 𝐸𝑙 alternates between positive 

and negative values and it depends whether 𝑙 is odd or even, the rest of the term are shown 

here, 𝐾𝑙 is the obliquity factor for 𝑙𝑡ℎ zone, 𝜖𝐴 source strength per unit area, 𝜌 is the radius of 

the spherical wavefront, 𝜆 is the wavelength, all the things you have already defined here. 
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Now, there are few points which we can draw from this expression. The contributions from the 

adjacent zone are out of phase and tend to cancel, because in equation 11 we see that 𝐸𝑙 

alternates between positive and negative values, if 𝑙 =1, then 𝐸𝑙 is positive, if 𝑙 = 2 then 𝐸𝑙 is 

negative, it means the adjacent zone are 180 degree out of phase therefore, the contribution 

from the adjacent zone are out of phase and tend to cancel and each zones are very thin. 

Therefore, the amplitude of the wave received at point P emitting from point sources sitting on 

these zones, they are almost equal but opposite in sign therefore, they cancel each other, but 

they do not cancel perfectly, why? Because as you increase 𝑙, the angle 𝜃 increases and 

therefore, the obliquity factor K it decreases. 



Therefore, the obliquity factor makes a crucial difference, as 𝑙 increases, 𝜃 increases and K 

decreases, because 𝐾 = (1 + 𝑐𝑜𝑠𝜃)/2. Therefore, with increasing 𝜃, K decreases therefore, 

the contribution from each zone as you move up as you go increase 𝑙 it successively reduces 

and therefore, the successive contribution do not in fact, completely cancel each other. The 

contributions weaken as you go up as you increase 𝑙, but this ratio 𝐸𝑙/𝐾𝑙 is independent of any 

position variables, why? Because, although the areas of each zone are almost equal, they do 

increase slightly as 𝑙 increases. 

Because if you increase 𝑙 then the radius of these zone would be larger, it is a 𝜌𝑠𝑖𝑛𝜃 and the 

radius of these zone are 𝜌𝑠𝑖𝑛𝜃, we define these zones like this. And this distance was 𝜌 and 

this was 𝜑 then the radius of zone is 𝜌𝑠𝑖𝑛𝜑 or if you talk in terms of 𝜃 then too this radius is 

increasing. Therefore, as you increase 𝑙, the area of these zones slightly increases and since the 

area of these zones are increasing, the number of emitters which are sitting on a particular zone 

it also increases with 𝑙. 

I repeat although the area of each zone are almost equal, they do increase slightly as 𝑙 increases, 

which means an increased number of emitters, but the average distance from each zone to P 

also increases, because as you increase this ring radius, this distance also increases, the distance 

from the point of observation P and this increase is such that 𝐸𝑙/𝐾𝑙 remains constant. Number 

of emitters are increasing therefore, 𝐸𝑙 should increase, but alongside θ is also increasing 

therefore, 𝐸𝑙/𝐾𝑙 remains constant. 
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Now, once we have calculated the disturbance at point of observation P due to some arbitrary 

annular ring and then we can calculate the total contribution at the point of observation P and 

this total contribution comes from all the annular rings, from all the zone plates. Now, since 

we have done it for lth zone, we can vary l and then we will get from first zone and second zone 

and then third zone and then the last zone, the mth zone, we named the last known as mth zone. 

Now this is the wavefront which was emitted by point source S, this is how we splitted the 

zone, this is your first zone, this is second zone, this is third zone, this is fourth zone, and at the 

center here there is a point O. 

Similarly, if you keep increasing then these zones will also be here too. And say this point is 

named as 𝑂′ and this is our last zone our mth zone, this is your (m - 1)th zone and so on, this is 

how the number decreases here and it is increasing in this direction, the point source is here. 

And these zones are very thin, then we calculate the contribution from each zone and sum them 

up and this would be the resultant optical disturbance at point of observation P. 

We also know that in the expression of 𝐸𝑙 in this equation number 11 you see that amplitude 

of 𝐸𝑙 alternates between positive and negative value. Therefore, we will also enjoy this 

knowledge and we will implement it in equation number 12 and therefore, the 12 modifies to 

13 which now have alternates signed before all field contributions, all disturbance contribution 

even as positive value to its negative, either it is positive or is negative and so on and so forth. 

But we do not know whether the number of zones, the total number of zone is even or odd 

therefore, we put both plus and minus here it is not decided yet. But now, let us consider a case 

when m, the total number of zone is odd. Now, this series which is given in equation number 

13, this series can be arranged in two ways. 
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Now, the first way is 𝐸 = 𝐸1/2, like what we did is that we were having 𝐸1 and then 𝐸2, this 

is how the things were written in equation number 13. But here what we do is that, we just split 

E in two parts, we write as sorry it is 𝐸1, 𝐸1/2 and 𝐸1/2. Similarly, 𝐸2 and for 𝐸2 we just write 

𝐸2 we do not split it, but for 𝐸3 we again perform this splitting and we write it like this. 

Now, we have one term here in this bracket in which we have contribution from first zone, 

contribution from third zone as well as the contribution from the second zone, the full 

contribution of second zone E is embedded here in this middle term, but the contribution from 

the first and third of zone is considered partially here because you are seeing that in the 

denominator we have a term 2, it means half of the contribution from the first zone and half of 



the contribution from the third zone is there within this bracketed term and this is performed 

for all the coming terms. 

Now, if you write this equation number 13 in this form, then you get first term here in the 

bracket, the half of the first term, the second term and half of the third, similarly this bracket, 

this bracket. And since the number of term we assumed as odd, it means we will be left with 

𝐸𝑚/2, |𝐸𝑚|/2 here, since the number of term is odd, you see that first term is splitted in two, 

the second term is left as it is, third term is splitted in two, therefore the last term would again 

be splitted in two, all terms are splitted in two, therefore last term will be again splitted in two, 

and we will have this bracketed terms before the last term. 

Now alternatively we can also write it this way, the field E is first term and now split the second 

term and perform the same things with a second, third and fourth term and then proceed in a 

similar manner. In this case, the last term would not be splitted because here the odd terms 

remain as it is therefore, 𝐸𝑚 is kept as it is, it is not splitted because the number of terms in this 

series is assumed to be odd. 
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Now, with this again there are two possibilities, with either of the last two series there are two 

possibilities. Either 𝐸l a particular field is greater than the arithmetic mean of its two nearest 

neighbour that are 𝐸𝑙−1 and 𝐸𝑙+1 or it is less than that mean. It means to say is that either 𝐸l 

would be larger than the mean of 𝐸𝑙−1 and 𝐸𝑙+1 or it would be smaller than mean of 𝐸𝑙−1 and 

𝐸𝑙+1. If 𝐸𝑙 is larger than the mean of 𝐸𝑙−1 and 𝐸𝑙+1 in that particular case each bracketed term 

is negative. 

Let us go back into equation number 14, let us look particularly in this term. Here we assume 

that 𝐸2 is larger than the average of 𝐸1 and 𝐸3, if 𝐸2 is larger then each bracketed term here 

will produce a negative quantity, this would again be a negative quantity, similarly the last 

bracket will also be a negative quantity. Therefore, the resultant disturbance at P would be 

smaller than this term plus this term because all the terms are bracketed these are only the two 

free terms, the first one and last one. And since we are in equation 14 in terms 𝐸1/2 and 𝐸𝑚/2 

we are only adding some negative terms, since all the bracketed terms are negative because we 

have assumed that 𝐸𝑙 is larger than the average of the two therefore, E from equation number 

14 it would be less than 𝐸1/2 + 𝐸𝑚/2. 

I repeat we have a series where this is the first term and this is the last term and in this series 

apart from these 2 terms we have lot many negative terms. And once these negative terms or 

these terms are subtracted from this first and last term we get E therefore, E must be smaller 

than 𝐸1/2 + 𝐸𝑚/2 and this is what is written here. If you do not add those negative term then 

E will be smaller than 𝐸1/2 + 𝐸𝑚/2. 
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Similarly, from equation number 15, let us go to equation number 15. Now, now, we have 

assumed that the middle term is larger than the rest of the two in all the bracketed term. 

Therefore, here we get again negative term, this bracket term will also give a negative term, 

this bracketed term will also be a negative term, all these terms are negative, but before all 

these negative term we have minus sign therefore, all these bracketed term would be positive. 

Now, what are the free terms in the equation number 15 which do not have any bracket 

|𝐸1|, −|𝐸2|/2, −|𝐸𝑚−1|/2 and |𝐸𝑚|, these four terms they do not have any bracket and all these 

bracketed term are positive. 

Now, if you develop a relation between or equality between E the total resultant field and these 

four terms which do not have any bracket then we will get this relation, E is larger than |𝐸1| 



−|𝐸2|/2 − |𝐸𝑚−1|/2 + |𝐸𝑚|, why? Because from the right hand side, we have removed some 

positive term and therefore, E must be larger than these term. Had we have added those positive 

terms E would have been equal to this plus those positive term but since those positive terms 

are gone, we have removed them therefore, E must be larger than these terms. 

Once these things are understood, then we can proceed further and we know that the obliquity 

factor, the maximum value of obliquity factor is 1 and the minimum value is 0 and this obliquity 

factor goes from 1 to 0 over a large angle, when angle 𝜃 = 0 we have K=1 and when 𝜃 is very 

large then we get K=0, it means that obliquity factor goes from 0 to 1 over a great many zone, 

we have to consider very large number of zones for this to realise this change in K obliquity 

factor, therefore, we can neglect any variation between adjacent zones. 

It means that since the two adjacent zone area is almost same therefore, we can assume the 

adjacent zone they contribute equally at the point of observation P. And therefore, we can 

roughly assume that |𝐸1| ≈ |𝐸2| or |𝐸𝑚−1| ≈ |𝐸𝑚|. With this, this equation it reduces to 

question number 19, because now we assume that |𝐸1| = |𝐸2| then from here we will get 

|𝐸1|/2. Similarly, from here we will get |𝐸𝑚|/2 and with this we get a modified version of 

equation number 18 which is equation number 19 which says is larger than |𝐸1|/2 + |𝐸𝑚|/2. 
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Similarly, we can conclude from equation 17 and 19, 17 is here and 19 is here. Now you will 

see that once E is less than |𝐸1|/2 + |𝐸𝑚|/2 and once it is larger than |𝐸1|/2 + |𝐸𝑚|/2 with 

those 2 equations, we can conclude that E is almost equal to |𝐸1|/2 + |𝐸𝑚|/2. Now, for 

arriving at equation number 20, we have assumed that field due to the lth zone is larger than the 

average of fields due to the adjacent zone. 

Now we assume opposite if the field reaching at point P is smaller than the average of the 

adjacent zone. In this in this case too if we follow the same procedure and if the last term m is 

even in equation number 13, equation number 13 is this our main equation, this is equation 

number 13. Now, if we assume that m is even and then follow the same procedure, then we get 

this. I repeat from equation 17 and 19 we get this relation and the same result would be obtained 

when we assume that contribution from lth zone is less than the average of the adjacent zone, 

then too we get the same result. 

And on top of this, if we consider our second case, wherein m is even then from equation 

number 13, after repeating all the procedures, which we did in our last few slides, we get 

equation number 22. Therefore, equation number 20 and equation number 22 are our final 

results when m is odd and when m is even respectively, this is for m even and this is for m odd. 

Let us now talk about obliquity factor and its role in deciding the final expression of the 

resultant field due to all the half period zone at point of observation P. 
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Now, Fresnel conjectured that the obliquity factor was such that the last contributing zone 

occurred at 𝜃 = 90 degree, it started with 𝜃 = 0 and we assumed that when 𝜃 = 90 degree the 

last zone appear and therefore for 𝜃 = 90 the K becomes 0, for K to be 0 𝜃 should be between 

or equal to 𝜋/2 and 𝜋, this is the range for the 𝜃 which was given for K to be 0. With this 

equation number 20 and 22 which is here they both reduces to E almost equal to |𝐸1|/2 we can 

neglect this, this reaches to 0. 

Why? Because this is the last half period zone and for this 𝜃 is between this range for 𝐸𝑚 𝜃 

lies between 𝜋/2 and 𝜋 and therefore, the obliquity factor goes to 0 which is a multiplication 

factor in the expression of 𝐸𝑚 and therefore, 𝐸𝑚 goes to 0 and this is what exactly is written 

here, when |𝐸1| goes to 0 because of 𝐾𝑚 (𝜋/2) = 0 when this happens then 𝐸 = |𝐸1|/2, but 

Kirchhoff’s corrected the expression of obliquity factor, he said that obliquity factor goes to 0 



when 𝜃 = 𝜋. And when will 𝜃 = 𝜋? 𝜃 = 𝜋 for the last half period zone, which is this zone and 

for this zone you can easily see that 𝜃 = 𝜋 it would be nearer to 𝜋, the last period zone will 

contain 𝑂′, which is diagonally opposite to O. 

With this let us again see equation number 20 and 22. Now, alternatively using Kirchhoff’s 

correct obliquity factor for the last zone surrounding 𝑂′, 𝜃 approaches to 𝜋 and with 𝜃 𝜋/2 this 

expression of obliquity factor which is (1 + 𝑐𝑜𝑠𝜃)/2 it again goes to 0 for 𝜃 = 𝜋 . It means 

|𝐸𝑚| = 0 either you apply Huygens-Fresnel principle or the Kirchhoff’s modification. Then 

the final resultant disturbance and at the point of observation P is therefore equal to |𝐸1|/2. 
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Now, we see that we have a point source which emits a spherical wavefront and then we splitted 

this spherical wavefront in large number of annular ring, we calculated the contribution from 

all the rings at the point of observation P. And what we found is that the total contribution at 

point of observation P is half of the contribution of the first annular ring or the first half period 

zone. Thus, the optical disturbance generated by the entire unobstructed wavefront is 

approximately equal to one half the contribution from the first zone, rest got cancelled among 

themselves, the phases is such that rest do not contribute. 

Now, this is a quite cumbersome complicated analysis, but effectively what we did is that we 

considered a point source and we considered a point of observation P and we will let the wave 

propagate from this point source to the point of observation P and then following this analysis, 

we calculated the field at point P, but there is a very straightforward way of calculating the 

field, we know what would be the field at point of observation P from a point source S which 



is separated by certain distance and what is this traditional way? This is this expression, the 

amplitude by the radial distance into phase part 𝑐𝑜𝑠[𝜔𝑡 − 𝑘(𝜌 + 𝑟0)], because effectively we 

have a source and we have a point of observation and this spherical wavefront is start from a 

point source and this distance is 𝜌 + 𝑟0, 𝜌 is the radius of this wavefront and 𝑟0 is this distance. 

Now the total distance is 𝜌 + 𝑟0 then if you are asked to calculate the field at a point P which 

is at a 𝜌 + 𝑟0 distance use the simple formulation E would be equal to amplitude by radial 

distance into cosine function and then the phase part 𝜔𝑡 − 𝑘(𝜌 + 𝑟0), this is the expression 

which we have used multiple times. Now, this equation number 24 must be equal to the 

expression which we calculated which we derived using Fresnel half period zone but half this 

from Fresnel half period zone we know that the resultant E would be 𝐸1/2. 
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What is 𝐸1 then, the 𝐸1 is given here, let us go to equation number 23 this is the final expression 

from half period zone calculation. 𝐸 = 𝐸1/2 and what is 𝐸1? To have an expression of 𝐸1 let 

us go back to the general expression of 𝐸𝑙, this is equation number 11 is the expression here in 

we will just replace 𝑙 by 1 in place of 𝑙 we will write 1 and then we will write rest of the term 

on the right hand side and this will give the expression of 𝐸1 and then we will half this 

expression we will just divide it by 2 and this will give us the resultant field at a point of 

observation P. 
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Let us do this and after doing this we get this expression. The disturbance synthesised from 

secondary wavelets, equation 11 and equation 23 is this equation number 25, equation 23 is the 

expression of 𝐸𝑙 and equation 11 is equal to almost equal to |𝐸1|/2 and with these two equation 



we can get equation number 25 very easily. Now this equation number 25 must be identical 

with equation number 24 but let us compare now, we will compare these 2 equations must 

however be exactly equivalent because they are saying the same thing and we interpret the 

constant in equation number 25 to make them so. 

If you remember while introducing the strength of the source per unit area we introduced some 

constant Q which is unknown and K is also there, it is 𝐾1. 𝐾1 is also here and we will also 

calculate the value of K here by just by comparing equation number 24 and 25, let us compare 

them. Let us compare the amplitude part here amplitude is 𝜖0/(𝜌 + 𝑟0) and here amplitude is 

𝐾1𝜖𝐴𝜌𝜆/(𝜌 + 𝑟0). Let compare them with this, sorry it is 𝑟0, 𝜖0 this is the amplitude here. Now, 

this amplitude must be equal to the amplitude of equation number 24. 

Now, since we are talking about the first half period zone, for first half period zone you know 

the angle is very small, it is very close to 0 therefore, we prefer to have obliquity factor equal 

to 1 in the forward direction and that is 𝐾1 would of course be equal to 1. If we put 𝐾1 = 1/𝜆 

then this 𝜆 will go with K and we would be close to the amplitude part of equation number 24, 

but we know that we are talking about 𝐸1/2 and for 𝐸1, 𝜃 is very small therefore, 𝐾1 = 1, we 

cannot put 𝐾1 = 1/𝜆 just to adhere with this equivalence. 

From which it follows that the  𝑄 = 1/𝜆 , why? Because when 𝐾1 = 1 then what we are left 

with is this term, this must be equal to 𝜖0 but what is 𝜖𝐴, 𝜖𝐴 = 𝑄𝜖0 and it was equal to 𝜌 here 

in the denominator and then 𝜌𝜆, this must be equal to 𝜖0. Then from here 𝜌 will go away,  𝜖0 

will go away and from here  𝑄 = 1/𝜆. 

Therefore, if we want to adhere with this equivalence if we want the two expression 24 and 25 

to exactly say the same thing then 𝑄 = 1/𝜆 and this is how we decided the unknown constant 

Q, we initially assumed that there is some constant Q which appear in the sources strength now, 

its values decided with the with this equivalence here and 𝑄 = 1/𝜆, Q is now no more unknown 

coefficients or unknown constant this is the first point which came out of this comparison. 
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What is second point? Now 𝜖𝐴𝜌𝜆 this must be equal to 𝜖0 this is what is written 𝜖𝐴𝜌𝜆 this must 

be equal to 𝜖0. Keep in mind that 𝜖𝐴 is the secondary wavelet source is strength per unit area 

over the primary wavefront of radius 𝜌. 𝜖𝐴 is secondary wavelet sources strength per unit area 

over the primary wavefront of radius 𝜌 and 𝜖0/𝜌 is the amplitude of the primary wave 𝐸0(𝜌) 

therefore, the source of strength per unit area 𝜖𝐴 would be 𝐸0(𝜌)/𝜆 which is again very much 

clear, this came from this relation directly. 

𝜖𝐴 = 𝜖0/𝜌𝜆 and we know that 𝜖0/𝜌 = 𝐸0(𝜌) and with this replacement we get 𝜖𝐴 = 𝐸0(𝜌)/𝜆 

. Once we have equated the amplitude part, let us go to the phase part. Now, let us go again to 

equation number 24 and 25, in equation number 24 we have 𝑐𝑜𝑠(𝜔𝑡 − 𝑘(𝜌 + 𝑟0)), while in 

equation number 25 we have 𝑠𝑖𝑛(𝜔𝑡 − 𝑘(𝜌 + 𝑟0)). In equation number 24 we have cosine 

term while in equation number 25 we have sine term. 

𝜋/2 phase difference therefore, is there and this 𝜋/2 phase difference between equation 

number 24 and 25 can be accounted for if we are willing to assume that the secondary source 

radiates one quarter of a wavelength out of phase with the primary wave, there is something 

which is very new. Here what is being introduced is that secondary wave source or secondary 

wavelets are out of phase with the primary one by 𝜋/2 angle, there is a phase difference 

between the primary and secondary radiations. If we assume that this is correct, then only 

equation number 24 and 25 they say the same thing then only they will be exactly equivalent. 

I will talk more on this phase difference between primary and secondary source in coming 

lecture, but right now, we will just assume that this is so and if we assume this then we see that 

this equivalence is correct, the equation 24 and 25, they are exactly equivalent and they are 



same and everything is well justified, all the analysis what we did using this secondary wavelet 

theory it is correct till now. This is the first introductory lecture on Fresnel diffraction and the 

mathematics which be developed it would be used throughout in understanding the diffracting 

element in Fresnel zone domain. With this I end my lecture, and thank you for joining me, see 

you all in the next class. 

 


