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Single Slit Diffraction 

Hello everyone, welcome to the class. Today we will proceed ahead of what we started in our 

last class. In the last class we talked about Fraunhofer diffraction and therein we calculated the 

total field at a point of observation due to a line charge distribution, therein we considered very 

large number of point oscillators, and due to those oscillators we calculated the resultant field 

at a point of observation.  
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Today we will start single slit diffraction. And here we will calculate the irradiance pattern on 

the screen obtained due to single slit.  
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Now to start with we will consider the same figure, which we talked about in the last class. 

And we again have this line charge distribution or line oscillator distribution. And the length 

of this line oscillator is D. And in this length, we pick a particular section of length ∆𝑦𝑖, this 

array of oscillator is centered at the origin of the coordinate system where 𝑥 axis is pointing in 

this direction, y is pointing vertically up, while the z axis is coming out of the plane of the 

paper.  

The point of observation is P which is at a distance R from the origin and from this section𝑦𝑖, 

this length element 𝑦𝑖, the distance of point of observation P is 𝑟𝑖. Now since, we are in the 

Fraunhofer regime. Let me make it very clear that the derivation, which we did in the last class 



is a generalized derivation which is valid for both Fraunhofer and Fresnel because the r term 

the small r which is a function of y, there no approximation or no restrictions has been imposed 

on that.  

Now, we will impose the restriction of Fraunhofer diffraction and what is this restriction this 

restriction is that R is much-much larger than D. It means the point of observation is very far 

away and the length of this oscillator, the array of oscillator is very small as compared to R, 

the distance between the line oscillator array and the point of observation P.  

Under these circumstances r (y) which is appearing in the last expression which we derived in 

the last class, in the denominator of the amplitude as well as in the phase part, it never deviates 

appreciably from its midpoint value R. Because R which is a function of y is the distance of 

this oscillator from the point of observation P.  

But if the length of this point oscillator array is very small as compared to the distance from 

the point of observation then r is almost fixed, it will not vary. And let us assume this fixed 

value of r is equal to R which is the distance of point of observation from the midpoint of the 

line oscillator array.  

Now, therefore the amplitude which is 𝜖𝐿/𝑅 will be fixed. Initially in the expression which we 

derived in the last class it was this, but now today under Fraunhofer approximation we will 

replace it with 𝜖𝐿/𝑅. This is the transition which we are making in the Fraunhofer domain.  

And therefore, this amplitude of the field would be constant and this field is due to the all 

oscillators in the length element dy. Now the expression of this field at point P due to 

differential segment of source dy is therefore dE is equal to 𝜖𝐿/𝑅 which is the amplitude and 

this is the phase part 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑟) and dy also contribute to the amplitude. These two terms is 

the amplitude and which is written here, (𝜖𝐿/𝑅)𝑑𝑦 is the amplitude of the wave.  

Now, you notice that the r which earlier was appearing in the denominator of the amplitude is 

replaced by R but the r which is appearing in the phase term here is untouched. We are not 

touching r from the phase. Why? Because phase is more sensitive quantity, with r in the phase 

we are multiplying k which is 2𝜋/𝜆, 𝜆  is a very small quantity which is sitting in the 

denominator.  

Therefore, this phase become very sensitive and this is what is written here, notice that the 

phase is much more sensitive to variations in r (y) than is the amplitude so that we will have to 

be more careful about introducing this approximation into it. And therefore, we did not replace  



r in phase with R. This replacement is done only in the amplitude part. The  r is sitting as it is 

in the phase part.  

Since, r is function of y we can expand r (y) to make it explicit function of y and this expansion 

would be in this form. How? How can we get this expression? Now let us go back. Now you 

see that we have a length element and 𝑟𝑖 is the distance of this length element from the point of 

observation P or point of observation P is 𝑟𝑖 distance away from this length element ∆𝑦𝑖.  
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But let us go to a generalized case, suppose we have two point sources, one is 𝑆1, other is 𝑆2 

means which are separated by a distance a and the point of observation P is sitting here and the 

distance between 𝑆2 and the point of observation is 𝑟2 while the distance between 𝑆1 and point 



of observation P is 𝑟1. Now in this case, if we drop a perpendicular from 𝑆2 to 𝑆1𝑃  then this 

would be the your optical path length difference OPD.  

Now this angle, if we draw a horizontal line then this angle will also be equal to angle θ, which 

is angle here. Now in triangle 𝑆2𝑃𝑆1, we can do the following we will use the very basic 

trigonometry and we can write that 𝑟2
2 = 𝑟1

2 + 𝑎2 − 2𝑎𝑟1𝑠𝑖𝑛𝜃, very basic trigonometry. And 

this relation can be rewritten as follows, we take 𝑟1 common from the right hand side and then 

divide it to the left hand side we are taking 𝑟1 common from the right hand side and then the 

bringing it to the denominator of the left hand side.  

And therefore, the relation on the right hand side reduces to this expression,   𝑎/𝑟1 whole square 

to the power half. Now what we will do is that, we will expand this in McLaurin series. 

Therefore, McLaurin series expansion yields 𝑟2 = 𝑟1 − 𝑎𝑠𝑖𝑛𝜃 + (𝑎2/2𝑟1)𝑐𝑜𝑠2𝜃, this is what 

we get. Now if you consider the Fraunhofer diffraction, in Fraunhofer domain, in Fraunhofer 

domain what will happen we know that this conditions prevail, under this condition 𝑟1 − 𝑟2 =

𝑎𝑠𝑖𝑛𝜃 this we know.  

But let us go back to our previous relation this equation number 22. Now just compare this 

equation number 22 with this equation derived, they are the same relation, the 22 is nothing 

but this relation which we derived. Now we have R, instead of R we are having 𝑟1, 𝑎𝑠𝑖𝑛𝜃, now 

instead of 𝑎𝑠𝑖𝑛𝜃 we are having 𝑦𝑠𝑖𝑛𝜃, a is replaced with y, similarly 𝑦2/2𝑅 is here in the third 

term and same thing is here too. And some additional terms are also there but they would be 

very small therefore we have neglected them.  
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Now in this expression 22 where θ is measured from the 𝑥𝑧 plane and 𝑥𝑧 plane is this plane. z 

is coming out of the paper and x is in the plane of the paper and therefore 𝑥𝑧 plane is a plane 

which is coming out of the plane of the paper and is perpendicular to the plane of the paper. 

And therefore, this is the array of line of this point oscillators, and y is also pointing in this 

direction, and 𝑥𝑧 plane is a plane which is perpendicular to the length of this array of point 

oscillator, and all the angles are measured with respect to this horizontal plane.  

It means angles are measured like this up and for downward angle it is measured like this. 

Every angle is measured with this horizontal plane, which is coming out of the plane of the 

paper in this figure 11. Therefore, make it a point that θ is measured from the 𝑥𝑧 plane and the 

third term can be ignored as long as it contributes to its contribution to the phase is insignificant.  

This term can be neglected. Why? Because we know y which is nothing but it represents the 

extension of this line oscillator and we know that the D, the total length of this line oscillator, 

is very small as compared to R. Therefore, this term can safely be neglected, the third term. 

And if you neglect the third term because the maximum value of y is ±𝐷/2 and which is this. 

And D is much much smaller than r therefore D2  would be even more smaller than R.  

And therefore, this third term can be neglected. Here in this case, I have multiplied this third 

term with a phase and therefore it gives, with a k, therefore this term gives phase. So, we can 

see here that this term is very small therefore we neglected and this will be true for all values 

of θ when R is adequately large. This sentence says that when we are in the Fraunhofer domain 

and when the observation screen is very far then irrespective of the value of the θ the third term 



wouldn’t contribute and it will not contribute anything to the resultant field and therefore it can 

safely be neglected.  

And therefore, the resultant expression of r which we get is 𝑅 − 𝑦𝑠𝑖𝑛𝜃 then let us substitute 

this expression of r into equation 21 here. After the substitution, we get this relation. But apart 

from substituting the expression of r into equation 21 here, we have also integrated it within 

the limit -D/2 to +D/2 to have the total field distribution at the point of observation P due to all 

the small length segments.  

And it is integrated over dy, it means that we are taking into account all the small length 

segment along the length of this point oscillator, this array of point oscillator. Now we will 

have to just solve this integration to have the final value of the resultant disturbance at the point 

of observation P, a resultant field at the point of observation P.  
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Now we solve this integration this is very easy integration and this will give this expression of 

the field. Now you see that equation number 24 looks very cumbersome but this term is 

common both in the numerator and the denominator. Therefore, just to simplify the appearance 

let us introduce a new parameter which we name as 𝛽 and 𝛽 =(kD/2) sinθ. Once we replace 

(kD/2) sinθ by 𝛽/ in equation number 24, we get equation number 26. Now you its equation 

number 26 looks a bit simpler.  
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Now once the field is known we can also calculate the irradiance. And we know how to 

calculate it, then this is the expression of the irradiance, here we see that this term is gone 

because it is a phase part and this will contribute to half only, and this contribution is looking 

here, and this is the amplitude part which is squared and this is also the amplitude part which 

is (𝑠𝑖𝑛𝛽/𝛽)2.  

Now, what would be the intensity when 𝜃 is equal to 0. Now when 𝜃 is equal to 0 this term 

which is also called sinc function, 𝑠𝑖𝑛𝜃/𝜃 is also called sinc𝜃  and this term which we call sinc 

function its value is equal to 1 when 𝜃 is equal to 0. Because we know 𝛽 = (kD/2) sin𝜃 and 

when 𝜃 is equal to 0 we will have 0 by 0 and once you evaluate it then you will get 1. In this 



situation I (𝜃) would be equal to I (0) which correspond to principle maximum, at the axis the 

principle maximum irradiance would be equal to I (0).  
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Now the irradiance resulting from an idealized coherent line source in the Fraunhofer 

approximation is therefore given by this expression. Where I (0) is this, this is very much clear 

from equation number 27. Because when you substitute (𝑠𝑖𝑛𝛽/𝛽)2 by 1, then what is left is 

this term, and this is your I (0), the irradiance of principle maxima.  

And therefore, the resultant irradiance is given by equation number 29 which is I (𝜃) is equal 

to I (0) 𝑠𝑖𝑛2𝛽/𝛽2  where 𝛽 = (𝜋𝐷/𝜆) 𝑠𝑖𝑛𝜃 which initially was k D/2 sin𝜃 and k is 2𝜋/𝜆. Now 

when D is much-much larger than 𝜆, it means we have a array of point sources and whose 

length is D and if this point sources emit light whose wavelength is much-much smaller than 

D then you see that the irradiance drops extremely rapidly as 𝜃 deviate from 0.  

When D is much-much larger than 𝜆a then this term would be very large, D/ 𝜆 would be very 

large. And the (𝑠𝑖𝑛𝛽/𝛽)2 would behave in such a way that as soon as the 𝜃 deviates from 0 it 

drops off rapidly. And now from equation 26, you see, this is your equation number 26 which 

is the expression for the field the phase part of the line source is equivalent to that of a point 

source located at the center of the array at a distance R from P.  

Now you see here in this phase part we have 𝜔𝑡 − 𝑘𝑟, this is a constant R. And what is R? And 

this R is this distance and this is +D/2, this is -D/2, origin is situated here, it means R is the 

distance of center point oscillator of this array. It means in phase term only this center of the 

array is appearing.  
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And therefore, when D is much larger than λ, then radiation will predominantly be in θ is equal 

to 0 direction. And emission resembles a circular wave in 𝑥𝑧 plane. Let me explain it in with 

detail. Now this is our 𝑥 direction and this is our z direction, y is pointing up. And this is our 

array of point oscillator and θ is being measured from 𝑥𝑧 plane, 𝑥𝑧 plane is this plane.  

There are two things, which we must keep into account, the first thing that the case which we 

are considering here is D is much larger than λ, wavelength is very small as compared to the 

length extent of the array. In this case, since wavelength is very small D/ λ would be very large. 

Now as long as θ is equal to 0, we are having 0 by 0, and we have some appreciable value of 

intensity but as soon as we deviate from θ, the sinc function will reduce down to 0, almost 0.  

It means, if you plot the intensity here and θ in this direction, in this horizontal direction then 

as long as θ is 0, you have appreciable intensity and then it is rapidly decaying down its going 

down to 0. And also make it a point θ is being measured from 𝑥𝑧 plane. This is our 𝑥𝑧 plane 

and this is how we are measuring the θ, the only dominant intensity is only appearing when θ 

is equal to 0, this angle is 0.  

It means we have a line charge distribution which is dominantly emitting in this horizontal 

plane only. And as soon as we either go up or down, the intensity quickly goes down to 0. It 

means we will see a circular wave front coming out of this array of point oscillators, closely 

spaced array of point oscillators.  

Therefore, what we will see is that around this array of point oscillator, we will see a circular 

wave front. And also, if you go to equation number 26 then you see that the phase part, from 

the phase part we can just predict that it resembles to a phase which have its origin to a point 

oscillator which is sitting at the origin at the center of the array of point oscillator.  

It means that the whole array will emit in a circle and the phase behaves in a way that gives us  

a feeling that all the emissions are coming from a point source which is at the center of this 

array. And all the emissions are in a form that generates a circular wave front or circular wave.  

It means all this point array will only emit in one plane in R direction the emission would be 

confined in one plane which is our 𝑧𝑥 plane. I repeat the emission is confined in a in 𝑧𝑥 plane 

only, it is a line charger the line charge is supposed to emit circular wave front but in through 

our calculation, we came to know that in case when D is much-much larger than λ whole line 

charge will emit in a way that gives us the feeling that whole line charge had has reduced down 

to a point charge and this special point charge is emitting circular wave.  



But conventionally we know that points charge emit a spherical waveform but no, it is not a 

spherical wavefront it is a circular wave is being emitted, this specialized point charge. In case 

when D is much larger than λ. Now let us go to the other extremity where λ is larger than D, 

where wavelength is very large as compared to the length extent of the point oscillator array.  

In this case, what will happen? In this case, let us go back to the expression of 𝛽, 𝛽 =

(𝜋𝐷/𝜆)𝑠𝑖𝑛𝜃. Now since 𝜆 is very large, D/λ would be very small. And this will give very small 

 𝛽 and if 𝛽 is very small then 𝑠𝑖𝑛𝛽 = 𝛽. And in this case I(𝜃) = I(0).  

It means the irradiance is then constant for all θ irrespective of the value of θ the irradiance 

would be equal to I(0), which is a constant. Now in this particular case, our line charge will 

again resemble to a point source which is again sitting at the center and which is now emitting 

a spherical wavefront.  

It is now whole line source will now resemble to a point source which is emitting a spherical 

wavefront. Now in all directions because I(𝜃) is now a constant the irrespective value of the θ, 

irrespective of θ, θ is this angle, irrespective of θ, it will emit the same irradiance. And 

therefore, spherical waves would be emitted.  

Therefore, we can safely say that in both the cases when λ is very large or when D is very large, 

we can anyway replace the line source to a point source. In one extremity when D is much-

much larger than λ, a specialized kind of spherical sorry circular wave will be emitted. While 

when λ is much-much larger than D a spherical wave front would be emitted, spherical wave 

would be limit emitted which is very much true also.  

Because whenever we say there is a point charge which is emitting spherical wave. And what 

is a point charge? How the point is defined? A point is defined as 0 dimensional entity it has 

neither length not width nor height it is a 0 dimensional entity which is much-much smaller 

than any wavelength which we consider because wavelength has a certain nonzero extent, its 

wavelength is always finite but a point has no dimension, it is a zero dimensional entity. 

Therefore, the second case correspond to the usual point sources, which usually emit a spherical 

wavefront which is also coming out to be true through this analysis.  

While in the other case, when wavelength is very-very small as compared to the length extent 

of the line source, then in that case we get some special kind of wave emission which we name 

as at circular wave which remains confined in this horizontal plane 𝑥𝑧 plane. And the lines 



source is in this direction so vertically up and down, here it is in vertical direction. Now we can 

move to the realistic case of single slit.  

Till now, we were considering a line source which have some finite length but width is 0 but 

in real situation, in realistic scenario, all single slits have certain width. The realistic single slit 

has length as well as some nonzero width. Now how to deal with this type of slits? How to 

mathematically calculate or mathematically model such a system?  
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Now the realistic single slit, we name it as elongated narrow rectangular hole. We name it as 

elongated narrow rectangular hole. Now we will follow the same analysis, what we did in the 

in the previous slides. Now how to use that previous analysis, now suppose we have this slit, 

now this slit has now certain width and let us assume it is b and it has certain length and let us 

assume that it is l.  

Now what we will do is that we will split this slit into a very thin smaller slits. Now we are 

splitting it into thinner slits and say the thickness of this individual slit is dz, the large number 

of smaller slits will appear out of this broad slit. Now if we do this then for each smaller width 

slit, we can use our previous analysis, previous formulation. Now let us see, how it is done.  

The usual procedure to follow in the analysis is to divide the slit into a series of long differential 

strips here. How to divide its dz/l, dz is the width and l is the length. We are dividing all this, 

the usual slit, into a smaller width slit with the same length. Now we can take out all these 

smaller width slit out of this and then analyze all these slits independently. Now each strip is a 

long coherent line source since the thickness is very small then we can use our previous 

analysis.  

Because then thickness can now be neglected, it is now a line source. It corresponds to a line 

source, so therefore each strip is a long coherent line source and can therefore be replaced by 

point emitter on the z axis here. Now axis’s are shown in this figure, this is our 𝑥 axis, the 

vertical axis is y axis and z axis is this, this come again coming out of the plane of the paper, 



the slit is in y z plane and the wave is propagating in 𝑥 direction, 𝑥 direction is perpendicular 

to the plane of the slit. 

Now you see that you have a source here, it is emitting spherical wave front then we use a lens 

to make these beams parallel and then they fall on the slit and then they go in different direction 

due to diffraction and then another lens is used to focus them on a screen. And this is the fringe 

pattern which we usually see. Why do we see this type of fringe pattern? We will see in next 

few slides. 
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Each such emitter, which emitter? This line strips, this small strips which we have taken out of 

this very wide single slit is that each such emitter radiates a circular wave in 𝑥𝑧 plane. Why 

would it radiate circular wave? Because if you remember when D was much-much larger than 



λ then this slit behaves, this line source, behave as a point which is centered at the center and 

is emitting a circular wave.  

And this is the case wavelength is much-much smaller than the length of the slit. And here in 

this particular case in the present example D is l, l is the length of the slit. Then we are taking 

a slit of width, infinite decimal width dz and length l. Therefore, in this case l is much-much 

larger than λ. λ is very small quantity, the wavelength is very small. Therefore, each such 

emitter or each such strip will radiate a circular wave in 𝑥𝑧 plane.  

Similar, to what we observed, in the previous analysis. Now there are an array of such strips, 

array of such emitter then each emitter will emit its own circular wave. Therefore, there will 

thus be a very little diffraction parallel to the edge of the slit. And since we know that the 

circular wave means every emission is appearing in θ is equal to 0 direction, as you move up 

or down, as you increase θ, the radiation irradiance drops down very rapidly. 

Therefore, a very little diffraction would appear in a direction which is parallel to the edge of 

the slit. No intensity, almost 0 intensity, you will observe if you go up or down, everything will 

be confined in the 𝑥𝑧 plane, which is perpendicular to the length of the slit. The third point, the 

problem has been reduced to that of finding the field in 𝑥𝑧 plane due to infinite number of point 

sources extending across the width of the slit along z axis.  

Now, let me explain it further, now this was our initial slit which had width b and length l. Now 

we created very huge number of small line sources and each such strip due to point number 1 

and point number 2 here can we reduce to a point source. Each such strip can now be reduced 

to a point source and the width of this array of point source would be b but now it would be 

length here. Because each line source can be reduced down to a point source now, which is 

emitting a circular wave.  

Therefore, each strip I am replacing with a point source and each point source is emitting a 

circular wave. Now the problem is reduced down to a line source which is of length b now and 

which is in this direction with here, which is now in z direction, this is the z direction. And this 

is now our array of point sources, this is our line source now which is now pointing along z 

axis. Thus, we created an array of point sources or line source which is now along z axis and 

whose length is now b.  



Now, we then need only to evaluate the integral of the contribution dE from each element dz 

in the Fraunhofer approximation. In the Fraunhofer approximation, now we will evaluate the 

field due to this horizontal line source.  
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And what is the formula for irradiance of a line source, we have already derived 𝐼𝜃 =

𝐼0(𝑠𝑖𝑛𝛽/𝛽)2. But the 𝛽 here is different from what we did in our earlier analysis, in earlier 

analysis in 𝛽 we were having kd/2, d was the length of the line source but here the length is 

now b , therefore I put it in red. And this equation number 30 is the same equation which we 

derived earlier here, equation number 29 is the same expression.  

But the definition of 𝛽 is now changed and parameter b which is the width of the single slit is 

now length of this line array, line oscillator array. Now this θ is also different. What is the 

difference? θ is now measured from the 𝑥𝑦 plane earlier the line source was like this and θ was 

measured from the horizontal plane. But now since this line source is now in this direction. 

Therefore, θ would be measured from this plane, this vertical plane, this is how the θ would be 

now measured.  

And this is why it is written, θ is measured now from 𝑥𝑦 plane and if you go to the figure here, 

then you see that now since the line charge is now along z axis and the perpendicular plane 

here is now 𝑥𝑦, 𝑥𝑦 is the perpendicular plane, then the angle would be measured from this 

perpendicular plane, which is your 𝑥𝑦 plane. Therefore, θ is now measured from 𝑥𝑦 plane.  

Make it a point, now note that here the line source is short. Why short? Because this is the 

single slit we started with, its length was l and width was b and width at the beginning, at the 

very beginning, was chosen such that it is very much small as compared to l. In our previous 

analysis the line source was of length D which was a bit big. Because length is always big as 

compared to width, this is the convention.  



But the length of now the new line source is b only which is very small. Therefore, D is in the 

definition of 𝛽 is replaced by b. Now 𝛽 is not large because b is very small here and although 

the irradiance falls off rapidly, higher order subsidiary maxima will be observable. As we said 

the intensity goes rapidly reduces to 0 as b deviates from θ is equal to 0 but now the length of 

the array is very small that the intensity will or irradiance will go down to 0 but it will again 

build up, and then again go down to 0, again build up, again go down to 0.  

Then how to calculate all these maxima and minima? We have the expression of irradiance 

here in equation number 30, a very quick answer is to utilize the knowledge of differential 

calculus, calculate the first order derivative of irradiance with respect to 𝛽 and equate it to 0. 

From there we will get the maxima minima. Let us do this, the extrema of 𝐼(𝜃) occur at values 

of 𝛽 that causes 𝑑𝐼/𝑑𝛽 to 0, well known.  

Let us take the derivative of equation number 30 with respect to 𝛽 and this derivation gives 

this expression. Now if you equate to 0 then you see two things, in the numerator we have 

multiplication of sin𝛽 with 𝛽𝑐𝑜𝑠𝛽 − 𝑠𝑖𝑛𝛽. It means either this term would be 0 or this term is 

0.  
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Now the irradiance has minima equal to 0, when sin𝛽 = 0. Let us assume that 𝑠𝑖𝑛𝛽 = 0. When 

𝑠𝑖𝑛𝛽 = 0 then 𝛽 will have these values for 𝑠𝑖𝑛𝛽 = 0, 𝛽 = ±𝜋, ±2𝜋, ±3𝜋 and so on values. It 

means, we will have minimum for these values of 𝛽. And we know the expression of 𝛽 from 

there we can calculate the values of θ and once the θ is known we can easily predict the 

positions of minima in single slit diffraction pattern.  

Now, there is second possibility to the second term, second multiplicative term, it may also 

assume 0 value. And if let us equate this term is 0 then from we get 𝑡𝑎𝑛𝛽 = 𝛽. Now this is a 

transcendental equation and which is very difficult to solve, people usually solve it numerically 

using bisection method. And therefore, the solution of this transcendental equation can be 

determined graphically, the solution to this transcendental equation represents the extremum.  

Now, how to solve this equation number 35? On the left hand side, we have 𝑡𝑎𝑛𝛽, on the right 

hand side we have 𝛽, to solve it, we plot 𝑡𝑎𝑛𝛽 and 𝛽 separately and the point of intersection 

would be the solution which will satisfy both left and right hand side. 
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Now the point of intersection of curve 𝑓1 is equal to 𝑡𝑎𝑛𝛽 with a straight line 𝑓2 is equal to 𝛽 

or common to both and only one such extremum exist between adjacent minima. Why? Now 

see in this figure, figure on the right hand side the f (𝛽), the 𝛽 is plotted on the horizontal axis 

and functions of 𝛽 are plotted on the vertical axis. This 𝑓2(𝛽) = 𝛽 is the straight line which is 

plotted here, while the 𝑓1 which is equal to tan 𝛽 is plotted here, these are the tan 𝛽.  

Now you see that the straight line is intersecting with this tan𝛽 curve at several points. The first 

is appearing here, the second is appearing here, the third is appearing here and we also know 

that we have minima at 𝛽 is equal to ±𝜋, ±2𝜋 which are here, this is the minima, this is the 

minima, this is the minima and between two adjacent minima we have only one maxima. See 

this is the maxima, this is the maxima, this is the maxima. And this is what is said, only one 



such extremum exist between adjacent minima, maximum is extremum we cannot comment 

right now what it is.  

But the zeros of irradiance occur when 𝛽 = 𝑚𝜋, this we have calculated here, 𝛽 = 𝑚𝜋. And 

from here because 𝛽 = 𝑏𝑠𝑖𝑛𝜃𝑚 which is m λ now, this is the same expression which is written 

in an expanded form where m is this integer.  
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And with this, if we plot the irradiance here on the vertical axis the relative irradiance is plotted 

on the horizontal axis both 𝛽 and sinθ is here shown. Now you see that along θ is equal to 0 we 

have very huge irradiance and its drops off very rapidly, like its falls very rapidly as you 

increase θ.  



Now it goes down to 0 at 𝜋, 2𝜋, 3𝜋 and between adjacent minima, we have one maxima, 

between adjacent minima we have one maxima. The 𝛽 values are mentioned here and sinθ 

values are mentioned here. And this is how a single slit diffraction pattern looks like, slit which 

have a certain width. Now suppose you increase or reduce the width of the slit, suppose this is 

for this slit. What will happen if you reduce down the width of the slit. In this case what will 

happen is that your pattern would be broadened, you will get like this. While for this, you will 

get this.  

Smaller is the width of the single slit wider would be the pattern and this is also clear from this 

figure. This smaller is the b, larger would be the θ. Now this is all for single slit, I finish my 

lecture with this, thank you for listening me.  

 


