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Fraunhofer Diffraction  

Hello everyone, welcome back to my class. In the last class we started module 7, wherein we 

talked about diffraction. We observed the similarities between interference and diffraction, and 

then we talked about the different classes of diffraction, wherein we saw that diffraction is 

divided in two parts the first is called Fraunhofer diffraction and the second is called Fresnel 

diffraction.  

Now today, we start Fraunhofer diffraction and just to revise Fraunhofer diffraction is the class 

of diffraction, wherein both the source and the screen is effectively at infinity from the 

diffracting element or from the aperture plane.  
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Now this is the usual case which we observe in with the aperture, we launch a plane wave here 

and then due to the aperture we see the formation of a spherical wave front and we see that 

light bends. This bending usually name as diffraction. Now in Fraunhofer domain, we will 

generalize this case, we know that in the Huygen’s principle that each point on the wave front 

works as a secondary source.  

Now if the light is being launched on the aperture, then each point on the aperture will behave 

as a source of secondary wavelet. Now to generalize this further here we assume that we have 



a large number of point sources which are given here and all these point sources are separated 

by a distance d.  

And the point sources are very closely spaced and the observation point is very far from these 

point sources. And therefore, we may assume that these point sources, they are in phase and 

the observation point is, point is at a distance 𝑟1 from first source, 𝑟2 from second source, 𝑟3 

from third source and 𝑟N from 𝑁𝑡ℎ source.  
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Now this is what is written here in the figure 9, in the last figure, it depicts a linear array of N 

coherent point oscillator which are identical and each have same phase angle. The ray shown 

are almost parallel meeting at some very distant point P, make it a point observation point P is 

very far from these point sources or point oscillators. If the spatial extent of array is 

comparatively small, thus the separate wave amplitudes arriving at P will be essentially equal, 

having travelled nearly equal distances.  

Now, suppose in this plane, we have the point sources whose spatial extent like all these points 

are just lying within this distance and the observation point is so far from this arrangement that 

this distance is negligible as compared to the distance from this point sources to the point of 

observation P. In that particular case we may assume that each individual source emits a ray 

which is reaching at point P and the amplitude from each source which is reaching at P is same.  

And we also assume that all these point sources they are in the same phase. In this 

circumstances, 𝐸0(𝑟1) which is the amplitude, which is received at point P from first point 



oscillator is equal to that of second point oscillator is equal to that of 𝑁𝑡ℎ point oscillator and 

we assume that all these are equal to 𝐸0(𝑟).  
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Now the sum of interfering spherical wavelets yield an electric field at P given by real part of 

this expression. What does this expression represent? This expression in complex 

representation represents the field received at point P from all these N number of point 

oscillators. The first oscillator emits 𝐸0(𝑟)𝑒𝑖(𝑘𝑟1−𝜔𝑡), similarly, the second emit this and the 

last one emit this.  

Since we already assumed that the amplitudes are the same therefore these quantities are same 

here. Now let us take it for 𝑒−𝑖(𝜔𝑡)  and 𝑒𝑖(𝑘𝑟1) out of the bracket, then we are left with this 

series. Now let us calculate the phase difference between adjacent sources. Now we know that 



the adjacent sources are separated by a distance d. And how to calculate the phase difference? 

Phase difference is 𝑘0 into path difference. And the path difference from the figure, here we 

know that the separation is d here.  

And then the path difference would be this. Where this is the perpendicular which we draw 

from first ray path to the secondary path. And this would be equal to dsinθ, where 𝜃 is this 

angle. With this, we can write that optical path difference between the adjacent rays is 𝑛𝑑𝑠𝑖𝑛𝜃, 

we will substitute it here to get phase difference, and we also assume that this point oscillator 

are kept in a medium of refractive index n. Therefore, n is appearing here, therefore the 

ultimately the expression for phase difference is 𝑘𝑑𝑠𝑖𝑛𝜃 where 𝑘 = 𝑘0𝑛. Now once this phase 

difference is known we can write it here, 𝑘(𝑟1 − 𝑟2) is the phase difference.  
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Therefore, from equation, from figure 9 (a) phase difference is 𝑘(𝑟2 − 𝑟1). But what would be 

the phase difference between the first ray and the third ray? Let us go back into the figure, this 

is the first ray and this is the third ray. To calculate the phase difference, we draw perpendicular 

here, we join these two lines and angle here is again θ and now its total distance is 2 d. Then 

the path difference would be 2d sinθ, which is 𝑟3 − 𝑟1. Therefore, the corresponding phase 

difference would be 𝑘02𝑑𝑠𝑖𝑛𝜃. Let us call it 𝛿1, which would be equal to twice 𝛿.  

𝛿 is nothing but it is 𝑘0 d sinθ but if you also take the refractive index of the medium then it 

would be quite better because refractive index also plays a role in defining the path difference. 

And this is what is done here. The 2𝛿 = 𝑘(𝑟3 − 𝑟1) , this is the phase difference between first 

and three. Similarly, between first and four you will get 𝑘(𝑟4 − 𝑟1). And therefore, you can 

replace the phases in occurring in this series.  

The first will be 𝛿, second would be 2𝛿 , third would be 3𝛿, and last would be (N-1) 𝛿. Now 

you see that this series in the bracket, it is nothing but GP and we know the formula to add 

them up. If you add them up you get this term, it is for 𝑒𝑖(𝛿𝑁-1)/𝑒𝑖(𝛿−1).  
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Let us simplify this a bit more then we can take 𝑒𝑖𝑁𝛿/2 out of the bracket from the numerator 

and from the denominator, we take it power 𝑖𝛿/2 out of the bracket, with this the bracketed 

term get rearranged and we get equation number 6. This expression is familiar to us and then 

we know that this is nothing but (𝑒𝑖𝜃 − 𝑒−𝑖𝜃)/2𝑖.  

And then what is this? This is your (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)/2𝑖 and this is equal to 

𝑠𝑖𝑛𝜃. Similarly, with the denominator then we will exercise this formula here. And this will 

result, this will result this term. This whole term will now reduce to this term because this 

bracket term in the numerator will reduce down to 𝑠𝑖𝑛𝑁𝛿/2. Similarly, bracket bracketed term 

in the denominator will reduce down to 𝑠𝑖𝑛𝛿/2. And this is nothing but 𝑒𝑖(𝑁−1)𝛿/2. 

This we got after solving the bracketed term in equation number 4. Apart from this bracketed 

term we have this extra multiplicative term. Let us take them also into account and then the 

final expression for the field at a point of observation now looks like this, which is given by 

equation number 7.  
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Now, if we define R as the distance from the center of the oscillator to point P then what would 

be the expression of R. Let us go back into the first figure. Now here, let us pick some point 

which is center. Let us say that it is the center here and from the center the point P is at a 

distance R.  

Then if we have to draw to calculate the path length difference, we will have to draw a 

perpendicular from here on R and as soon as a draw perpendicular from the first oscillator on 

R then this distance will be equal to 𝑟1 and this is will be your extra path, this is optical path 

length difference. Hope this is clear.  

Now since this point source is at the center of this oscillator array therefore this optical path 

length difference would be half of the optical path length difference between 𝑟1 and 𝑟𝑛. This is 

our array and r is at the center this is your r, this is your 𝑟1, this is your 𝑟N and we drew this 

perpendicular from here to here therefore this distance we say as 𝑟1 and this optical path length 

difference this would be half of this, if this is total then it would be total by 2.  

Therefore, R would be 𝑟1+T/2. What is T? T is nothing but (𝑁 − 1)𝑑𝑠𝑖𝑛𝜃. Therefore, the 

expression of R would be this. This is (𝑁 − 1)𝑑𝑠𝑖𝑛𝜃, which is optical path length difference 

between first and the last 𝑁𝑡ℎ oscillator and we take half of this because r is the distance from 

the center of the line oscillator to the point P and 𝑟1 is the distance of the P from first point 

source.  

Since we drew the perpendicular, then before the perpendicular we have OPD, after the 

perpendicular we have r. Therefore, the addition of these two term will give us R. Now this 

term, the right hand side of R, is appearing here in equation number 7. Now let us replace these 

things with R and the field expression get modifies and we get this as equation number 9. Here 

you see that R is appearing in the exponent.  

Once the field is known we need to calculate the flux density or irradiance, how to calculate 

this. The flux density distribution within the diffraction pattern due to N coherent identical 

distant point sources in a linear array would be proportional to �̃��̃�∗/2, this we know already.  
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And to after the calculation, we get this expression for irradiance. Where 𝐼0 is the flux density 

from any single source. We know that all these oscillators are identical then 𝐼0 is the irradiance 

or flux density of any of these point oscillator. Now if you substitute N is equal to 0 in equation 

number 10 then you get irradiance value or flux density value 0.  

And which is very much obvious, if you have no oscillator, no source you will not get any 

irradiance at the point of observation P. But if the number of point oscillator is 1 then 𝐼 = 𝐼0, 

which is again very much obvious because 𝐼0 is the irradiance due to one source.  

But for N=2, you get 4𝐼0𝑐𝑜𝑠2𝛿/2. And if you remember, this expression we have witnessed in 

Young's double slit experiment. Now the functional dependence of I on θ is more apparent if 

you expand 𝛿, 𝛿 is your phase difference which is kdsinθ. Now let us replace 𝛿 with kd sinθ in 

equation 10, then we get equation number 11.  

In the numerator we have N (kd/2) sinθ while in the denominator we have (kd/2) sinθ and we 

are taking sign of these quantities. The sin2[𝑁(𝑘𝑑/2)𝑠𝑖𝑛𝜃] term undergoes rapid fluctuations. 

Why? Because N is sitting here N is large number of oscillator, number of oscillator is N which 

is very large therefore the oscillations which the numerator will produce will be large, the 

fluctuation is rapid here.  

Whereas in the denominator, we have a function which is relatively slowly varying and 

therefore this rapid fluctuations of numerator is modulating the slowly varying function which 

is sitting in the denominator.  
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And therefore, what you will get ultimately if you plot this equation number 11, then the 

combined expression gives rise to a series of sharp principal peaks separated by small 

subsidiary maxima. You will have several sharp peaks which would be separated by small 

maxima. And what would be the position of maxima when will we get maxima, the 

conventional trick is when the phase difference 𝛿 is integral multiple of 2𝜋 we will get principle 

maxima.  

If the direction 𝜃𝑚, m is such that 𝛿 = 2𝑚𝜋 where m is an integer we get maxima. But 𝛿 is 

equal to kd sinθ in terms of d sinθ this equation reduced to this expression d sin𝜃𝑚 = 𝑚𝜆, the 

path difference must be integral multiple of wavelength. Now going back into equation 10, we 

see that in the numerator we have 𝑠𝑖𝑛2𝑁𝛿/2 and in the denominator we have 𝑠𝑖𝑛2𝛿/2.  



How to evaluate this? Because when 𝛿 = 0 both in the numerator and denominator we have 0 

by 0 form. Here we exercise L’Hospital rule, we will use this rule. In this rule, we will 

differentiate both numerator and denominator with respect to the variable and after doing this 

we get 𝑁2 the value of this ratio is equal to 𝑁2 for 𝛿 is equal to 2 m𝜋.  

And from here we can easily calculate the irradiance, the resultant irradiance which would be 

equal to 𝑁2𝐼0, the principal maxima value would be equal to 𝑁2𝐼0, as you increase the number 

of point sources, as you increase the number of point oscillator, the resultant irradiance at the 

screen at any point will increase rapidly. How rapidly? 𝑁2𝐼0.  
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Now the system will radiate a maximum in a direction perpendicular to the array, m is equal to 

0, θ is equal to 0 and 𝜋, which is of course very much clear, these are the point oscillator, 



maxima will be here either here or here because the system is emitting in both the direction. 

Now as θ increases 𝛿 increases and I falls off to 0. You see phase is kd sinθ, as you increase 

𝜃, 𝛿 will increase and as 𝛿 increases what will happen I will reduce down the irradiance will 

falls up and it will become 0, when 𝑁𝛿/2 = 𝜋 . And this is the position of first minimum, this 

is the condition for first minima. 

Now just look into this expression, 𝑑𝑠𝑖𝑛𝜃𝑚 = 𝑚𝜆. In the right hand side, we have fixed 

quantity. Now if d is much much smaller than 𝜆, just for the correctness of this equality sinθ 

now must be greater than 1, which is not possible. Therefore, for d smaller than 𝜆, the only 

solution which exist is m is equal to 0. It, therefore in this case zero order principle maximum 

exist, when d is less than 𝜆.  

Only zero order principle maximum will exist when d is smaller than 𝜆. Now suppose that we 

have a system in which we can introduce an intrinsic phase shift of 𝜖 between adjacent 

oscillators. We started with a set of oscillators, set of linear oscillators which were oscillating 

in same phase. And which were separated by a distance d.  

Now what we are saying is that the adjacent oscillators are now shifted in phase by 𝜖, therefore 

the phase difference between the waves emitting from the adjacent source will have 

contribution from the path length difference and will have contribution from the initial phase 

difference. And this 𝜖 represents the initial phase difference between the adjacent oscillators. 

Therefore, we will sum up these two contribution to come up with an expression of the resultant 

phase difference.  

Therefore, the condition of maxima which is 𝑑𝑠𝑖𝑛𝜃𝑚 = 𝑚𝜆 will get modified and it will 

modifies to equation number 15, 𝑑𝑠𝑖𝑛𝜃𝑚 = 𝑚𝜆 − 𝜖/𝑘. Therefore, the angular direction of the 

maxima now becomes a function of 𝜖, the initial phase. It means with the addition of some 

initial phase or deliberate addition of initial phase, we can tilt whole fringe pattern. We can tilt 

or we can manipulate the position of central maxima or principle maxima. 
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Now concentrating on the central maximum which is m=0, we can vary its orientation 𝜃0 at 

will by merely adjusting the value of 𝜖. Now let us consider another case or a bit idealized case. 

Now till now, we were considering point oscillators which were separated by certain distance 

D but what if this D is extremely small, if D is extremely small then this array of line oscillator 

can be termed as line source.  

Now, consider an idealized line source of electron oscillators as shown in figure 10. Now here 

these are the point oscillators, which are very closely spaced, almost touching each other, the 

D the separation is infinitesimally small now, therefore we can safely say line charge.  

And the overall length of this line charge is D, this is D and they are placed at the center here. 

And since O is origin, the line charge is placed at origin in the vertical up direction, the length 

of the line charge is D/2 in vertical down direction, the length of this line charge element is 

also D/2. Axis is pointing in this direction, y axis is pointing vertically up and z is coming out 

of the plane of the paper. Now also assume a point of observation P here which is at a distance 

R away from origin O and when you join P with O then this line makes an angle θ with x axis.  
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Now each point emits a spherical wave front here, each point on the line source now will emit 

a spherical wave front. And how to write the expression of the field for this is spherical wave 

front? By this relation (𝜖0/𝑟)(𝑠𝑖𝑛𝜔𝑡 − 𝑘𝑟). 𝜖0 is amplitude, r is the distance, we know that as 

you go away from the point charge from the source point, the field will decay down. Therefore, 



r is sitting in the denominator and the usual phase function sign. And 𝜖0 is the amplitude, the 

source strength. 

Now the present situation is distinct from the previous figure, from the previous analysis where 

we were having this point oscillators. Now what is the difference? The difference is that here 

the sources are very weak, their number N is tremendously large, huge number of sources are 

here and the separation between them is vanishingly small.  

Since we are calling them as a line source therefore the separation is vanishingly small. Now 

if the D is entire length of the array then segment ∆𝑦𝑖 will contain ∆𝑦𝑖𝑁/𝐷 sources. Now 

suppose this is the your line element which is emitting and then out of in this line element we 

choose a segment of length 𝑦𝑖. Now the total number of point sources on this line segment is 

N and total length is D, therefore number of point sources per unit length would be N/D, which 

is number of point sources per unit length.  

Once the number of point sources per unit length is known then in length element ∆𝑦𝑖the 

number of point sources would be ∆𝑦𝑖𝑁/𝐷.  
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Now imagine that array is divided into M such segments. This was the segment which we were 

considering and in this segment we took ∆𝑦𝑖. Now assume that there are M number of such 

segment here the total number of segment is M and total number of point sources is N.  

Now the contribution to the electric field intensity at P from the 𝑖𝑡ℎ segment is 𝐸𝑖 =

(𝜖0/𝑟𝑖)𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑟𝑖)(𝑁∆𝑦𝑖/𝐷), 𝑁∆𝑦𝑖/𝐷  represents the number of point sources in length 

element ∆𝑦𝑖 or in segment ∆𝑦𝑖. And this is contribution from single point source and therefore 

we have to multiply the contribution from the one source into the number of sources in length 

element 𝑦𝑖.  

But while doing so we have assume that in length element 𝑦𝑖 or in segment 𝑦𝑖 the segment is 

so small that the points sources are oscillator, which is lying in this segment have negligible 

relative phase difference. This 𝑟𝑖 is constant for all oscillators lying within ∆𝑦𝑖, 𝑟𝑖 is 

independent of 𝑦𝑖, if we fix, if we take a particular segment then within that segment 𝑟𝑖 is 

constant.  

And we also assume they are in same phase therefore we also assume that their field add 

constructively. Now since the separation is vanishingly small and N is very huge, the number 

of oscillators is huge. Therefore, we can use calculus for more complicated geometry. We will 

see how to use it. 
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Now, we are observing electric field strength at a point of observation P. And this electric field 

strength will be resultant of the electric field contribution from N number of point source, which 

is there within a line source which is of length D. But if we assume that N is approaching 

towards infinity then each point source lying on this line source, the strength of all individual 

point source must diminish nearly to 0. Why is it so?  

Because if they are contributing hugely and N is infinity then at the point of observation, we 

will receive infinite field. Because the point sources are infinite and they have some finite value 

of strength. Therefore, as N approaches to infinity, the strength of individual source must 

approach to 0. Because we want the total output to be finite, total output must be finite. 

Therefore, we can define a constant 𝜖𝐿 as source strength per unit length.  

This will resolve the problem of infinite field at observation point P. What, how to define source 

strength per unit length? It can be defined like this, we have total number of sources N and 

strength of each source is 𝜖0 that therefore total strength would be 𝜖0𝑁.  

Since L is in increasing to infinity, under this limit if we divide it with the D then it gives 

strength of the source per unit length and which is given by equation number 18. This is how 

𝜖𝐿 is defined. Once 𝜖𝐿 is defined, then we can express the total field at point of observation P 

from all the segment and we know that we have M number of segment. And ∆𝑦𝑖 is one of such 

segments, we will sum over i now. 



Now this is the expression for one of the segment and we now sum over i, i varies from 1 to 

M, M is the number of segment. And now since, the length of the segment is very small, then 

the number of segment would also be very huge.  

(Refer Slide Time: 31:54)  

 

And therefore, we can replace the summation with integration. And this is what exactly is done 

in equation number 20, the summation is replaced by this integration. And since the line 

element is of length D there of course the integration limit will vary from -D/2 to  +D/2 because 

line element is placed at the center and half of its length is above in positive y direction and 

half of its length is in negative y direction. Therefore, the limit would be from -D/2 to +D/2 

number of the length element is increasing till to an infinity, it is infinitesimal.  

Therefore, ∆𝑦𝑖 goes to dy and where r which is sitting in the denominator and here its would 

be a function of y. Now here the approximation used to evaluate the above integral must depend 

upon the position of P because r is here, which is a function of y. And therefore, this expression 

20, it makes the distinction between Fraunhofer and Fresnel diffraction because to solve 20, 

we will have to make some approximation. We will be either in the Fraunhofer domain or 

Fresnel domain which depends upon r or which depend upon the finiteness of the source. How 

big the length of the line source is, I stop here, thank you for listening me. 

 


