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Ray Theory, Fermat’s Principle 

Hello everyone, welcome to this class of Applied Optics. Today we will learn more about 

geometrical optics. In previous class, we taught basics of geometrical optics, we learn about 

what is k? Which is your wave vector and then we learn about frequency, the definition of 

frequency, the definition of time period and then we learn about angular frequency of a wave, 

and then we saw how to represent a wave function in complex representation. Today, we will 

learn ray theory in this module one. 
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Today we will learn ray theory and Fermat principle, these parts are already covered 

introduction of geometrical optics we have done in the previous class and in module one. We 

will today learn about Ray Theory and Fermat’s Principle.  
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Now, as discussed before the different regimes of optics are geometrical optics, wave optics 

and quantum optics. In geometrical optics, we assume that wavelength, the extent of 

wavelength is almost zero, we neglect the finiteness of the wavelength. And this geometrical 

optics will talk about the part of the optics where diffraction is neglected. To understand what 

diffraction is, you can consider a sheet with an opening with an aperture and then you shine a 

parallel beam of light on this sheet. Then here on the screen, you will see that due to this 

opening you will see a bright spot in this region.  

Now, if you start reducing the size of this opening, then what will happen is that this bright 

spot will extend in the shadow of reason here. The extension of this bright spot in the shadow 

region is, what we call diffraction and this phenomena is neglected in geometrical optics, we 

do not consider diffraction here and we will consider the light as a ray and wavelength is 

neglected, the finiteness of the wavelength is neglected.  

And therefore, the geometrical optics is defined as the field of optics where finiteness of the 

wavelength is neglected and this regime of optics can be studied using Fermat’s principle. In 

next slide, we will learn what a Fermat’s principal and how does it governs the geometrical 

optics?  
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Now, according to this principle, the ray will correspond to that path for which the time taken 

is an extremum in comparison to nearby paths. What it says is that, suppose we have two points 

A and B given in a space, a ray which starts from point A may travel to point B following 

infinite many paths. Suppose, one of the path is given by C, suppose, this path which is given 

by a curve C represents one of these paths, another path is represented by this dashed line and 

which we named as curve C’, C’ represents the dashed path and continuous line is represented 

by curve C.  

Now, let us assume that in this path AB on curve C there is an infinitesimally small part of the 

curve which we call as ds. Now let us calculate the time which a ray takes in traversing this 

infinitesimally small curve which is ds. Now, this time can be calculated once we know the 

speed and refractive index of the medium in which the ray is travelling.  

Let us assume the refractive index of the medium is n then the speed of the ray in this medium 

would be c/n which is written here and therefore, if you want to calculate the time spent by the 

ray in travelling the length element ds then this can be given by this relation and which is 

ds/(c/n). where d𝜏 represents the elemental time which the ray takes in covering distance ds. 

This relation can be written as (𝑛𝑑𝑠)/𝑐. Where n is refractive index of the medium and c is the 

speed of the light in vacuum.  

Now, once we know the time which a ray takes in traversing distance ds then we can also 

calculate the time the ray takes in traversing the whole curve path C and now, the whole time 

can be calculated by assuming several such small length element along curve C. Now, suppose 



there are very large number of these length elements and we can calculate the time for each of 

these length elements and then we can sum them up.  

Now, once you sum them up, this will give you the total time the ray will take into traversing 

path C. This total time would be given by 𝜏 and which would be equal to 
1

𝑐
∑ 𝑛𝑖𝑑𝑠𝑖.𝑖  Where 𝑑𝑠𝑖 

is the path length element for strip i where i is any random strip and 𝑑𝑠𝑖 is the associated path 

length and 𝑛𝑖 is the refractive index of that the medium within that strip.  

I repeat, we choose a random strip or random part, random length element along the curve C. 

In this random length element, the length of this curve is 𝑑𝑠𝑖, the refractive index of the medium 

within this length element is 𝑛𝑖 and we call this element or we name this element as ith element.  

Now to calculate the total time we will have to sum over all these i elements all the elements. 

Therefore, we are summing over 𝑛𝑖𝑑𝑠𝑖 and i runs over the number of elements, total number 

of elements. If the number of elements are very huge, then we can replace this summation with 

an integration, where these integrations runs from point A to point B along this curve C.  

And this 𝑑𝑠𝑖 would then be replaced by ds and 𝑛𝑖  would replaced by n and the summation is 

as I said is replaced by integration and this is how we can calculate the total time which a light 

ray takes in covering the whole distance from A to B along the curve C. Now, in this formula 

nds is the optical path length, ds is the distance, n is the refractive index. If you multiply n with 

ds it will give you optical path length.  

Now, as I said, if a ray starts from point A and goes to point B it may take many paths and the 

fundamental question is which path the ray will prefer and as per the Fermat’s principle the ray 

will prefer the path for which the time taken is extremum. What does extremum mean? 

Extremum means either maximum or minimum or stationary.  

Now, we have this integration, c is a constant therefore, we are removing it from our further 

calculation we are just interested in optical path length and the question is which path the ray 

should follow. Fermat principle says we will follow a path for which the time is extremum.  

Now here if this particular path is extremum, if the C is extremum and next to C path there is 

another path which is C’ which is slightly varied from C and which is not extremum then any 

variation from path C will give you zero here, the variation path C should be zero as per the 

Fermat principle and if for a given path this variance is zero that particular path would be 

chosen by the ray and this is what Fermat said.  
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Now, as an application of this Fermat principal or we can say that we will understand the 

reflection and refraction under the light of this Fermat principle. To understand the phenomena 

of reflection, let us first consider a mirror which is designated by MN or line MN and this dark 

line is our mirror. A ray starts from point A and then it falls on the mirror and then after falling 

on this mirror, it goes to another point B. Point A is the start point and point B is finishing 

point.  

Now, there are multiple path the ray may follow. The one path is APB, the other alternative 

path may be AQB. Again, the same question which path the ray should follow? Now, to 

understand this, we will again resolve to Fermat principle, but to really understand what exactly 

is happening here and how to decide whether a particular path is extremum or not.  

Let us assume a point A’ on the other side of line MN and this distance is equal to this upper 

distance. What I mean to say is that the distance AR is equal to the distance A’R. Now, if A’  

is mirror image of A then the rays which are starting from point A will also appear to start from 

point A’ and these are the two possible rays which we discussed. These are the two possible 

paths which we discussed. And of course, the shortest path would be the path for which this 

line is a straight line and therefore, A’ A, A’ PB which is a straight line would be the shortest 

path which is an extremum.  

And therefore, it follows this Fermat principle, it satisfies the Fermat principle and this path 

would be the extremum path and this is the path which the ray will follow. And another 

important point is that, if you want to prove this fact geometrically, then what you have to do 

is that calculate the optical path length. Now, how to calculate the optical path length in this 

case? The optical path length is the length of the path which the ray is following. Now, here in 

this figure the ray is starting from point A it is going to point B say and then it is reaching to 

the final point the destination point B.  

For a while assume that the ray falls on the mirror at point B although there is an equal 

probability that it may fall on point Q, but for starting our calculation, we assume that the ray 

path is APB and we will check whether this ray path is extremum or not, the optical path length 

is here, the path length A, P and B. how to know whether APB is extremum or not?  

Let us see, APB=AP+ PB, here what is AP? In this triangle, AP is hypotenuse and therefore, 

AP would be √𝐴𝑅2 + 𝑃𝑅2. Similarly, PB in this triangle can be expressed as square root of, 



suppose, this is point C, let us see what is written in the previous slide, okay no name, suppose 

this point is C and it is equal to 𝐵𝐶2 + 𝑃𝐶2.  

Now, what is 𝐴𝑅2 + 𝑃𝑅2,  AR=h therefore, 𝐴𝑅2  = ℎ2 and PR is x therefore, 𝑃𝑅2  = 𝑥2. 

Similarly, here BC is again equal to h and the point to be noted is that we have assumed that A 

and B are at the same height from the line MN. As is clear from the picture and PC is equal to 

L− x and what is L? L is the horizontal distance between the points A and B as shown in this 

picture here and this is our optical path length OPL.  

Now, once optical path length is known Fermat said, it would be optimum or  the optical path 

should be extremum, how to check whether it is extremum or not. let us differentiate it, we will 

take derivative with respect to the independent variable and what is the independent variable 

in our case. We can see here in this picture the point P is the point on the mirror MN. where 

the ray from A is falling and the ray may take several paths, it may fall at this point and then 

go to point B, it may fall at point P and then go to point B, it may fall on point Q and then go 

to point B. 

Therefore, the variable quantity is x which is the horizontal distance from A to the point where 

the ray falls on this. The perpendicular to the points where the ray falls on the screen. PS is the 

perpendicular where the ray falls on mirror P and x is the horizontal distance between point A 

and S. It tells about the horizontal separation between point A and perpendicular to the point 

of incidence of ray on mirror MN, therefore, x is the variable here.  

Therefore, to check whether this path is extremum or not, we will have to differentiate it with 

respect to x. We will differentiate this optical path length with respect to dx to check whether 

it is optimum or not and if it is optimum then this derivative must be equal to zero, let us do 

this and see what do we get.  

Then from here we will get 1/(2√ℎ2 + 𝑥2) and in the numerator we will get 2x here and here  

we will get 
2(𝐿−𝑥)(−1)

2√ℎ2+(𝐿−𝑥)2
 ,this is what we get. This would be equal to 0. Now, if you see in the 

figure and check what is 𝜃1 then you can see that 𝜃1. Let us calculate sin𝜃1,  𝑆𝑖𝑛𝜃1  =  
𝑥

√ℎ2+𝑥2
 

and 𝑆𝑖𝑛𝜃2 =
(𝐿−𝑥)

√ℎ2+(𝐿−𝑥)2
. This is how 𝑆𝑖𝑛𝜃1 and 𝑆𝑖𝑛𝜃2 are defined in the figure.  

Now, we will see that, we will substitute 𝑆𝑖𝑛𝜃1 and 𝑆𝑖𝑛𝜃2 in this expression and from here 

what do we see is that this is equal to first term is equal to 𝑆𝑖𝑛𝜃1 and second term is 𝑆𝑖𝑛𝜃2 



which gives 𝜃1 = 𝜃2, which is exactly the law of reflection. In reflection, the angle of incidence 

which is 𝜃1 must be equal to the angle of reflection 𝜃2. The angle of incidence here in this 

figure this must be equal to the angle of reflection and this is what we got using Fermat 

principle.  

It means, the ray path, if a ray starts from point A and lands up on certain point on mirror B 

and ultimately it gets collected at point B and then from this figure you can say or from this 

calculation you can say the point the ray will follow a path for which P is situated in such a 

way that angle of incidence is equal to angle of reflection. Now, once we studied reflection 

using Fermat principle.  
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Now, we should study the second important law which is law of refraction. To study the law 

of refraction, as you know, we require two media. Now, we again draw a horizontal line which 

we name as PQ and this thick horizontal line PQ is an interface between the two media of 

refractive index n1 and n2 respectively, the medium of refractive index n1 lies above the 

interface PQ and the medium of refractive index n2 lies below the line PQ. Now the source or 

the ray start from point A, which is situated at a distance ℎ1 or at height ℎ1 from line PQ and 

then it passes through this interface PQ and then it is getting observed at point B, which is at 

that ℎ2 from line PQ.  

Now, the ray which is starting from point A and ultimately reaching at point B. This may take 

infinite many paths, which path would be the extremum, which path the ray would follow. 

Now, for minimum optical path the incident ray, refracted ray and the normal to the interface  

this dash line that defines the normal to the interface, they all must lie in the same plane this is 

what is Snell’s Law said. We will do some geometrical calculation as we did in the previous 

case and then we will see what Fermat principle gives us in this refraction case.  

Now, here we assume that the ray which is starting from point A falls at point R on interface 

PQ and this point R is x distance away from line AM and the horizontal separation between 

point A and point B is L. Under this situation, let us calculate what AR is, AR is this distance.  

Now, AR=√𝑥2 + ℎ1
2. Similarly, we can calculate BR which is this distance, 

BR=√(𝐿 − 𝑥)2 + ℎ2
2. Once these two distances are known, we can calculate 𝑆𝑖𝑛𝜃1 and 𝑆𝑖𝑛𝜃2, 

where 𝜃1 and 𝜃2 are angle of incidence and angle of refraction respectively. Once 𝜃1 and 𝜃2 



are known, then we can move forward for calculating the optical path length as we did in the 

last slide.  
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Now how to calculate the optical path length, the optical path length as visible in this figure 

would be AR+ RB, if you add them up, you will get optical path length. But, in this particular 

case, the upper medium and the lower medium are different and they have  refractive indices 

which are different from that of AR and therefore, in addition to AR+RB we will have to 

multiply AR with 𝑛1 and RB with 𝑛2 which are their respective refractive indices and one is 

the refractive index in the upper medium and two is the refractive index in the lower medium.  

Therefore, the effective optical path length in the upper medium would be 𝑛1 × AR and the 

effective path length in the lower medium would be 𝑛2 × RB and this is what exactly we did. 



We calculated the optical path length in the upper medium and then optical path length in the 

lower medium and then sum them up to calculate the total optical path length. Once total optical 

path length is calculated, we will substitute for AR and RB from the previous slide here we 

have already calculated and this expression this equation number 36 will now give us the 

expression for optical path length.  

Now, we will resolve to Fermat principle which says that if you take the time derivative or 

sorry if you take the derivative of the optical path length with respect to the variable which is 

x here, you can see in this figure x is the variable here because the point R may vary depending 

if you vary the path which the ray takes then the point R will vary and therefore, x is the variable 

and this is why we will differentiate the optical path length with respect to x and as per the 

Fermat principle this differentiation must be equal to 0 and once you do this, you will get 

equation number 37.  

And we have already calculated the expression for 𝑆𝑖𝑛𝜃1 and 𝑆𝑖𝑛𝜃2 and if you substitute for 

this and this quantity, then you will get this expression and this is nothing but Snell’s law. And 

when 𝑛1𝑆𝑖𝑛𝜃1 = 𝑛2𝑆𝑖𝑛𝜃2 so 𝑆𝑖𝑛𝜃1/𝑆𝑖𝑛𝜃2 = 𝑛2/𝑛1. It means that the ray will follow a path 

for which this relation holds and therefore, it is again established that Fermat principle is 

capable of deciding the path of the ray.  

Now, suppose instead of having only two media we have a huge number of layered media. 

Suppose we have 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5. 𝑛2 is here, 𝑛3 is here, 𝑛4 is here and so on. Then the 

Snell’s law can be written as 𝑛1𝑆𝑖𝑛𝜃1 = 𝑛2𝑆𝑖𝑛𝜃2 = 𝑛𝑖𝑆𝑖𝑛𝜃𝑖 . and so on and so forth. This is a 

generalized form. Therefore, we may say that 𝑛𝑖𝑆𝑖𝑛𝜃𝑖 is a constant. If you keep varying the 

refractive index in a layered manner in one direction only than n1, 𝑛𝑖𝑆𝑖𝑛𝜃𝑖 would be constant 

and what type of constant is that it is invariant, it is invariant, invariant of ray path.  
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Now, once it is done we will now see this what is the application of this ray invariant quantity. 

Now, suppose as we discussed in the previous slide, we have layered media of different 

refractive index, the lower most medium has refractive index 𝑛1 and then upper one has 

refractive index 𝑛2, a bit upper one has refractive index 𝑛3, 𝑛4, 𝑛5 and so on and refractive 

index is wearing only in vertical upward direction. Under this particular case, we can derive a 

ray equation which will tell the curve which our ray will follow, how to derive this?  

Now, here as I said before 𝑛1, 𝑛2, 𝑛3 and 𝑛4 are the refractive indices of the front layer medium 

and this is the ray which will follow a particular path following your Snell’s law or we can 

derive such a equation for the ray path if the thickness of these  layer mediums are very small 

and if these thicknesses are very small then instead of having this discrete ray path we can 

rather draw a continuous curve which represents the ray path.  

Now, suppose in vertical direction we have x axis and in the horizontal direction we have z 

axis then a small element of ray path may be represented by ds and it will be slanted at angle 

𝜃 with respect to the horizontal direction and we may say that, that along horizontal direction 

the horizontal component would be dz and the vertical component would be dx of this length 

element ds. Now, we define now a quantity which is n(x)cos𝜃(𝑥) and this quantity would be 

ray invariant as discussed before, how can this quantity be a ray invariant.  

Now, if we launch a ray and then we draw a perpendicular at each interface then this angle 

would be the angle of incidence and this angle would be the angle of refraction in this medium 

the second one this angle would be the angle of incidence and this angle would be the angle of 

refraction. Now, suppose this is 𝜑1, this is 𝜑2 , this is again 𝜑2 and this is 𝜑3 and so on. Then 



𝑛𝑖𝑠𝑖𝑛𝜑𝑖 would be invariant. 𝑛𝑖𝑠𝑖𝑛𝜑𝑖 as discussed in this previous slide, it would be constant, 

it would not vary.  

Now, if we write this invariant which we call the invariant in terms of cosine then it would be 

written in the following form 𝑛𝑖𝑐𝑜𝑠𝜃𝑖. What is theta? theta is this angle, this is 𝜃1, this is 𝜃2 

and so on, the other side of 𝜑, 𝜑 + 𝜃 = 90 degree.  

Then this would be your invariant and if this refractive index variation is in only in one 

direction as I said before and the thickness of different layers are very small, then instead of 

writing this invariant quantity in discrete form, we can write it as a continuous variable 

therefore, we may write it as n function of x and cos 𝜃 where 𝜃  is a function of x where it is 

very slow there is a very slow variation in the refractive index along the x direction.  

And then we define a quantity which is 𝛽 which says that this n(x)cos𝜃(𝑥) is ray variant and 

this is invariant of a ray path. Once this is defined, then we can calculate the path length, the 

infinitely small path length along this ray path and this is using this diagram. We can say that 

𝑑𝑠2  =  𝑑𝑥2 + 𝑑𝑧2. After a little bit of mathematics, we will get this relation and from the 

figure we can see that 𝑐𝑜𝑠𝜃 = 𝑑𝑧/𝑑𝑠. We know that 𝑐𝑜𝑠𝜃  is also related to 𝛽 (beta tilde) which 

is a ray invariant therefore 𝑐𝑜𝑠𝜃  may equivalently be retain as  𝛽/𝑛(𝑥).  

Now, using this equation 39 may be written as (
𝑑𝑥

𝑑𝑧
)

2

=
𝑛(𝑥)2

𝛽̃
− 1,, this is ray equation. Now, 

this ray equation which is represented by equation number 40 may equivalently be written in 

different form, how to write it in different form just differentiate equation 40 with respect to z 

once more, then we will get this relation and after a little bit of simplification, we will again 

get a modified form of this equation.  

Equation number 40 and 42 they both are called ray equation and they trace the ray path. Now, 

we will take an example on this topic.  
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Now, suppose we have a homogeneous medium and for which refractive index which is a 

function of x would be constant because in homogeneous medium refractive index does not 

vary then how to decide the ray path? To decide the ray path, we will start with this ray 

equation. Now, since n is independent of x therefore, this term would be 0 and therefore, right 

hand side of the ray equation would be 0 this is what we are now left with after substituting n 

is equal to 0, we will get 
𝑑2𝑥

𝑑𝑧2 = 0.  

Now, if you solve this equation, how to solve this, integrate it twice then ultimately you will 

get a equation which is x= Az + B. where  A and  B are constants and this is an equation of a 

straight line which says that in homogeneous medium the ray would follow a straight line which 

is quite obvious what we observe in our daily life, light a torch, then the ray which is emanating 

from the torch will go in a straight line. It means that things are correct here. Now, this is all 

for today in my lecture here with ray equation. Thank you for your patience.  

 


