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Concept of Coherence - I 

Hello everyone, welcome back to my class. Today we will talk about concept of coherence, we 

have already talked about interference and in the interference topic we have talked about two 

categories of instrument, one is called the instruments which produce interference fringes using 

division of amplitude and other sets of instruments produces the interference fringes using 

division of wave front, having talked about all these things. 

Here we will define what coherence is, what are the different kinds which people talk about, 

this all would be addressed here in today's class. To start with, we will just repeat what we have 

learned till now about coherence and then we will slowly dive deep into the coherence 

definition and its understanding.  
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Now, whenever the two sources vibrate with a constant phase difference stationary interference 

pattern is produced, this we know, we have two sources and if the phase difference between 

the two sources is constant, then due to the overlap between the two sources or between the 

light emanated by these two sources, we see an interference pattern and which would be 

sustained. Because these sources are perfectly coherent because the phase difference between 

the two sources is constant in time.  



Now, the two sources which vibrate with a fixed phase difference between them are set to be 

coherent, this reality you know till here. And if the phase difference changes with such a great 

rapidity, than a stationary interference cannot be observed then the sources are set to be 

incoherent, because while studying about interference we talked about these things, we said 

that if the constant phase difference is not maintained, then the fringes would not be stationary, 

and if this constant phase difference between the sources are is maintained. Then the fringes 

would be stationary.  

Now, for the sources in which the constant phase difference is maintained, we named them as 

coherent sources or for the sources, for which we are able to get sustained interference fringes, 

we named them as coherent sources while for sources which does not produce sustained 

interference fringe or for the sources which does not maintain a constant phase difference, they 

are called incoherent sources, these things we know from our previous lectures.  
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Now, the new thing here is that the coherence is categorized in two category here, the first one 

is called temporal coherence and the second is called spatial coherence, the coherence 

properties which are associated with the finite bandwidth of the source comes in the category 

of temporal coherence.  

But if the coherence properties are associated with finite extent of the source in space, suppose 

we are talking about broad source then spatial coherence comes into the picture, we will talk 

about these two term more in the coming slides.  
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Now, in the previous lectures on interference, we assumed that the displacement associated 

with a wave remained sinusoidal for all values of time, because whenever we write an 

expression of the field we just write 𝐸 = 𝐸0𝑒𝑖(𝜔𝑡−𝑘𝑧), or 𝐸 = 𝐸0𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧).  

And this expression is valid for a monochromatic source and this expression itself says that the 

wave is sinusoidal extending from minus infinity to till plus infinity. Thus the displacement 

was assumed to be given by this expression, this is the expression which I was starting about 

E=A, A is the amplitude, 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡 + 𝜑), 𝜑  some initial phase, 𝑥 is the direction of 

propagation and this represents General Electric field displacement.  

Now, at any fixed particular value of 𝑥, the displacement is sinusoidal for all values of time, if 

you fix particular value of 𝑥, then you will see that for all values of time the wave is sinusoidal 

and this is represented here in this figure, in figure 1a, we see that, with t we see that the 

sinusoidal nature of the wave prevails irrespective of the value of t, such a wave is called 

monochromatic wave and the time period is defined here this is the usual definition which we 

learn in our initial classes.  
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Now, as I said, if you fix 𝑥, so let us fix 𝑥 = 0, then we see the sinusoidal nature of the wave 

for all values of t. And this corresponds to an idealized situation because the radiation from an 

ordinary light source consists of finite size wave train, the light which we receive from a source, 

it is not infinite wave train, it has certain length or certain time duration.  

And a typical variation of wave train is shown in figure 1a, then let us go to figure 1b and in 

this figure what we see is that, that a wave is sinusoidal and it is oscillating like this and then 

all of sudden there is a jump, there you see a kink and all of sudden there is an abrupt change 

in phase and a new sinusoidal oscillation is start.  

And this sinusoidal oscillation sustain till this point and here again we observe a jump and a 

new sinusoidal oscillation is start then here we see there is a phase jump, abrupt change in 



phase and abrupt change in amplitude. Now, the time during which the wave maintains its 

sinusoidal nature it is given by 𝜏𝑐, and this one set of wave is called wave train.  

Now, 𝜏𝑐 represents the average duration of the wave train that is the electric field remains 

sinusoidal for times of the order of 𝜏𝑐. Now, we can conclude that at a given point, at a fixed 

point x in space, the electric fields at time t and 𝑡 + ∆𝑡 will in general have a definite phase 

relationship if ∆𝑡 is less than much-much less than 𝜏𝑐.  

If we pick two points in time, then those two points will be in certain definite phase relationship 

as long as this ∆𝑡, ∆𝑡, the time separation between the two time points is much-much less than 

𝜏𝑐. And these two points will never have a phase relationship if ∆𝑡 is much-much longer than 

𝜏𝑐, and this is very much clear from this figure also.  

Now, here if you choose these two points, take these two points suppose this is t and this is 

𝑡 + ∆𝑡 then the times separation between these two points is ∆𝑡 and if this ∆𝑡 is smaller than 

𝜏𝑐 which is defined here then there is a phase relationship between these two type time point, 

but if ∆𝑡 is much-much larger than 𝜏𝑐 then of course, there would be several phase jump which 

would be there in ∆𝑡 and these two time points will not be in phase they would be totally 

uncorrelated.  
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Now, this time duration 𝜏𝑐 is known as coherence time and the field is set to remain coherent 

for times which is of the order of 𝜏𝑐 and therefore, suppose light is emanating from some source 

and the wave train has a temporal length of 𝜏𝑐 then this 𝜏𝑐 defines the coherence time of the 

source.  

Now, during this time the wave travels 𝑐𝜏𝑐 distance and this is the length of a wave train and 

this length is referred to as coherence length, the 𝜏𝑐 is coherence time and the corresponding 

length is called coherence length, and as an example, we can take a neon line whose wavelength 

is given by 6328 angstrom and 𝜏𝑐 that is coherence time for this is 10-10 seconds.  

And for the red light, red cadmium line, lambda is 6438 angstrom and for this 𝜏𝑐 10-9 s while 

the corresponding coherence lengths are 3 and 30 centimeter respectively. Now, you see that 

when the coherence time is small, the corresponding coherence length is also small, when the 

coherence time is large, the corresponding coherence length is also large here, which is very 

much obvious from this relation, equation number 55.  
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Now, in an idealized source, we will have in finite 𝜏𝑐, but 𝜏𝑐 is finite then what is the origin of 

finiteness of 𝜏𝑐, what affects 𝜏𝑐, what limits 𝜏𝑐 from reaching to infinity, this limits are listed 

here, the first is collision with another atom, suppose an atom is there in a source and then it 

collides with the another atom, due to this collision, there is abrupt change in phase and that 

generates kink and that limits the wave train length.  

The second factor which affects 𝜏𝑐 or which limits 𝜏𝑐 is random motion of atom here, the atoms 

moves inside the material volume and that also limits 𝜏𝑐 and the third one is finite lifetime of 

energy level, suppose an atom is an excited state and then when it goes down to its ground 

state, it emits radiation. But it only stays the atom within some finite time duration, it will reach 

down to the ground state and that also limits 𝜏𝑐 and therefore, the wave train which get 

generated will have certain time duration or certain length.  
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And having talked about these things, now, we will see what are the implications, how would 

it affect the usual interference experiments and what is the most widely studied experiments 

Young's double slits experiment or Young's double hole experiment and Michelson 

interferometer, we will implement this knowledge in Young's double hole experiment and 

Michelson interferometer and see what are the conclusions which we can draw.  

Now, here you see usually Young's double hole experiment and there is a source S out of this 

source, two sources 𝑆1 and 𝑆2 are generated and the rays which are starting from the these two 

point sources are known as 𝑆1 and 𝑆2 the reaches to point P which is on the screen and at P due 

to the superposition we observed some fringe pattern, the distance between 𝑆1 and P is 𝑟1 while 

between 𝑆2 and P is 𝑟2.  

Now, the interference pattern observed around point P at time t is due to the superposition of 

waves emanating from 𝑆1 and 𝑆2, of course. And since this distance between 𝑆1 and P is r, the 

time which the light takes in reaching from 𝑆1 to P would be 𝑟1/𝑐, while the time which the 

second ray will take from reaching from 𝑆2 to P would be 𝑟2/𝑐.  

Now, we are observing the interference pattern at point P at time t here, at time t the pattern is 

being observed but the rays which start from 𝑆1 and 𝑆2 it takes some time to reach at P, then 

what is the time when it is start from 𝑆1, the light at 𝑆1 is start at time 𝑡 − 𝑟1/𝑐, while at 𝑆2 it 

started 𝑡 − 𝑟2/𝑐  which is very much obvious.  



Because it is reaching at point P at time t therefore, it must have started sometime earlier and 

what is this earlier time these earlier times are 𝑡 − 𝑟1/𝑐  and 𝑡 − 𝑟2/𝑐 respectively from sources 

𝑆1 and 𝑆2. Now, we will calculate the path difference, what is the path difference? Path 

difference would be 𝑟2 − 𝑟1.  

Now, what is the time to cover this path difference, the time which the light will take in 

covering 𝑟2 − 𝑟1 is (𝑟2 − 𝑟1) /c, this is the time which correspond to the path difference. Now, 

if this time is less than 𝜏𝑐 then only the waves arriving at P from 𝑆1 and 𝑆2 will have a definite 

phase relationship and then only we will be able to see proper interference fringes with very 

good contrast.  

I repeat if the time corresponding to the path difference is much-much smaller than 𝜏𝑐 which 

is the coherence time for the given sources. Then only we will be able to observe interference 

pattern of good contrast.  
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And if the time is larger than 𝜏𝑐, then the waves reaching at point P will not have any fixed 

phase relationship and no interference pattern would be observed. Therefore, at the center 

means at this point we are 𝑟1 = 𝑟2, in general, we will have a good contrast fringe, because the 

path difference there is 0.  

And which is of course smaller than 𝜏𝑐, and as we move towards higher order fringes, as we 

move away from the center, the fringes will gradually become poorer, the contrast will decay 



down why the contrast will decay down because as we move away from the center, the path 

difference slowly increases.  

And therefore, the corresponding time the light takes to cover the path difference will also 

increase and when it will be very close to 𝜏𝑐 and larger than 𝜏𝑐 the fringes will start to fade 

away and therefore, instead of getting good fringes, we will have these kinds of fringes slowly 

it will decay down.  
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Now, we will implement this knowledge of coherence time in Michelson interferometer 

experiment, in Michelson interferometer, we know we have a source here and from this source 

the light falls on this beam splitter G and from the beam splitter, it goes in this direction as well 

as in this direction and then it returns back. After getting reflected and then the two lights goes 

into the detector, where they interfere and we observe interference fringes. 

And in this figure, 𝑀′2 is the virtual image of mirror 𝑀2 and these two mirrors are separated 

by a distance d. Now the path difference between the two ray for normal incidence. Let me 

clearly write, these the separation between the two mirrors 𝑀′2 and 𝑀1, now the path difference 

between the rays which are interfering would ultimately be equal to 2d, twice of d.  

Because the secondary which is getting reflected from 𝑀2 mirror or its virtual image 𝑀′2 would 

have to travel this thickness twice here, it will go in this direction and then return back and it 

is traveling d twice therefore, the part difference would be 2d. Now, how much time the light 

will take to cover 2d distance, it will take 2d/c second. And therefore, the beam reflected from 



𝑀1 interferes with the beam reflected by 𝑀2 which had originated 2d/c seconds earlier, which 

is quite correct.  
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Now, again we will implement the same condition, if this time is much-much less than 𝜏𝑐 then 

only we will observe fringes because then the two interfering ray will have definite phase 

relationship. And on the other hand, if 2d/c is much-much larger than 𝜏𝑐, two interfering beams 

will not have any definite phase relationship and we will not be able to observe an interference 

pattern.  

Therefore, we conclude from this analysis is that there is no definite distance at which the 

interference pattern disappear, it is not so that it will there is a some critical time and critical 

path length difference beyond which we would not be able to observe fringes and before which 

are at a path length difference which is smaller than that critical value you will see interference 

pattern, it is not like switching, switch on and switch off like stuff.  

Here as you gradually move towards 𝜏𝑐 as your characteristic time gradually move towards 𝜏𝑐, 

the fringes will start to fade up and if you are far beyond 𝜏𝑐 if the characteristic time or our 

2d/c time is much-much larger than 𝜏𝑐 then fringes will almost be invisible from our eyes.  

And therefore, we can say that there is no definite distance at which the interference pattern 

disappears as the distance increases, distance means path length difference, the contrast of the 

fringes becomes gradually poorer and eventually the fringe disappears.  
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Now, the few points which we can note down is that, in the Michelson interferometer 

experiment, that decrease in the contrast of the fringes can also be interpreted as being due to 

the fact of the source is not emitting at a single frequency but over a narrow band of frequencies. 

I repeat in the Michelson interferometer experiment, the decrease in the contrast of the fringes 

can also be interpreted as being due to the fact that the source is not emitting at a single 

frequency, but over a narrow band of frequencies.  

The same concept which we studied in the last slide, that can also be interpreted as that since, 

our source is a narrow band source. Our source is not ideal monochromatic source, it has several 

frequencies, although narrow band, but even in narrow band we have multiple frequencies and 

each frequency generates its own interference pattern and this blurs the overall interference 

pattern.  



Now, how does it happen? When the two frequencies like suppose we have several frequencies, 

and when the path difference between the two interfering beams is zero or very small, the 

different wavelength component produce fringes superimposed on one another and the fringe 

contrast is good. Suppose we have a narrow band sources and the path length difference 

between the two interfering beams is very small, very close to zero.  

And if this is so, then maxima and minima of different wavelengths, they fall almost on top of 

each other, all the maxima fall on the maxima of other frequencies. And therefore, we see a 

very good contrast very good fringes, but when the path length difference is huge, then what 

happens different wavelength components produced fringe patterns which are slightly 

displaced.  

Therefore, the maxima does not fall on top of maxima and minima does not fall on top of 

minima, there would be a slight displacement which incorporate a little blurring in the fringe 

and which are slightly displaced, with respect to one and other and the fringe contrast therefore 

becomes poorer. The poor fringe visibility for large optical path difference is due to the non-

monochromaticity of the light source, the same thing this is the same reasoning but it is 

explained in a different way. 

 Now, let us consider a Michelson interferometer in which the source is having two 

wavelengths 𝜆1 and 𝜆2 and which are very closely spaced. Now, for two closely spaced 

wavelengths 𝜆1 and 𝜆2, the interference pattern will disappear if maxima of one falls on the 

minima of other, suppose the it is normal incidence it is equal to integral multiple of wavelength 

here then suppose it is m λ and suppose it is for first wavelength, for second wavelength 2𝑑 =

(𝑚 + 1/2)𝜆2.  

Now, take the difference between the two and what you will get you will get the following 

2𝑑/𝜆2 − 2𝑑/𝜆1 = 1/2, this is the relation which is written here for normal incidence for two 

wavelength.  

If maxima of one falls on the next successive minima of other, then you will have this condition 

and you will not see any fringe pattern, this is what it is said here for two closely spaced 

wavelengths 𝜆1 and 𝜆2 the interference pattern disappear if this relation holds. And from here 

we can get expression of the path length difference which depends upon the wavelength and 

on their separation, since 𝜆1 and 𝜆2 are very close, we can replace 𝜆1𝜆2 = 𝜆2 where 𝜆 is average 

of 𝜆1 and 𝜆2.  



(Refer Slide Time: 24:43) 

  

 

With this in hand let us do it differently. Now, instead of two discrete wavelength if we assume 

the beam consists of all wavelengths lying between λ and λ+∆𝜆, earlier we took only two 

discrete wavelengths 𝜆1 and 𝜆2 now, we are considering that we have a source which is 

emanating a beam.  

And which have several wavelengths, a continuum of wavelength and this continuum of 

wavelength lie between λ and λ+∆𝜆, two limits are there, the first one is λ and the second is 

λ+∆𝜆 and between these two wavelengths, all the wavelength components are there in our 

beam.  



Then, the interference pattern produced by the wavelength λ and 𝜆 + ∆𝜆/2 will disappear if 

this relation holds, what exactly we are doing is here we consider two wavelengths 𝜆1 and 𝜆2 

now, we are considering a band of wavelength and this band extend from λ+∆𝜆.  

Now, what we are doing is that we are picking two values of wavelength in this band. The first 

one is λ and second is 𝜆 + ∆𝜆/2. And we want these two interference pattern between these 

two wavelength, this is first wavelength and second wavelength between these two wavelength. 

We want the interference pattern to disappear and when will disappear, they will disappear 

when they satisfy equation number 61.  

Now, let us replace 𝜆1 𝑏𝑦 𝜆 and 𝜆2 𝑏𝑦 𝜆 + ∆𝜆/2  and then get this expression. Therefore, the 

interference pattern produced by wavelength λ and 𝜆 + ∆𝜆/2 will disappear. If they satisfy 

equation number 61, we substituted the expression of 𝜆1 and 𝜆2 in expression 61 and we got 

this expression 62.  

Now, we have a band, which start from 𝜆 ends at 𝜆 + ∆𝜆 and out of this band we picked two 

wavelength 𝜆 and ∆𝜆/2. And these wavelengths will the fringes for these two wavelengths will 

disappear if the path length difference 2𝑑 = 𝜆2/∆𝜆, now for each wavelength lying between 𝜆 

and 𝜆 + ∆𝜆. There will be a corresponding wavelength lying between 𝜆 + ∆𝜆/2 this is extra 

written and 𝜆 + ∆𝜆.  

Now, what I am saying is that we pick two wavelengths which is λ and ∆𝜆/2. Now, for each 

wavelength lying in this band, there will be a wavelength lying in this band for which equation 

number 62 will be satisfied or alternatively for each wavelength in this band.  

There would be a corresponding wavelength in the other half of the band which extend from 

∆𝜆/2 to 𝜆 + ∆𝜆 sorry this is 𝜆 + ∆𝜆, this width is ∆𝜆/2, but the value of this wavelength is 

𝜆 + ∆𝜆/2 and similarly, this width is again ∆𝜆/2 but the value of wavelength is, here it is 𝜆 +

∆𝜆/2 and here it is 𝜆 + ∆𝜆, these are the two bands.  

The first band extend from 𝜆 to 𝜆 + ∆𝜆/2 and the second extend from 𝜆 + ∆𝜆/2 to 𝜆 + ∆𝜆 

only. So, for each wavelength, in this band there exist a wavelength in the second band such 

that minima of one falls on the maxima of other and this produces no fringe, this disappears 

the fringe.  
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Now, therefore, as long as 2d is much larger than are equivalent 𝜆2/∆𝜆, the contrast of the 

interference fringes will be extremely poor. I repeat as long 2𝑑 ≥ 𝜆2/∆𝜆, the contrast of the 

fringes would be poor. The corresponding spectral width of the source will be ∆𝜆 = 𝜆2/2𝑑.  

Till now, we were only talking in terms of path length difference or the time which the light 

take in covering the path length difference and the coherence time, we were only relating these 

two terms. But now, the similar condition can also be imposed on the spectral width of the 

source and what is this condition, this condition is given by 64, and it says that if the contrast 

of the interference fringe becomes very poor, when the path difference is d then the spectral 

width of the source will be 𝜆2/2𝑑.  



The spectral width must not be larger than or equal to 𝜆2/2𝑑, if the spectral width is satisfying 

equation 64, the fringe pattern would be very poor, the ∆𝜆 must be smaller than the right hand 

side quantity in equation number 64 to have very good interference fringes.  

And we observed that if the path difference exceeds the coherence length, the fringes are not 

observed, this is same statement. Either you say that the path difference must not exceed 

coherence length or the time taken to cover path length difference must not exceed the 

coherence time, the same thing therefore, the spectral width which is ∆𝜆 can also be written as 

𝜆2/𝐿.  

You see here ∆𝜆 = 𝜆2/2𝑑, what is 2d, 2d is optical path difference and optical path length 

difference is a length which must be smaller than coherence length, the maximum value is L 

which is coherence length, and if it goes beyond the coherence length fringes will start to decay 

down.  

Therefore, we can write ∆𝜆 = 𝜆2/𝐿 which is equal to 𝜆2/𝑐𝜏𝑐, where L= 𝑐𝜏𝑐. Does the temporal 

coherence time 𝜏𝑐 of the beam is directly related to the spectral width which we also call as 

line width. Once a source of given line width is given then we can quickly predict its coherence 

time using this relation using equation number 65.  

Now, once we know the relation between wavelength width and coherence time, then we can 

quickly calculate the relation between ∆𝜐, the frequency width are frequency spread with a 

coherence length or coherence time.  

How to do this we know that frequency 𝜐 = 𝑐/𝜆 then ∆𝜐 which is frequency spread, it can be 

calculated by just taking the derivative of this relation and from here we get this relation 

between frequency spread and coherence length, the sign we have neglected because it does 

not play any role here we are just interested in the numbers.  
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Now, since 𝜏𝑐 = 𝐿/𝑐, we substitute the expression here and ∆𝜐 is inversely proportional to 𝜏𝑐 

the coherence time therefore, the frequencies spread of a spectral line is of the order of inverse 

of the coherence time. It means that once we are given a source we know its central frequency 

or central wavelength and its bandwidth, be it a ∆𝜆 or ∆𝜐 then we can quickly calculate the 

coherence time.  

The quantity ∆𝜐/𝜐 is called monochromaticity of the source or spectral purity of the source. 

And one can see that even for ordinary light source it is very small, ∆𝜐/𝜐is very small for 

ordinary light source but if we talk about lasers where ∆𝜐 is very small then this spectral purity 

increases. This is all for today. Thank you for listening me.  

 

 


