
Applied Optics 

Professor Akhilesh Kumar Mishra 

Department of Physics 

Indian Institute of Technology Roorkee 

Lecture: 28 

Fabry-Perot Interferometer And Etalon - II 

Hello everyone, welcome back to my class. Today we will learn about uses the applications of 

Fabry Perot Interferometer.  
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In the last class, we were introduced with Fabry Perot Interferometer and etalon, we also 

understood the difference between the interferometer and the etalon. Today we will learn about 

its applications.  
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Application of Fabry-Perot interferometer is predominantly in spectroscopy. The Fabry Perot 

interferometer is frequently used to examine the detailed structure of spectral lines, a 

hypothetical purely monochromatic light wave, just observed this word hypothetical because 

it is impossible to have a purely monochromatic light source.  

The hypothetical purely monochromatic light wave generates a particular circular fringe 

system, we already studied in the last class that this is the type of the fringe pattern we observe 

in Fabry Perot interferometer provided we have only one wavelength, but if we have more than 

one, then for each wavelength. We will observe such type of fringes a pattern and the screen it 

would be quite complicated looking and we know that the phase difference is a function of 

wavelength, the wavelength appear in the expression of phase difference.  



So that if the source were made up of two such monochromatic components, two superimposed 

ring system would result. Because we have two wavelength one wavelength will make this type 

of ring pattern, the other wavelength which is adjacent to the first, it will also make its own 

ring pattern and they were would be very closely sitting if the wavelengths are very close. 

Now, using this spectroscopic tool, this Fabry Perot Spectrometer or Fabry Perot 

Interferometer, we can investigate the separation between the two wavelength, the values of 

these wavelength and the resolving power of the spectrometer.  

Now, when the individual fringes partially overlap, a certain amount of ambiguity exist in 

deciding when the two systems are individually discernible, that is when they are set to be 

resolved. The statement says that suppose we have two ring patterns, which are say this far. 

Now, if the wavelength which generated these two fringe patterns, if it is very closely spaced, 

then the fringes would also be very close, these rings would also be very close, the center of 

the rings will come very close to the other.  

And in this situation probably we will not be observed or we will not be able to trace the width 

of the fringes or the peak of the fringes, because in this situation, the peaks which we studied 

in our last class, they would be sitting very close to each other and it would be so close that 

probably we mistakenly say that they are one peak. But they are two in reality, therefore, a 

proper definition is required when the two peaks would be called resolvable.  

And the definition came from Lord Rayleigh, he gave a criteria which is called Lord Rayleigh 

criteria. According to Lord Rayleigh’s criterion, the fringes are just resolvable when the 

combined irradiance of both fringes at the center or saddle point of the resultant broad fringe 

is 8/𝜋2 times the maximum irradiance.  

Then the Rayleigh says that the fringes are just resolvable, just resolvable means, if they are a 

bit more close, then we would not be able to resolve or the interferometer would not be able to 

resolve them and it may read them as 1. But if they are placed in such a way that the irradiance 

at the center of the two peaks is equal to the maximum intensity by 8/𝜋2, then they would be 

set to be just resolved.  

Now, this can easily be understood through this figure. In this figure, we have two peaks, which 

are from two wavelengths. Here suppose this is from wavelength 𝜆1 and this is from 

wavelength 𝜆2 and these two peaks are very close, because the corresponding wavelengths are 



very close. Now, if you plot 𝛿 and the relative irradiance, then you see that two peaks are sitting 

very close to each other.  

And we know that if we have two sources, which are totally incoherent then the resultant 

irradiance distribution at the screen would be sum of the two intensities or sum of the two 

irradiance therefore, the total irradiance in this case would be the sum of the two irradiances 

and therefore, roughly we will see something like this.  

This overlap is sum of the two irradiance, the first irradiance plus second irradiance and here 

we see there is a saddle point, at the center we have a saddle point. And this is what exactly is 

being shown here also and this is your first peak, first maxima which correspond to the first 

wavelength.  

And this is second maxima which correspond to the other wavelength, the second one and if 

you sum these two irradiance then you get this, the dashed line, and if you sum these two 

irradiance then you see that at the center you get a saddle point and Lord Rayleigh said that if 

the saddle point is 8/𝜋2 times the maximum.  

Suppose here the maximum is 1 and this saddle point is 8/𝜋2, then the two peaks would be 

resolvable, we can say that they are resolvable and if they are closer then saddle point would 

be a bit up and then we cannot resolve them, if the saddle point is lower than they of course, 

are resolvable.  

Now, suppose that 𝛿𝑎 represents the phase value for first wavelength for which we get 

maximum at this phase value, the first wavelength gives us a maxima and at 𝛿𝑏 value of the 

phase the second wavelength gives us maxima, there are two maxima and also assume that the 

separation between these two are the difference between these two phases is ∆𝛿. The two 

maximas which owe their origin in two wavelengths, they are also supposed to have same 

maximum irradiances say there irradiances are 𝐼𝑎and 𝐼𝑏 and they are here supposed to be equal, 

(𝐼𝑎)𝑚𝑎𝑥 = (𝐼𝑏)𝑚𝑎𝑥 and the maxima of the two peaks fall on this line.  

Now, here what do you see that there is another intensity irradiance point which is represented 

by I’. I’ represents the irradiance of second peak or the irradiance value of the second 

wavelength, this is the irradiance peak of the first wavelength and at this phase value, the 

irradiance of the second is given by I’.  



Now, here since the peaks are symmetric, they have same widths and the same height are same 

irradiance the, 𝐼′ value for both the wavelength for both the irradiances is same. Therefore, we 

can see if we draw a horizontal line and these are the two values of the intensities of the other 

wave wavelength.  

Now, one more thing you must keep into the mind is that the second peak will appear at a phase 

separation of 2𝜋, because on each 2𝜋 we will get a maximum because 𝛿 is equal to integral 

multiple of 2𝜋 this is the one maximum this is the second successive maximum.  
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Now, consider the case in which the two constituent fringes have equal irradiance, this we have 

already talked about, the peak of the resultant occurring at 𝛿 = 𝛿𝑎, now we are talking about 



this value of phase. Now the question is what would be the value of total irradiance and this 𝛿 

value.  

The total irradiance at 𝛿 = 𝛿𝑎 would be the irradiance due to the first peak and irradiance due 

to the second one, but second one is this one, let us choose a different color, probably this 

would increase the visibility, this is the second peak. And we see that the value of irradiance 

of the second peak at 𝛿 = 𝛿𝑎, is 𝐼′, this we have already talked about.  

Therefore, the total irradiance would be (𝐼𝑎)𝑚𝑎𝑥, which is this value, and then plus I’, and this 

would be equal to 1 here. The total irradiance I at 𝛿𝑎 would be equal to (𝐼𝑎)𝑚𝑎𝑥 + 𝐼′. Now, we 

can write it safely, (𝐼𝑡)𝑚𝑎𝑥 the total irradiance maximizes because at 𝛿 = 𝛿𝑎 we have maxima 

the peak of irradiance.  

Therefore, we write (𝐼𝑡)𝑚𝑎𝑥 = (𝐼𝑎)𝑚𝑎𝑥 + 𝐼′. Similarly, at 𝛿 = 𝛿𝑏, (𝐼𝑡)𝑚𝑎𝑥 = (𝐼𝑏)𝑚𝑎𝑥 + 𝐼′, but 

since (𝐼𝑎)𝑚𝑎𝑥 = (𝐼𝑏)𝑚𝑎𝑥, we can use them alternatively. At the saddle point means at this dip, 

at this dip the irradiance 8𝜋2(𝐼𝑡)𝑚𝑎𝑥 is the sum of two constituent irradiances. Now, here you 

in the figure, you see, this is the saddle point, and here we will have to add up the intensity of 

the red and the intensity of the blue or irradiance of the red and irradiance of the blue.  

And therefore, this is the irradiance of the first peak, and this is the irradiance of the second 

peak. Now, in this figure irradiance maximizes at 𝛿 = 𝛿𝑎, this is 𝛿𝑎, where first irradiances 

maximizing and here is the center, center is this one which is ∆𝛿/2 unit away from 𝛿𝑎. 

Similarly, center from the second peak would be ∆𝛿/2 unit away from 𝛿𝑏.  

Now, if you calculate the irradiances at the center for two peaks and add them up, then we will 

get the irradiance at the saddle point and this is what is being done here, we calculate irradiance 

after first at a phase point of 𝛿𝑎 + ∆𝛿/2 and we calculate irradiance of the second peak at a 

phase point of 𝛿𝑏 + ∆𝛿/2.  

Now, I should have used here minus sign, 𝛿𝑏 − ∆𝛿/2, this plus sign is also correct, but because 

the irradiance value irrespective whether we are going in plus direction or minus direction it is 

same because the, this peak is symmetric. Now, the 𝐼′/(𝐼𝑎)𝑚𝑎𝑥 would be equal to the value of 

irradiance at 𝛿𝑎 + ∆𝛿.  

Because this 𝐼′ is being calculated at the center of one of the peaks, not center of the two peaks, 

at the center of the one of the peaks this is the second peak and its center is here 𝐼′ is calculated 



here. Similarly, for red color or the similarly for red peak the 𝐼𝑚𝑎𝑥 is calculated here, 𝐼′ is 

calculated here and this is the, 𝐼′ value.  

And if we want to calculate 𝐼′, the relative irradiance 𝐼′ then you calculate irradiance at 𝛿𝑎 +

∆𝛿 and this will give you the relative irradiance value at the second peak, we have two peaks 

and we want to calculate this irradiance here at this peak. Similarly, this irradiance here at this 

peak.  

At the peak of other wavelength what would be the value of irradiance of the first one, this is 

given by 𝐼′ and its relative value would be irradiance at 𝛿 = 𝛿𝑎 + ∆𝛿, these are 𝐼′, which are 

same if the peaks are symmetric, identical, then both 𝐼′ would be the same. Now, if we know 

this, then we can solve now equation number 40, substitute for these two Airy functions and 

then substitute the value of the phases.  
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And after a bit of calculation, we can get the expression of ∆𝛿 and which for the large value of 

F, which is coefficient of fineness would be equal to 4.2/√𝐹, what does this represent? This 

represents the smallest phase increment, ∆𝛿𝑚𝑖𝑛 separating the two resolvable fringes.  

Why does this represent the smallest phase increment because of equation 40, you see on the 

left hand side this is (𝐼𝑡)𝑚𝑎𝑥 is the maximum intensity and then we are multiplying with 8/𝜋2 

which is the Rayleigh criteria, Rayleigh criteria for fringes that are just resolvable, for just 

resolvable fringes, we have equation number 40 and it is giving the minimum ∆𝛿, if we solve 

equation number 40 we will get the value of ∆𝛿 which is the least for the observable, for the 

resolvable fringes and therefore, equation number 42 gives the minimum value of ∆𝛿.  

Now, we know from our last lecture, that the path difference is equal to 2𝑛𝑓𝑑𝑐𝑜𝑠𝜃 and plus 

there was a term 2𝜑 which was equation number 28 then we rewrite that equation and in this 

form and m⎾ is the integral multiple of wavelength which is again path difference, 𝜑 is, it is 

2𝑛𝑓𝑑𝑐𝑜𝑠𝜃 is intact and this is 𝜃, it is just rewritten equation number 22 is rewritten and now it 

is named as equation number 43.  

And now, after writing equation number 28 we said that, that there was a in the denominator 

there was wavelength and we said that the wavelength is very small and d is large. Therefore, 

the second term is relatively very small and therefore, neglected and this we do here too, we 

will drop the second term on right hand side of equation number 43 and then differentiate the 

rest of the term.  

Now, if you differentiate equation number 43 after dropping this term, then you will get 𝑚𝜆 =

2𝑛𝑓𝑑𝑐𝑜𝑠𝜃𝑡, here 𝑛𝑓 is the refractive index of the film which is in the cavity, d is the thickness 

of the cavity, θ is the angle, they all are constant quantity, they are fixed they will not vary and 

therefore, they are differentiation would be 0, m is the order and λ is the wavelength and since 

we are in using our Fabry Perot as a spectroscopic tool.  

The wavelength may vary, we may have several wavelengths and we may have several orders 

too, one order may coincide with like 𝑚𝑡ℎ order of one wavelength may coincide with 𝑚𝑡ℎ  

order of second wavelength and there are several other possibilities therefore, both λ and m the 

order of the fringe are variable here.  

And therefore, we can after differentiation, we can write this 𝑚∆𝜆0 + 𝜆0∆𝑚 = 0, ∆𝑚 is 

differentiation of 𝑚,∆𝜆 is the differentiation of 𝜆0 and from equation 44 we can write this 



𝜆/∆𝜆 = −𝑚/∆𝑚. Now, minus sign does not hold any significance it just says that if one 

quantity is increasing, the other is decreasing.  
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Now, we also know then when phase changes by 2𝜋, the m which is an integer it changes by 

1, 1 unit. Therefore,  by 2𝜋/∆𝛿 = 1/∆𝑚, this relation we can easily guess. Now, once we do 

know this relation then from here we can get the expression of ∆𝑚 and from here ∆𝑚 = ∆𝛿/2𝜋.  

And if we know this relation then we will substitute this in this relation 𝜆0/∆𝜆0 = 𝑚/∆𝑚, we 

will substitute here for ∆𝑚 and this substitution will give us equation which is 𝜆0/∆𝜆0 =

2𝜋𝑚/∆𝛿.  

The ratio of 𝜆0 to the least resolvable wavelength differences known as chromatic resolving 

power italic R of any spectroscope. Now, here while doing so, we picked here ∆𝛿 it is least 

smallest for least resolvable separation, the smallest resolvable separation, if ∆𝛿 is small, then 

we will have ∆𝜆0 minimum, once ∆𝜆0 is minimum, then this relation 𝜆0/∆𝜆0 minimum.  

This is defined as italic R, which is called chromatic resolving power. And chromatic resolving 

power defines the power of resolving the different wavelength of any spectroscopic tool, here 

in our case it is Fabry Perot Interferometer. Therefore, if we know the smallest value of ∆𝛿 we 

can calculate the smallest value of ∆𝜆0 and from there the resolving power, the chromatic 

resolving power of the Fabry Perot Interferometer.  
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Now, for normal incidence we can use equation number 42 which is nothing but this relation,  

this is 4.2/√𝐹 and the relation should be because here we are using 𝜆0/∆𝜆0 which is 2𝜋𝑚/𝛿 

and we know that mλ this is the relation.  

Equation number 43, 𝑚𝜆0 = 2𝑛𝑓𝑑𝑐𝑜𝑠𝜃a and 𝑚𝜆0 = 2𝑛𝑓𝑑𝑐𝑜𝑠𝜃 for normal incidence, this 

term would be 1 and 𝑚𝜆0 = 2𝑛𝑓𝑑 or 𝑚 = 2𝑛𝑓𝑑/𝜆0,  we can replace for m and once you 

replace for m in this relation, in relation 47.  

And then substitute for ∆𝛿 when you get the solution equation number 48 and from here you 

can also get that resolving power is equal to fineness into m, m is the integer order of the fringe 

once you know this and are once you know what is the least dissolvable wavelengths separation 

then you can also calculate the corresponding least resolvable frequency separation because ∆𝜐 

is related to ∆𝜆0 through this relation.  

Therefore, minimum resolvable bandwidth would be given by equation number 49 here, we 

just substituted for ∆𝜆, you can express ∆𝜆0 in terms of ∆𝜐 and once you do this, you can get 

the minimum value of ∆𝜐, the minimum dissolvable bandwidth.  
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Now, as the two components present in the source become increasingly different in wavelength 

or alternatively if you keep varying the wavelength in such a way that ∆𝜆0 increases slowly 

then the overlapping peaks separate, initially the wavelengths were close then the peaks were 

like this and if you increase that ∆𝜆 then what will happen, this peak will be separated.  

As the wavelength difference increases, the 𝑚𝑡ℎ order fringe from one wavelength will 

approach to the m plus 1th order film for the other wavelength, what it says is that suppose for 

one wavelength you were having such type of fringe pattern and if you increase the wavelength 

or if you change the wavelength then what ultimately will happen is that, that suppose this is 

the fringe pattern for the second wavelength.  

Now, if you keep increasing the wavelength separation then the two fringes which were initially 

very close, they will open up, they will start going away from each other and a situation may 

come when this fringe may start overlapping with the red one, the next one. The situation may 

come that the blue one falls on the red one if you keep varying the wavelength.  

And in this situation the 𝑚𝑡ℎ order fringe for one wavelength that is 𝜆0 will approach to the m 

plus 1th order of the other wavelength 𝜆0 − ∆𝜆0, the smaller wavelength. The particular 

wavelength difference at which overlapping takes place that is known as free spectral range 

and is designated by (∆𝜆0)𝑓𝑠𝑟. It means if this is your fringe pattern of a particular wavelength.  

And if you keep wearing the ∆𝜆0 then it may so happen that one wavelength may start 

overlapping with the second one and this overlapping happens for different orders, the mth 

order fringe of one wavelength may start to overlap with the m plus 1th order fringe of the 

other wavelength.  

Now if you keep varying then what will happen that it will slowly again separate and then it 

will start to overlap with the next one, then the separation at which this overlapping takes place 

is called ∆𝜆0 and this is known as free spectral wavelength and designated as (∆𝜆0)𝑓𝑠𝑟, this is 

wavelength to wavelength separation this is (∆𝜆0)𝑓𝑠𝑟.  

Now, from equation number 47, this is our equation a change in 𝛿 of 2𝜋 correspond to (∆)𝑓𝑠𝑟 

is equal to ∆𝜆0/m, here the 𝛿 is change by 2𝜋 that (∆𝜆0)𝑓𝑠𝑟 you say if you substitute ∆ this del 

by 2𝜋 then (∆𝜆0)𝑓𝑠𝑟 would be 𝜆0/𝑚, and this is the expression for (∆𝜆0)𝑓𝑠𝑟 and this is true 

only for normal incidence. 



And therefore, (∆𝜆0)𝑓𝑠𝑟 can be expressed by𝜆 𝜆0
2/2𝑛𝑓𝑑 because we know that (∆𝜆0)𝑓𝑠𝑟 as 

given above is this and 𝑚𝜆 = 2𝑛𝑓𝑑, in case of normal incidence therefore, m would be 2𝑛𝑓𝑑/𝜆 

and if you replace a substitute for this m then you will get this relation and once ∆𝜆0 is known 

the corresponding spectral width can also be calculated.  

And which is given by here (∆𝜐)𝑓𝑠𝑟 would be c/2𝑛𝑓𝑑 and here what we see is that (∆𝜆)𝑓𝑠𝑟, it 

is inversely proportional to the thickness d, the width of the Fabry Perot cavity. But, if you go 

back and check for the expression of (∆𝜆)𝑚𝑖𝑛  then (∆𝜆)𝑚𝑖𝑛 is again inversely proportional to 

d they both are inversely proportional to d.  
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But what do we want, we want an instrument, which can resolve the two peaks which are very 

closely spaced. Therefore, we want (∆𝜆)𝑚𝑖𝑛 to be as small as possible we want (∆𝜆)𝑚𝑖𝑛 very 

small, we want our instrument to have very high resolving power which means it can separate 

even very closely spaced wavelengths.  

And alongside we also want that (∆𝜆)𝑓𝑠𝑟 be very large because if we vary the wavelength the 

one of the fringes must not start overlapping with the another order of the other wavelength. 

Therefore, this peak to peak separation this (∆𝜆)𝑓𝑠𝑟, we want this to be very huge.  

But how can we achieve it, from this relation what we know is that if you want to decrease 

(∆𝜆)𝑚𝑖𝑛 then we need to increase d here and this can be written like this if we increase d, then 

what this will lead to (∆𝜆)𝑚𝑖𝑛 decrease and this is favorable for us we want this to happen.  

If we want smaller value of ∆𝜆0t we will have to increase d but let us see what would be the 

effect of increasing d in the (∆𝜆)𝑓𝑠𝑟 and (∆𝜆)𝑓𝑠𝑟 is given here and here too if you increase d 

then (∆𝜆)𝑓𝑠𝑟 will reduce down, it means the fringes in a spectral domain will come closer to 

each other. But we do not want this, if they will be very close. Then there would be a possibility 

of overlap. Therefore, we cannot randomly play with the d, the width of Fabry Perot 

Interferometer.  

Now if you take the ratio of (∆𝜆)𝑓𝑠𝑟/(∆𝜆)𝑚𝑖𝑛 then this is found to be equal to italic F which 

is fineness, this is a constant, then there is a trade-off between the 2 and depending upon the 

requirement of a particular application, we can play with the values so as coefficient of fineness 

remains constant. And this is all for this lecture, and thank you for listening me.  

 


