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Michelson Interferometer and its Applications - II 

Hello everyone, welcome back to my class and today is the last lecture of module 5. Now, as 

you remember, in the last class, we started with Michelson interferometer.  

(Refer Slide Time: 0:40) 

 

Today we will cover one more topic in Michelson interferometer and then we will start talking 

about its application.  
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Now, in last class we derived an expression for maxima, the condition of maxima. Now, we 

have also talked about the case when the separation between the two mirrors which is ∆𝑑 if it 

is reduced then we saw that the angular position of different fringes it should also be reduced. 

This can be understood through this relation which we derived in the last class 2∆𝑑𝑐𝑜𝑠𝜃 = 𝑚𝜆 

this was the relation which we talked about in the last class.  

Now, in this relation what I am saying is that if ∆𝑑 which is the separation between the two 

mirrors or the thickness of the field, if this is reduced, then what will happen is that, since on 

the right hand side, we have 𝜆 which is fixed and we have m which is an integer which is again 

fixed therefore, right hand side is fixed.  

Now, since we are varying ∆𝑑 and we want the left hand side to be fixed, then we must play 

with 𝑐𝑜𝑠𝜃 term. Now, since ∆𝑑 is getting reduced then 𝜃 should also be decreased so as to keep 

the left hand side of this equation constant. Now, if we reduce 𝜃 then what will happen now, 

these are the fringes which we observe and what is 𝜃, 𝜃 is the angular position of the fringes 

this is the 𝜃.  

Now, since we are reducing 𝜃 then what will happen is that the fringes will move towards the 

center, they will shrink and with shrinking they will come at the center and then they will 

collapse, they will disappear from the field of view. Therefore, with a reduction in the fringe 

the mirror separation, with reduction in ∆𝑑, the fringes will disappear at the center of the fringe 

pattern and slowly if we keep reducing ∆𝑑, we keep reducing the separation between the two 

mirrors, the number of fringes in our field of view will reduce and a situation will come when 

there will be only few number of fringes.  

Now, if we again reduce ∆𝑑 to 0 or if we overlap the two mirrors, so, that the ∆𝑑 is equal to 0 

then what will happen, all the fringes will collapse at the center and there would be a uniform 

darkness in our field of view because the air gap is 0 and since air gap is 0 the condition of 

minima will satisfy here because we are also taking into account the extra phase difference of 

𝜋 due to internal and external reflection which happens at beam splitter.  

Therefore, a uniform darkness will prevail when the airfield thickness or the separation 

between the two mirrors is 0. Now, in this situation, suppose the angle of incidence is almost 

equal to 0 are if we are normally launching the light into the system then 𝑐𝑜𝑠𝜃 would be 0 in 

this equation, we will be having this equation here 2∆𝑑 = 𝑚0𝜆0, 𝑚0 is again integer. 

Therefore, for central dark fringe, we will have this relation.  



Now, we were having two mirrors we slowly reduced the separation and then merge them. 

Then what is the other possibility we can keep rotating the micrometer screw which is attached 

to the mirror 𝑀2, then the image of 𝑀1 will now travel on opposite side and the air gap between 

the mirror will again now open but in the opposite direction and slowly ∆𝑑 will now increase 

and if ∆𝑑 is increasing the new fringes from the center will start to appear, this is what we 

discussed in the last class.  

Now, suppose the separation between the two mirrors is fixed. For fixed ∆𝑑 as is written here, 

the successive dark rings satisfy the following expression here. Now, what we are doing is that 

we have fixed the separation between the two mirrors here, these are the two mirrors and the 

separation which is ∆𝑑 is now fixed, due to this separation there is a formation of some ring 

fringe pattern and then we can just assign some angular positions to the different rings.  

Now, ∆𝑑 is kept fixed now, if we vary 𝜃 if we focus our attention to different rings then 

different dark rings starting from the center sorry starting from the center the success of dark 

rings will satisfy these criteria. This condition is from the central ring and then this condition 

is for the next order dark ring and for this we will have to write 𝑚0 − 1. For next order it would 

be 𝑚0 − 2 and the corresponding 𝜃 will vary here, for the first one 𝜃 = 𝜃1, for the second one 

𝜃 = 𝜃2. Similarly, for 𝑝𝑡ℎ ring, 𝜃 = 𝜃𝑝 and this number will be equal to p now, similarly, we 

can write this relation for all the dark rings which are appearing in our field of view.  

Now, if you want to know the angular position of 𝑝𝑡ℎ ring, suppose this is our 𝑝𝑡ℎ ring and we 

want to calculate this 𝜃𝑝 if we want to calculate this 𝜃𝑝 then you will have to calculate the 

angular orientation of the central fringe and calculate the angular orientation of the 𝜃𝑝 and then 

subtract them and this will give the angular orientation or angular position of the pth ring and 

this is what exactly is done here, in this relation what we did, we subtracted this, which is the 

condition for central dark fringe with this relation these two expressions when they are 

subtracted this gives us this relation which is nothing but the expression which gives us the 

position of 𝑝𝑡ℎ dark ring.  

Now, in this relation, 𝜃𝑝 is coming with cos term and for small 𝜃 the cost term can be expanded, 

just consider the first two terminal expansion of 𝑐𝑜𝑠𝜃 and from here if we substitute this 

expression of 𝑐𝑜𝑠𝜃 back into the previous expression then we get the value of 𝜃𝑝 the angular 

position of pth ring. And from here we can also get the angular position of (𝑝 − 1)𝑡ℎ ring or 

angular position of (𝑝 − 1)𝑡ℎ ring and from there we can calculate the angular width. Once 



angular width is there, we can also calculate the usual width, the width have the particular ring 

as we did in Young’s double slit experiment, as we did in Newton’s ring experiment, the 

similarly we can do it here also.  
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Now, in this slide, we will talk about applications of Michelson interferometer and the first 

application is measuring wavelength we can measure the wavelength using Young’s double 

slit Newton’s ring and as well as Michelson interferometer, how to do it, we know that for 

constructive interference, this condition holds 2∆𝑑𝑐𝑜𝑠𝜃𝑚 = (𝑚 + 1/2)𝜆0, where m is the 

order of the bright ring and 𝜃𝑚 is the corresponding angular position.  

Now, we know that in our setup, we have two mirrors, and attached to one of the mirror is our 

micrometer, if we play with the micrometer, or if you play with the separation between the two 

mirror, the fringes in our field of view either appear or disappear. Now, to measure the 

wavelength of the light what we do is that, we start rotating the micrometer attached with the 

mirror. This rotation will gives either appear or disappear certain number of fringes, let us say 

that the change in the number of fringes or the fringes which disappeared from our field of 

views ∆𝑚 and for this disappearance or appearance, we rotate the micrometer by a certain 

distance.  

Now, what would be this distance, this distance would be the separation between the two 

mirrors before the rotation of the micro meter and the separation between the two mirrors after 

the rotation of micrometer, if we subtract these two separations, this will give the readings of 

the micrometer, this is what exactly the micrometer is doing. Therefore, we have this relation 



then we change ∆𝑑 and therefore, m changes say the change in m is ∆𝑚 and change is ∆𝑑 is 

∆𝑑1 − ∆𝑑2 everything is being calculated for the normal incidence therefore, we have 

neglected here the 𝑐𝑜𝑠𝜃 term.  

Now, once it is done, once a micrometer is rotated by a certain distance which can be easily 

read on the micrometer scale and the fringes appeared or disappeared are counted then using 

this relation, we can calculate λ because ∆𝑚 is known, we know how many fringes appeared 

or disappeared and this distance is known this is nothing but micrometer reading and from here, 

𝜆0 the wavelength of the source can be calculated.  
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Now, next application is in measuring the wavelength difference in doublet. If we use sodium 

lamp in Michelson interferometer, then we know that in sodium lamp there are two lines 5890 

nanometer and 5896 nanometer, they are very closely placed, the separation between the two 

wavelengths is very small. In this situation, when we are having a source which produces 

doublet or we are having a source which have two wavelength which are very closely spaced, 

in that particular case, we can calculate the wavelength separation of the doublet and how to 

do, this can be done by observing successive concordances and discordances then what is 

concordances and discordances.  

Now, since there are two wavelengths in our source, the first wavelength say 𝜆1 it will produce 

its own interference fringe pattern, which of course would be concentric circular ring pattern. 

Similarly, the second wavelength will also produce its own concentric circular ring pattern. 

Now, it may so happen that both the wavelength simultaneously produce its own concentric 



ring patterns and the dark of one falls on top of the dark of other, similarly, the bright of one 

falls on top of the bright of other, in this situation the dark fringe will become darker and the 

bright fringe will become brighter and this is what exactly is shown here in this figure.  

Now, you see the here for the first wavelength, this is the circular ring pattern and for the second 

wavelength this is the circular in pattern. And the separation between the two mirrors is such 

that or the micrometer is rotated in such a way that the center falls on the center, the first ring 

falls on the first, the second falls on the second and so on.  

And in this particular case, the dark that the result and this is the resultant of the overlap, when 

this fringe overlaps with the this fringe pattern that this results and we know that dark is more 

dark here, dark is darker and bright is brighter, because dark fringes overlapping the dark fringe 

of one pattern is overlapping with the dark fringe of another and similarly bright is overlapping 

with the bright pattern for the second wavelength and therefore, we get better contrast now and 

this is called concordance.  

Similarly, now if the dark of one fall on the bright of other. If the dark rings for wavelength 

one falls on the bright ring of wavelength two then we will get uniform illumination, this is the 

pattern of first wavelength, this is the pattern of second wavelength if they both combine we 

get this and since dark is being compensated by bright and bright is being compensated by 

dark, we get uniform illumination in our field of view and this phenomena is called 

discordance, better contrast, better visibility, darker fringe dark, darker dark, brighter bright, 

this means concordance and if uniform intensity distribution, uniform field of view than 

discordance.  

Now, by setting the system on successive concordance or on successive discordance we can 

calculate the separation between the two wavelength, we can set the system such that the 

concordance appear in that particular case we can write the either maxima or minima condition 

for the two wavelengths, and then we rotate the micrometer and then we fix again for next 

concordance.  

The next concordance means, if it is concordance number one, the successive concordance will 

give the next condition for maxima or minima. And then we write the condition of maxima or 

minima for this new concordance and from this two relations, we can get the wave length 

separation which is ∆𝜆 here, and ∆𝑑1 and ∆𝑑2 is the separation between the mirrors, ∆𝑑1 is the 

separation between the mirrors when there is the first concordance and ∆𝑑2 due to the 



separation between the mirror when there is the second concordance and these two 

concordances must be successful, they must be coming one after that.  

And once you do this, we can measure the wavelength separation. Now, apart from the circular 

fringe pattern, the Michelson interferometer can also produce another kind of fringes, how to 

do this.  
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Now, here instead of using point source, a parallel beam of light is launch, in points of source 

what happens is that beam diverges, but here a parallel beam of light is being launched on this 

Michelson setup, here you see mirror 𝑀1, mirror 𝑀2, 𝑀′1 is the virtual image of mirror 𝑀1 and 

the separation between the two mirrors is ∆𝑑, this is our beam splitter.  

Now, since parallel beam of light is coming and the film thickness which is the air film which 

is getting formed between the two mirror is uniform, the film is being formed here, see, this is 

the film which is of uniform thickness, then the rays which are getting reflected from the top 

interface of their film and from the bottom interface of the air film, they will interfere to 

produce some fringe better. 

But, from the picture itself it is very much clear that these two rays, they will have a certain 

phase difference which would be constant throughout the field of view, since the source is 

launching parallel beam of light, the path difference between the rays which are coming to the 

screen, they would be constant throughout the field of view, the path difference here would be 

constant to the path difference at this point, this would be equal to the path difference at this 

point, this would be equal to the path difference at this point, therefore all points on the screen.  



We will see same type of interference, either constructive or destructive, or something in 

between but it would be of same intensity and therefore, uniform illumination would be there 

on the screen if you launch parallel beam of light and if the mirrors are parallel, there is no 

misalignment. If they are perfectly parallel than uniform illumination on the screen.  

And here to find constructive interference this is the condition, since the incidence is normal 

theta is equal to 0 and 𝑐𝑜𝑠𝜃 term is gone and from here we can see that 2∆𝑑 = (𝑚 + 1/2)𝜆 

and where ∆𝑑 is the path difference. Therefore, we see that fringes are far which are a straight 

line fringes, but in the vertical direction but if you put a screen there you will see a uniform 

illumination on the screen.  
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Now, next case is shown here, in this setup not one of the mirror, there are two mirrors and in 

this setup one of the mirror is tilted, with tilt one of the mirror. Now, again a parallel beam of 

light is being launched, but we deliberately tilt one of the mirror and therefore, the air film 

which is formed between the two mirrors is of wedge shape. Now, in this particular figure, the 

mirrors are tilted by 𝜃/2 and therefore, the reflected ray, the angle between the vertical and the 

reflected ray would be 𝜃.  

But in any case, we clearly understand that the air film is now wedge shaped. Since the air film 

is now wedge shape and we have already studied what is the fringe pattern in case of wedge 

shape and the fringe pattern there we know, it would be a straight line fringes and these fringes 

are called Fizeau fringes or fringes of equal thickness.  



Wherever the thickness satisfies the criteria of maxima or minima, we get bright and dark 

fringes and these fringes are called fringes of equal thickness because for all the dark fringe we 

can pick certain points in the wedge which satisfies the condition of minima for the dark fringe 

and if we pick all the bright fringe the corresponding points on the wedge they will satisfy the 

condition of maxima.  

Now, apart from this straight line fringes, we can also get a curve fringe here. Now, suppose 

this is how the mirrors are arranged. Now, the fringes at the center, like as long as we are 

looking in this area, the corresponding fringes they will look like a straight, but if we go for 

larger d, if we increase d, then we see that the fringes start to become like this.  

The convex surface always points towards the meeting point of the mirror, the point on which 

the two mirrors are joining here. Now, if you put mirror like this, then what will happen is that 

here we will see for this region we will see straight line fringes, and here you will see this type 

of fringes on the other side you will see this type of fringes and if the mirrors are like this, then 

you will see this type of fringes, we see that just by tilting the mirrors, we can generate different 

type of fringes. The widely studied is this straight line Fizeau fringes.  
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Now, let us again move to the next application which is measuring refractive index, how to 

measure the refractive index, we perform the same experimenting in Young’s double slit and 

there we covered one of the slit with a thin transparent film and then we saw that there is a shift 

in the maxima and by measuring the shift in the central maximum, we calculated the refractive 

index of the film.  

Here what we do here and one more thing and while doing that, I also mentioned that we must 

use white light interference pattern too, because the fringes in Young’s double slit experiments 

are indistinguishable. And since they cannot be distinguished from each other, we require a 

reference and that reference is provided by white light interference fringes and the shift in the 

white light interference fringes can easily be measured and detected, detected and measured.  



Now, to perform the experiment for here, we first illuminate the setup for fringes of equal 

thickness with white light because they act as a reference, now with the white light fringes at 

the center of the field of view for 0 optical path difference, insert the transparent sheet in the 

beam path to the mirror 𝑀1 in one arm, it just means that in one arm beams out the thin film, 

we have two arm 𝑀1 and 𝑀2, in either of the arm, you can insert the thin film, here I am 

particularly focusing on inserting it in the arm of mirror 𝑀1. Now, if you insert the thin film, 

the fringes will be shifted.  

But if there is no white light interference pattern, we will not be able to measure the shift 

because the fringes are identical and therefore, while inserting the right after inserting the thin 

film, we switch on again white light and then see how much is the shift in the center of the field 

of view of white light fringes, measuring this shift, we can measure the refractive index of the 

film using this formula and here 𝜇 the refractive index of the film, t is the thickness of the film 

and λ is the wavelength and m is the order.  

Now, one point, compensating plate is required in the path of mirror 𝑀1, why do we require 

compensating plate? If you remember in the first class here, I saw you this figure and what we 

saw is that this is our beam splitter and this is our compensating plate which is inserted in path 

half mirror 𝑀1 why it is required, to understand this let us see in this diagram, its a simplified 

version of the setup. You will see that the light is launched in this direction and the blue light 

or the blue arrow is going to mirror 𝑀1 and the red arrow is going to mirror sorry; the blue one 

is going to mirror 𝑀2 while the red one is going to mirror 𝑀1.  

Now, let us trace the path of blue arrow, I will pick blue color for this, the blue arrow is going 

in this direction and then it goes here and then it sees that the back phase of the beam splitter 

is painted and therefore a painted means it is coated with silver or some reflecting material and 

then after getting reflected it goes in this direction and then it follows this path and goes to 

mirror 𝑀1. At mirror 𝑀2, this blue ray goes to mirror 𝑀2 and at mirror 𝑀2 it suffers reflection, 

after reflecting it goes back then it follows this path here and then it goes in this direction where 

detector is kept.  

A part of the light also get reflected in this direction, but we are neglecting it for a while because 

this is not of our concern, because our detector is here, the fringe pattern is getting formed here 

therefore, we are only concentrating here.  



Now, this blue ray, before reaching to detector it crossed the thickness of the beam splitter, this 

is our beam splitter, it crossed the thickness of beam splitter thrice, how, from here it crossed 

first here this is the first crossing and then when then it travels to mirror 𝑀2 this is second 

crossing and after getting reflected from mirror 𝑀2 it again crosses the thickness of mirror sorry 

this beam splitter this is third crossing, it means it is passing through the thickness of the beam 

splitter thrice and then ultimately it is going to the screen or the detector therefore, blue arrow 

this is crossing our detector, traversing the thickness of the detector three times.  

Now, let us do the same for the other color, for the red one. The red one is going in this direction 

and the red one is the part of the ray which is getting transmitted here we said that beam splitter, 

on the back of the beam splitter there is a reflecting surface, which partially reflect means part 

of the light is transmitted and part of the light is only reflected therefore, the transmitting part 

is represented by red arrow here. This red arrow is transmitting and going to mirror 𝑀1 and 

here it is a first reflection it comes here and again get reflected towards the detector.  

Now let us count how many times it crossed the width of the detector. We see that here it cross 

just once, therefore, this red arrow it crossed the detector width once, one time. It means the 

blue arrow is traveling through the thickness of the beams splitter thrice, it means the difference 

is 2, 2 into beam splitter thickness. This we did not take into account in our calculation while 

calculating minima and maxima, we assume that the two beams are traveling the same path 

length.  

But here we see that the beam splitter thickness itself is incorporating the path length difference, 

because blue color is traveling thrice and red color is traveling once only. Since the blue arrow 

or the blue line or blue beam is crossing thickness three times and the red beam is crossing the 

thickness one time then therefore, there is an additional path length difference which is 

equivalent to two times the thickness of the beam splitter, to compensate for this additional 

path length difference or duplicate copy of transparent beam splitter now, now this duplicate 

copy does not reflect it only transmit here or almost perfectly transmitting glass plate is placed 

in the path of red beam.  

Now, if we put a glass plate whose thickness is equal to the thickness of the beam splitter, then 

what will happen, the red ray will now pass through this compensating plate once while going 

to mirror 𝑀1 and the when it comes back after reflecting from mirror 𝑀1 then it goes again 

through the thickness of this glass plate, it means it is covering this thickness twice and 

therefore, total times becomes equal to three which is equal to that of the blue beam because 



of insertion of this glass plate which we name as compensating plate, the path length between 

the two beams becomes equal provided the micrometer is adjusted in such a way that the 

distance of mirror 𝑀1 and 𝑀2 from the beam splitter is same, this is the importance of the 

compensating plate.  
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Now, these are the applications, I have listed the applications of the Michelson interferometer 

here in this slide. We can determine the wavelength of laser light which we saw in our previous 

slides how it is done, we can determine the separation of the wavelengths of a doublet, we saw 

how it is done, we can observe the interference of white light we know how it is done and 

measurement of wavelength and coherence length of an LED sources.  

I will talk about coherence in my next module in detail, there I will talk more about, what a 

coherence length is, but just for the clarification, when the light propagate, then it remains 

coherent for only a finite duration of time and during this time the length cover is called 

coherence length.  

As long as the optical path length is equal to or below coherence length, we can observe 

interference fringes. And if the optical path length is larger than the coherence length still the 

waves will interfere but we will not be able to observe it because the coherence is compromised 

and the fringes would not be sustainable anymore. Having said this, I would also like to list a 

few advanced applications of Michelson interferometer. We know LIGO is there, we know it 

is used in Michelson Morley experiment, but recently, in last few year, people have searched 

come advanced applications and a few of them is listed here.  



The first one is tunable narrow band filter and second is astronomical interferometry, LIGO 

you know, the third is optical coherence tomography. This is used in medical science here if 

you want to image biological sample layer by layer, then you also can use this Michelson 

interferometer. With this I end my lecture, and thank you all, see you all in next lecture. Thank 

you.  

 


